Skip to main content
Log in

Bioengineering extracellular vesicles as novel nanocarriers towards brain disorders

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite noteworthy technological progress and promising preclinical trials, brain disorders are still the leading causes of death globally. Extracellular vesicles (EVs), nano-/micro-sized membrane vesicles carrying bioactive molecules, are involved in cellular communication. Based on their unique properties, including superior biocompatibility, non-immunogenicity, and blood-brain barrier (BBB) penetration, EVs can shield their cargos from immune clearance and transport them to specific site, which have attracted increasing interests as novel nanocarriers for brain disorders. However, considering the limitations of native EVs, such as poor encapsulation efficiency, inadequate targeting capability, uncontrolled drug release, and limited production, researchers bioengineer EVs to fully exploit the clinical potential. Herein, this review initially describes the basic properties, biogenesis, and uptake process of EVs from different subtypes. Then, we highlight the application of EVs derived from different sources for personalized therapy and novel strategies to construct bioengineered EVs for enhanced diagnosis and treatment of brain disorders. Besides, it also presents a systematic comparison between EVs and other brain-targeted nanocarriers. Finally, existing challenges and future perspectives of EVs have been discussed, hoping to bolster the research from benchtop to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feigin, V. L.; Vos, T.; Nichols, E.; Owolabi, M. O.; Carroll, W. M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol. 2020, 19, 255–265.

    Article  Google Scholar 

  2. Charabati, M.; Rabanel, J. M.; Ramassamy, C.; Prat, A. Overcoming the brain barriers: From immune cells to nanoparticles. Trends Pharmacol. Sci. 2020, 41, 42–54.

    Article  CAS  Google Scholar 

  3. Cui, J. W.; Xu, Y. X.; Tu, H. Y.; Zhao, H. C.; Wang, H. L.; Di, L. Q.; Wang, R. N. Gather wisdom to overcome barriers: Well-designed nano-drug delivery systems for treating gliomas. Acta Pharm. Sin. B 2022, 12, 1100–1125.

    Article  CAS  Google Scholar 

  4. Croese, T.; Castellani, G.; Schwartz, M. Immune cell compartmentalization for brain surveillance and protection. Nat. Immunol. 2021, 22, 1083–1092.

    Article  CAS  Google Scholar 

  5. Wu, P. P.; Zhang, B.; Ocansey, D. K. W.; Xu, W. R.; Qian, H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials 2021, 269, 120467.

    Article  CAS  Google Scholar 

  6. Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228.

    Article  CAS  Google Scholar 

  7. Morad, G.; Carman, C. V.; Hagedorn, E. J.; Perlin, J. R.; Zon, L. I.; Mustafaoglu, N.; Park, T. E.; Ingber, D. E.; Daisy, C. C.; Moses, M. A. Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis. ACS Nano 2019, 13, 13853–13865.

    Article  CAS  Google Scholar 

  8. Qiao, L.; Hu, S. Q.; Huang, K.; Su, T.; Li, Z. H.; Vandergriff, A.; Cores, J.; Dinh, P. U.; Allen, T.; Shen, D. L. et al. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics 2020, 10, 3474–3487.

    Article  CAS  Google Scholar 

  9. Wang, S. A.; Li, F.; Ye, T.; Wang, J. H.; Lyu, C. L.; Qing, S.; Ding, Z. W.; Gao, X. Y.; Jia, R. R.; Yu, D. et al. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med. 2021, 13, eabb6981.

    Article  CAS  Google Scholar 

  10. Cong, M. H.; Tan, S. Y.; Li, S. M.; Gao, L. N.; Huang, L. Q.; Zhang, H. G.; Qiao, H. Z. Technology insight: Plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug carriers? Adv. Drug Deliv. Rev. 2022, 182, 114108.

    Article  CAS  Google Scholar 

  11. Zhang, J. H.; Ji, C.; Zhang, H. B.; Shi, H.; Mao, F.; Qian, H.; Xu, W. R.; Wang, D. Q.; Pan, J. M.; Fang, X. J. et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Sci. Adv. 2022, 8, eabj8207.

  12. Ma, M. M.; Gao, N.; Sun, Y. H.; Du, X. B.; Ren, J. S.; Qu, X. G. Redox-activated near-infrared-responsive polyoxometalates used for photothermal treatment of Alzheimer’s disease. Adv. Healthc. Mater. 2018, 7, 1800320.

    Article  Google Scholar 

  13. Zan, G. T.; Wu, Q. S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099–2147.

    Article  CAS  Google Scholar 

  14. Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

    Article  CAS  Google Scholar 

  15. He, C. J.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics 2018, 8, 237–255.

    Article  CAS  Google Scholar 

  16. Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17.

    Article  CAS  Google Scholar 

  17. Herrmann, I. K.; Wood, M. J. A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021, 16, 748–759.

    Article  CAS  Google Scholar 

  18. Dinkla, S.; Van Cranenbroek, B.; Van Der Heijden, W. A.; He, X. H.; Wallbrecher, R.; Dumitriu, I. E.; Van Der Ven, A. J.; Bosman, G. J. C. G. M.; Koenen, H. J. P. M.; Joosten, I. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 2016, 127, 1976–1986.

    Article  CAS  Google Scholar 

  19. Bodega, G.; Alique, M.; Puebla, L.; Carracedo, J.; Ramírez, R. M. Microvesicles: ROS scavengers and ROS producers. J. Extracell. Vesicles 2019, 8, 1626654.

    Article  CAS  Google Scholar 

  20. Gudbergsson, J. M.; Jønsson, K.; Simonsen, J. B.; Johnsen, K. B. Systematic review of targeted extracellular vesicles for drug delivery—Considerations on methodological and biological heterogeneity. J. Control. Release 2019, 306, 108–120.

    Article  CAS  Google Scholar 

  21. Atkin-Smith, G. K.; Poon, I. K. H. Disassembly of the dying: Mechanisms and functions. Trends Cell Biol. 2017, 27, 151–162.

    Article  CAS  Google Scholar 

  22. Chen, C. C.; Liu, L. N.; Ma, F. X.; Wong, C. W.; Guo, X. E.; Chacko, J. V.; Farhoodi, H. P.; Zhang, S. X.; Zimak, J.; Ségaliny, A. et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell. Mol. Bioeng. 2016, 9, 509–529.

    Article  CAS  Google Scholar 

  23. Wang, J.; Tang, W.; Yang, M.; Yin, Y.; Li, H.; Hu, F. F.; Tang, L.; Ma, X. Y.; Zhang, Y.; Wang, Y. Z. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 2021, 273, 120784.

    Article  CAS  Google Scholar 

  24. Cheng, H.; Fan, J. H.; Zhao, L. P.; Fan, G. L.; Zheng, R. R.; Qiu, X. Z.; Yu, X. Y.; Li, S. Y.; Zhang, X. Z. Chimeric peptide engineered exosomes for dual-stage light guided plasma membrane and nucleus targeted photodynamic therapy. Biomaterials 2019, 211, 14–24.

    Article  CAS  Google Scholar 

  25. Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Karamanos, Y. Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells 2020, 9, 851.

    Article  CAS  Google Scholar 

  26. Gao, X. F.; Zhang, Z. H.; Mashimo, T.; Shen, B.; Nyagilo, J.; Wang, H.; Wang, Y. H.; Liu, Z. D.; Mulgaonkar, A.; Hu, X. L. et al. Gliomas interact with non-glioma brain cells via extracellular vesicles. Cell Rep. 2020, 30, 2489–2500.E5.

    Article  CAS  Google Scholar 

  27. Holm, M. M.; Kaiser, J.; Schwab, M. E. Extracellular vesicles: Multimodal envoys in neural maintenance and repair. Trends Neurosci. 2018, 41, 360–372.

    Article  CAS  Google Scholar 

  28. Shi, M.; Liu, C. Q.; Cook, T. J.; Bullock, K. M.; Zhao, Y. C.; Ginghina, C.; Li, Y. F.; Aro, P.; Dator, R.; He, C. M. et al. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol. 2014, 128, 639–650.

    Article  CAS  Google Scholar 

  29. Gagliardi, D.; Bresolin, N.; Comi, G. P.; Corti, S. Extracellular vesicles and amyotrophic lateral sclerosis: From misfolded protein vehicles to promising clinical biomarkers. Cell. Mol. Life Sci. 2021, 78, 561–572.

    Article  CAS  Google Scholar 

  30. Lapointe, S.; Perry, A.; Butowski, N. A. Primary brain tumours in adults. Lancet 2018, 392, 432–446.

    Article  Google Scholar 

  31. Zhong, J.; Xia, B. Z.; Shan, S. B.; Zheng, A. P.; Zhang, S. W.; Chen, J. G.; Liang, X. J. High-quality milk exosomes as oral drug delivery system. Biomaterials 2021, 277, 121126.

    Article  CAS  Google Scholar 

  32. Han, L.; Lam, E. W. F.; Sun, Y. Extracellular vesicles in the tumor microenvironment: Old stories, but new tales. Mol. Cancer 2019, 18, 59.

    Article  Google Scholar 

  33. Pan, Z. W.; Zhao, R. R.; Li, B. Y.; Qi, Y. H.; Qiu, W.; Guo, Q. D.; Zhang, S. J.; Zhao, S. L.; Xu, H.; Li, M. et al. EWSR1-induced CircNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol. Cancer 2022, 21, 16.

    Article  CAS  Google Scholar 

  34. Yekula, A.; Minciacchi, V. R.; Morello, M.; Shao, H. L.; Park, Y.; Zhang, X.; Muralidharan, K.; Freeman, M. R.; Weissleder, R.; Lee, H. et al. Large and small extracellular vesicles released by glioma cells in vitro and in vivo. J. Extracell. Vesicles 2019, 9, 1689784.

    Article  Google Scholar 

  35. Lang, F. M.; Hossain, A.; Gumin, J.; Momin, E. N.; Shimizu, Y.; Ledbetter, D.; Shahar, T.; Yamashita, S.; Kerrigan, B. P.; Fueyo, J. et al. Mesenchymal stem cells as natural biofactories for exosomes carrying MiR-124a in the treatment of gliomas. Neuro-Oncol. 2018, 20, 380–390.

    Article  CAS  Google Scholar 

  36. Zhu, Q. W.; Ling, X. Z.; Yang, Y. L.; Zhang, J. T.; Li, Q.; Niu, X.; Hu, G. W.; Chen, B.; Li, H. Y.; Wang, Y. et al. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv. Sci. 2019, 6, 1801899.

    Article  Google Scholar 

  37. Pegtel, D. M.; Peferoen, L.; Amor, S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130516.

    Article  Google Scholar 

  38. Wang, J.; Ma, P.; Kim, D. H.; Liu, B. F.; Demirci, U. Towards microfluidic-based exosome isolation and detection for tumor therapy. Nano Today 2021, 37, 101066.

    Article  CAS  Google Scholar 

  39. Zhang, Y.; Bi, J. Y.; Huang, J. Y.; Tang, Y. N.; Du, S. Y.; Li, P. Y. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 2020, 15, 6917–6934.

    Article  CAS  Google Scholar 

  40. Yang, D. B.; Zhang, W. H.; Zhang, H. Y.; Zhang, F. Q.; Chen, L. M.; Ma, L. X.; Larcher, L. M.; Chen, S. X.; Liu, N.; Zhao, Q. X. et al. Progress, opportunity, and perspective on exosome isolation—Efforts for efficient exosome-based theranostics. Theranostics 2020, 10, 3684–3707.

    Article  CAS  Google Scholar 

  41. Yáñez-Mó, M.; Siljander, P. R. M.; Andreu, Z.; Zavec, A. B.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066.

    Article  Google Scholar 

  42. Sisirak, V.; Sally, B.; D’Agati, V.; Martinez-Ortiz, W.; Özçakar, Z. B.; David, J.; Rashidfarrokhi, A.; Yeste, A.; Panea, C.; Chida, A. S. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 2016, 166, 88–101.

    Article  CAS  Google Scholar 

  43. Li, M. J.; Liao, L.; Tian, W. D. Extracellular vesicles derived from apoptotic cells: An essential link between death and regeneration. Front. Cell Dev. Biol. 2020, 8, 573511.

    Article  Google Scholar 

  44. Jamjoom, A. A. B.; Rhodes, J.; Andrews, P. J. D.; Grant, S. G. N. The synapse in traumatic brain injury. Brain 2021, 144, 18–31.

    Article  Google Scholar 

  45. Gill, J.; Mustapic, M.; Diaz-Arrastia, R.; Lange, R.; Gulyani, S.; Diehl, T.; Motamedi, V.; Osier, N.; Stern, R. A.; Kapogiannis, D. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj. 2018, 32, 1359–1366.

    Article  Google Scholar 

  46. Manek, R.; Moghieb, A.; Yang, Z. H.; Kumar, D.; Kobessiy, F.; Sarkis, G. A.; Raghavan, V.; Wang, K. K. W. Protein biomarkers and neuroproteomics characterization of microvesicles/exosomes from human cerebrospinal fluid following traumatic brain injury. Mol. Neurobiol. 2018, 55, 6112–6128.

    Article  CAS  Google Scholar 

  47. McBride, J. D.; Rodriguez-Menocal, L.; Guzman, W.; Candanedo, A.; Garcia-Contreras, M.; Badiavas, E. V. Bone marrow mesenchymal stem cell-derived CD63+ exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells Dev. 2017, 26, 1384–1398.

    Article  CAS  Google Scholar 

  48. Upadhya, R.; Madhu, L. N.; Attaluri, S.; Gitaí, D. L. G.; Pinson, M. R.; Kodali, M.; Shetty, G.; Zanirati, G.; Kumar, S.; Shuai, B. et al. Extracellular vesicles from human IPSC-derived neural stem cells: MiRNA and protein signatures, and anti-inflammatory and neurogenic properties. J. Extracell. Vesicles 2020, 9, 1809064.

    Article  Google Scholar 

  49. Pan, W.; Xu, X. H.; Zhang, M.; Song, X. Y. Human urine-derived stem cell-derived exosomal MiR-21-5p promotes neurogenesis to attenuate Rett syndrome via the EPha4/TEK axis. Lab. Invest. 2021, 101, 824–836.

    Article  CAS  Google Scholar 

  50. Tian, T.; Cao, L.; He, C.; Ye, Q.; Liang, R. Y.; You, W. Y.; Zhang, H. X.; Wu, J. H.; Ye, J. H.; Tannous, B. A. et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics 2021, 11, 6507–6521.

    Article  CAS  Google Scholar 

  51. Dugger, B. N.; Dickson, D. W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035.

    Article  Google Scholar 

  52. Reddy, P. H.; Oliver, D. M. A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 2019, 8, 488.

    Article  CAS  Google Scholar 

  53. Blauwendraat, C.; Heilbron, K.; Vallerga, C. L.; Bandres-Ciga, S.; Von Coelln, R.; Pihlstrøm, L.; Simón-Sánchez, J.; Schulte, C.; Sharma, M.; Krohn, L. et al. Parkinson’s disease age at onset genome-wide association study: Defining heritability, genetic loci, and α-synuclein mechanisms. Mov. Disord. 2019, 34, 866–875.

    Article  CAS  Google Scholar 

  54. Van Es, M. A.; Hardiman, O.; Chio, A.; Al-Chalabi, A.; Pasterkamp, R. J.; Veldink, J. H.; Van Den Berg, L. H. Amyotrophic lateral sclerosis. Lancet 2017, 390, 2084–2098.

    Article  Google Scholar 

  55. Sinha, M. S.; Ansell-Schultz, A.; Civitelli, L.; Hildesjö, C.; Larsson, M.; Lannfelt, L.; Ingelsson, M.; Hallbeck, M. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol. 2018, 136, 41–56.

    Article  Google Scholar 

  56. Ruan, Z.; Pathak, D.; Kalavai, S. V.; Yoshii-Kitahara, A.; Muraoka, S.; Bhatt, N.; Takamatsu-Yukawa, K.; Hu, J. Q.; Wang, Y. Z.; Hersh, S. et al. Alzheimer’s disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain 2021, 144, 288–309.

    Article  Google Scholar 

  57. Agosta, F.; Libera, D. D.; Spinelli, E. G.; Finardi, A.; Canu, E.; Bergami, A.; Chiavetto, L. B.; Baronio, M.; Comi, G.; Martino, G. et al. Myeloid microvesicles in cerebrospinal fluid are associated with myelin damage and neuronal loss in mild cognitive impairment and Alzheimer disease. Ann. Neurol. 2014, 76, 813–825.

    Article  CAS  Google Scholar 

  58. Stuendl, A.; Kunadt, M.; Kruse, N.; Bartels, C.; Moebius, W.; Danzer, K. M.; Mollenhauer, B.; Schneider, A. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 2016, 139, 481–494.

    Article  Google Scholar 

  59. Westergard, T.; Jensen, B. K.; Wen, X. M.; Cai, J. L.; Kropf, E.; Iacovitti, L.; Pasinelli, P.; Trotti, D. Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep. 2016, 17, 645–652.

    Article  CAS  Google Scholar 

  60. Gratpain, V.; Mwema, A.; Labrak, Y.; Muccioli, G. G.; Van Pesch, V.; Des Rieux, A. Extracellular vesicles for the treatment of central nervous system diseases. Adv. Drug Deliv. Rev. 2021, 174, 535–552.

    Article  CAS  Google Scholar 

  61. Fiandaca, M. S.; Kapogiannis, D.; Mapstone, M.; Boxer, A.; Eitan, E.; Schwartz, J. B.; Abner, E. L.; Petersen, R. C.; Federoff, H. J.; Miller, B. L. et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimer’s Dement. 2015, 11, 600–607.E1.

    Article  Google Scholar 

  62. Zhao, Z. H.; Chen, Z. T.; Zhou, R. L.; Zhang, X.; Ye, Q. Y.; Wang, Y. Z. Increased DJ-1 and α-synuclein in plasma neural-derived exosomes as potential markers for Parkinson’s disease. Front. Aging Neurosci. 2019, 10, 438.

    Article  Google Scholar 

  63. Verderio, C.; Muzio, L.; Turola, E.; Bergami, A.; Novellino, L.; Ruffini, F.; Riganti, L.; Corradini, I.; Francolini, M.; Garzetti, L. et al. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation. Ann. Neurol. 2012, 72, 610–624.

    Article  CAS  Google Scholar 

  64. Minagar, A.; Jy, W.; Jimenez, J. J.; Sheremata, W. A.; Mauro, L. M.; Mao, W. W.; Horstman, L. L.; Ahn, Y. S. Elevated plasma endothelial microparticles in multiple sclerosis. Neurology 2001, 56, 1319–1324.

    Article  CAS  Google Scholar 

  65. Yuyama, K.; Sun, H.; Usuki, S.; Sakai, S.; Hanamatsu, H.; Mioka, T.; Kimura, N.; Okada, M.; Tahara, H.; Furukawa, J. I. et al. A potential function for neuronal exosomes: Sequestering intracerebral amyloid-β peptide. FEBS Lett. 2015, 589, 84–88.

    Article  CAS  Google Scholar 

  66. Trotta, T.; Panaro, M. A.; Cianciulli, A.; Mori, G.; Di Benedetto, A.; Porro, C. Microglia-derived extracellular vesicles in Alzheimer’s disease: A double-edged sword. Biochem. Pharmacol. 2018, 148, 184–192.

    Article  CAS  Google Scholar 

  67. Calabria, E.; Scambi, I.; Bonafede, R.; Schiaffino, L.; Peroni, D.; Potrich, V.; Capelli, C.; Schena, F.; Mariotti, R. ASCs-exosomes recover coupling efficiency and mitochondrial membrane potential in an in vitro model of ALS. Front. Neurosci. 2019, 13, 1070.

    Article  Google Scholar 

  68. Kim, J.; Inoue, K.; Ishii, J.; Vanti, W. B.; Voronov, S. V.; Murchison, E.; Hannon, G.; Abeliovich, A. A microRNA feedback circuit in midbrain dopamine neurons. Science 2007, 317, 1220–1224.

    Article  CAS  Google Scholar 

  69. Zhang, Z. G.; Chopp, M. Exosomes in stroke pathogenesis and therapy. J. Clin. Invest. 2016, 126, 1190–1197.

    Article  Google Scholar 

  70. Zhang, Z. G.; Buller, B.; Chopp, M. Exosomes—Beyond stem cells for restorative therapy in stroke and neurological injury. Nat. Rev. Neurol. 2019, 15, 193–203.

    Article  Google Scholar 

  71. Witwer, K. W.; Van Balkom, B. W. M.; Bruno, S.; Choo, A.; Dominici, M.; Gimona, M.; Hill, A. F.; De Kleijn, D.; Koh, M.; Lai, R. C. et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J. Extracell. Vesicles 2019, 8, 1609206.

    Article  CAS  Google Scholar 

  72. Betzer, O.; Perets, N.; Angel, A.; Motiei, M.; Sadan, T.; Yadid, G.; Offen, D.; Popovtzer, R. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano 2017, 11, 10883–10893.

    Article  CAS  Google Scholar 

  73. Perets, N.; Betzer, O.; Shapira, R.; Brenstein, S.; Angel, A.; Sadan, T.; Ashery, U.; Popovtzer, R.; Offen, D. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 2019, 19, 3422–3431.

    Article  CAS  Google Scholar 

  74. Peng, H.; Li, Y.; Ji, W. H.; Zhao, R. C.; Lu, Z. G.; Shen, J.; Wu, Y. Y.; Wang, J. Z.; Hao, Q. L.; Wang, J. W. et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson’s disease. ACS Nano 2022, 16, 869–884.

    Article  CAS  Google Scholar 

  75. Liu, C. P.; Wang, Y. C.; Li, L. M.; He, D. Y.; Chi, J. X.; Li, Q.; Wu, Y. X.; Zhao, Y. X.; Zhang, S. H.; Wang, L. et al. Engineered extracellular vesicles and their mimetics for cancer immunotherapy. J. Control. Release 2022, 349, 679–698.

    Article  CAS  Google Scholar 

  76. Zhu, L. Y.; Oh, J. M.; Gangadaran, P.; Kalimuthu, S.; Baek, S. H.; Jeong, S. Y.; Lee, S. W.; Lee, J.; Ahn, B. C. Targeting and therapy of glioblastoma in a mouse model using exosomes derived from natural killer cells. Front. Immunol. 2018, 9, 824.

    Article  Google Scholar 

  77. Xing, Y.; Sun, X.; Dou, Y. M.; Wang, M.; Zhao, Y. M.; Yang, Q.; Zhao, Y. H. The immuno-modulation effect of macrophage-derived extracellular vesicles in chronic inflammatory diseases. Front. Immunol. 2021, 12, 785728.

    Article  CAS  Google Scholar 

  78. Huo, Q. H.; Shi, Y. J.; Qi, Y.; Huang, L. J.; Sui, H. J.; Zhao, L. Biomimetic silibinin-loaded macrophage-derived exosomes induce dual inhibition of Aβ aggregation and astrocyte activation to alleviate cognitive impairment in a model of Alzheimer’s disease. Mater. Sci. Eng. C 2021, 129, 112365.

    Article  CAS  Google Scholar 

  79. Jiang, H. L.; Zhou, L.; Shen, N.; Ning, X. H.; Wu, D. Q.; Jiang, K. L.; Huang, X. S. M1 macrophage-derived exosomes and their key molecule LncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-ΚB pathway. Cell Death Dis. 2022, 13, 183.

    Article  CAS  Google Scholar 

  80. Giese, M. A.; Hind, L. E.; Huttenlocher, A. Neutrophil plasticity in the tumor microenvironment. Blood 2019, 133, 2159–2167.

    Article  CAS  Google Scholar 

  81. Grozdanov, V.; Bousset, L.; Hoffmeister, M.; Bliederhaeuser, C.; Meier, C.; Madiona, K.; Pieri, L.; Kiechle, M.; McLean, P. J.; Kassubek, J. et al. Increased immune activation by pathologic α-synuclein in Parkinson’s disease. Ann. Neurol. 2019, 86, 593–606.

    Article  CAS  Google Scholar 

  82. Lindenbergh, M. F. S.; Wubbolts, R.; Borg, E. G. F.; Van’ T Veld, E. M.; Boes, M.; Stoorvogel, W. Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation. J. Extracell. Vesicles 2020, 9, 1798606.

    Article  CAS  Google Scholar 

  83. Liu, L. Y.; Li, Y.; Peng, H.; Liu, R. Y.; Ji, W. H.; Shi, Z. Y.; Shen, J.; Ma, G. H.; Zhang, X. Targeted exosome coating gene-chem nanocomplex as “nnnocavenngrr” for clearing α-synuclein and immune activation of Parkinson’s disease. Sci. Adv. 2020, 6, aba3967.

    Article  Google Scholar 

  84. Qiu, Y. F.; Yang, Y.; Yang, R. Y.; Liu, C. X.; Hsu, J. M.; Jiang, Z.; Sun, L. L.; Wei, Y. K.; Li, C. W.; Yu, D. H. et al. Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene 2021, 40, 4992–5001.

    Article  CAS  Google Scholar 

  85. Mashouri, L.; Yousefi, H.; Aref, A. R.; Ahadi, A. M.; Molaei, F.; Alahari, S. K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol. Cancer 2019, 18, 75.

    Article  Google Scholar 

  86. Yang, C.; Wu, Y.; Wang, L.; Li, S. D.; Zhou, J. H.; Tan, Y. L.; Song, J.; Xing, H. K.; Yi, K. K.; Zhan, Q. et al. Glioma-derived exosomes hijack the blood-brain barrier to facilitate nanocapsule delivery via LCN2. J. Control. Release 2022, 345, 537–548.

    Article  CAS  Google Scholar 

  87. Dou, G.; Tian, R.; Liu, X. M.; Yuan, P. Y.; Ye, Q. W.; Liu, J.; Liu, S. Y.; Zhou, J.; Deng, Z. H.; Chen, X. et al. Chimeric apoptotic bodies functionalized with natural membrane and modular delivery system for inflammation modulation. Sci. Adv. 2020, 6, eaba2987.

    Article  CAS  Google Scholar 

  88. Wang, Y. L.; Pang, J. Y.; Wang, Q. Y.; Yan, L. C.; Wang, L. T.; Xing, Z.; Wang, C. M.; Zhang, J. F.; Dong, L. Delivering antisense oligonucleotides across the blood-brain barrier by tumor cell-derived small apoptotic bodies. Adv. Sci. 2021, 8, 2004929.

    Article  CAS  Google Scholar 

  89. Jang, Y.; Kim, H.; Yoon, S.; Lee, H.; Hwang, J.; Jung, J.; Chang, J. H.; Choi, J.; Kim, H. Exosome-based photoacoustic imaging guided photodynamic and immunotherapy for the treatment of pancreatic cancer. J. Control. Release 2021, 330, 293–304.

    Article  CAS  Google Scholar 

  90. Zhou, X.; Miao, Y. Q.; Wang, Y.; He, S. F.; Guo, L. M.; Mao, J. S.; Chen, M. S.; Yang, Y. T.; Zhang, X. X.; Gan, Y. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance SiRNA delivery by tumour-homing and intracellular freeway transportation. J. Extracell. Vesicles 2022, 11, e12198.

    Article  CAS  Google Scholar 

  91. Kim, D. K.; Rhee, W. J. Antioxidative effects of carrot-derived nanovesicles in cardiomyoblast and neuroblastoma cells. Pharmaceutics 2021, 13, 1203.

    Article  CAS  Google Scholar 

  92. Logozzi, M.; Di Raimo, R.; Mizzoni, D.; Fais, S. Nanovesicles from organic agriculture-derived fruits and vegetables: Characterization and functional antioxidant content. Int. J. Mol. Sci. 2021, 22, 8170.

    Article  Google Scholar 

  93. Zeng, L. P.; Wang, H. Y.; Shi, W. H.; Chen, L. F.; Chen, T. T.; Chen, G. Y.; Wang, W. S.; Lan, J. M.; Huang, Z. H.; Zhang, J. et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J. Nanobiotechnol. 2021, 19, 439.

    Article  CAS  Google Scholar 

  94. Zhao, J.; Zhao, Q.; Lu, J. Z.; Ye, D.; Mu, S.; Yang, X. D.; Zhang, W. D.; Ma, B. L. Natural nano-drug delivery system in Coptidis rhizoma extract with modified berberine hydrochloride pharmacokinetics. Int. J. Nanomedicine 2021, 16, 6297–6311.

    Article  Google Scholar 

  95. Zhai, K. F.; Duan, H.; Wang, W.; Zhao, S. Y.; Khan, G. J.; Wang, M. T.; Zhang, Y. H.; Thakur, K.; Fang, X. M.; Wu, C. et al. Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes MiR-21 release. Acta Pharm. Sin. B 2021, 11, 3493–3507.

    Article  CAS  Google Scholar 

  96. Xu, X. H.; Yuan, T. J.; Dad, H. A.; Shi, M. Y.; Huang, Y. Y.; Jiang, Z. H.; Peng, L. H. Plant exosomes as novel nanoplatforms for microRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 2021, 21, 8151–8159.

    Article  CAS  Google Scholar 

  97. Han, X.; Wei, Q.; Lv, Y.; Weng, L.; Huang, H. Y.; Wei, Q. Y.; Li, M. Y.; Mao, Y. J.; Hua, D.; Cai, X. T. et al. Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Mol. Ther. 2022, 30, 327–340.

    Article  CAS  Google Scholar 

  98. Long-Smith, C.; O’Riordan, K. J.; Clarke, G.; Stanton, C.; Dinan, T. G.; Cryan, J. F. Microbiota-gut-brain axis: New therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 477–502.

    Article  CAS  Google Scholar 

  99. Cui, G. H.; Guo, H. D.; Li, H.; Zhai, Y.; Gong, Z. B.; Wu, J.; Liu, J. S.; Dong, Y. R.; Hou, S. X.; Liu, J. R. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’ s disease. Immun. Ageing 2019, 16, 10.

    Article  Google Scholar 

  100. Guo, S. W.; Perets, N.; Betzer, O.; Ben-Shaul, S.; Sheinin, A.; Michaelevski, I.; Popovtzer, R.; Offen, D.; Levenberg, S. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog SiRNA repairs complete spinal cord injury. ACS Nano 2019, 13, 10015–10028.

    Article  CAS  Google Scholar 

  101. Dar, G. H.; Mendes, C. C.; Kuan, W. L.; Speciale, A. A.; Conceição, M.; Görgens, A.; Uliyakina, I.; Lobo, M. J.; Lim, W. F.; El Andaloussi, S. et al. GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated SiRNA delivery to the brain. Nat. Commun. 2021, 12, 6666.

    Article  CAS  Google Scholar 

  102. Jahangard, Y.; Monfared, H.; Moradi, A.; Zare, M.; Mirnajafi-Zadeh, J.; Mowla, S. J. Therapeutic effects of transplanted exosomes containing MiR-29b to a rat model of Alzheimer’s disease. Front. Neurosci. 2020, 14, 564.

    Article  Google Scholar 

  103. Haney, M. J.; Klyachko, N. L.; Zhao, Y. L.; Gupta, R.; Plotnikova, E. G.; He, Z. J.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A. V. et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 2015, 207, 18–30.

    Article  CAS  Google Scholar 

  104. Wang, H.; Sui, H. J.; Zheng, Y.; Jiang, Y. B.; Shi, Y. J.; Liang, J.; Zhao, L. Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the tau protein through the AKT/GSK-3β pathway. Nanoscale 2019, 11, 7481–7496.

    Article  CAS  Google Scholar 

  105. Yuan, D. F.; Zhao, Y. L.; Banks, W. A.; Bullock, K. M.; Haney, M.; Batrakova, E.; Kabanov, A. V. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017, 142, 1–12.

    Article  CAS  Google Scholar 

  106. Wu, T. T.; Liu, Y.; Cao, Y.; Liu, Z. H. Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv. Mater. 2022, 34, 2110364.

    Article  CAS  Google Scholar 

  107. Izco, M.; Blesa, J.; Schleef, M.; Schmeer, M.; Porcari, R.; Al-Shawi, R.; Ellmerich, S.; De Toro, M.; Gardiner, C.; Seow, Y. et al. Systemic exosomal delivery of ShRNA minicircles prevents parkinsonian pathology. Mol. Ther. 2019, 27, 2111–2122.

    Article  CAS  Google Scholar 

  108. Zhang, C.; Song, J.; Lou, L.; Qi, X. J.; Zhao, L.; Fan, B.; Sun, G. Z.; Lv, Z. Q.; Fan, Z. Z.; Jiao, B. H. et al. Doxorubicin-loaded nanoparticle coated with endothelial cells-derived exosomes for immunogenic chemotherapy of glioblastoma. Bioeng. Transl. Med. 2021, 6, e10203.

    Article  CAS  Google Scholar 

  109. Tian, T.; Liang, R. Y.; Erel-Akbaba, G.; Saad, L.; Obeid, P. J.; Gao, J.; Chiocca, E. A.; Weissleder, R.; Tannous, B. A. Immune checkpoint inhibition in GBM primed with radiation by engineered extracellular vesicles. ACS Nano 2022, 16, 1940–1953.

    Article  CAS  Google Scholar 

  110. Didiot, M. C.; Hall, L. M.; Coles, A. H.; Haraszti, R. A.; Godinho, B. M. D. C.; Chase, K.; Sapp, E.; Ly, S.; Alterman, J. F.; Hassler, M. R. et al. Exosome-mediated delivery of hydrophobically modified SiRNA for huntingtin MRNA silencing. Mol. Ther. 2016, 24, 1836–1847.

    Article  CAS  Google Scholar 

  111. Qu, M. K.; Lin, Q.; Huang, L. Y.; Fu, Y.; Wang, L. Y.; He, S. S.; Fu, Y.; Yang, S. Y.; Zhang, Z. R.; Zhang, L. et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Control. Release 2018, 287, 156–166.

    Article  CAS  Google Scholar 

  112. Qi, Y.; Guo, L.; Jiang, Y. B.; Shi, Y. J.; Sui, H. J.; Zhao, L. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv. 2020, 27, 745–755.

    Article  CAS  Google Scholar 

  113. Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G. C. E.; El-Baba, M. D.; Saxena, P.; Ausländer, S.; Tan, K. R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 2018, 9, 1305.

    Article  Google Scholar 

  114. Niu, W. B.; Xiao, Q.; Wang, X. J.; Zhu, J. Q.; Li, J. H.; Liang, X. M.; Peng, Y. M.; Wu, C. T.; Lu, R. J.; Pan, Y. et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021, 21, 1484–1492.

    Article  CAS  Google Scholar 

  115. You, J. Y.; Kang, S. J.; Rhee, W. J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact. Mater. 2021, 6, 4321–4332.

    Article  CAS  Google Scholar 

  116. Lee, R.; Ko, H. J.; Kim, K.; Sohn, Y.; Min, S. Y.; Kim, J. A.; Na, D.; Yeon, J. H. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J. Extracell. Vesicles 2020, 9, 1703480.

    Article  CAS  Google Scholar 

  117. Yang, M.; Liu, X. Y.; Luo, Q. Q.; Xu, L. L.; Chen, F. X. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J. Nanobiotechnol. 2020, 18, 100.

    Article  CAS  Google Scholar 

  118. Yang, M.; Luo, Q. Q.; Chen, X.; Chen, F. X. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma. J. Nanobiotechnol. 2021, 19, 259.

    Article  Google Scholar 

  119. Chen, X. Y.; Zhou, Y.; Yu, J. J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol. Pharmaceutics 2019, 16, 2690–2699.

    Article  CAS  Google Scholar 

  120. Sundaram, K.; Miller, D. P.; Kumar, A.; Teng, Y.; Sayed, M.; Mu, J. Y.; Lei, C.; Sriwastva, M. K.; Zhang, L. F.; Yan, J. et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience 2020, 23, 100869.

    Article  CAS  Google Scholar 

  121. Liu, B. L.; Lu, Y. Z.; Chen, X. Y.; Muthuraj, P. G.; Li, X. Z.; Pattabiraman, M.; Zempleni, J.; Kachman, S. D.; Natarajan, S. K.; Yu, J. J. Protective role of shiitake mushroom-derived exosome-like nanoparticles in D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Nutrients 2020, 12, 477.

    Article  CAS  Google Scholar 

  122. Liu, B. L.; Li, X. Z.; Yu, H.; Shi, X.; Zhou, Y.; Alvarez, S.; Naldrett, M. J.; Kachman, S. D.; Ro, S. H.; Sun, X. H. et al. Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Theranostics 2021, 11, 9311–9330.

    Article  CAS  Google Scholar 

  123. Cao, M.; Yan, H. J.; Han, X.; Weng, L.; Wei, Q.; Sun, X. Y.; Lu, W. G.; Wei, Q. Y.; Ye, J.; Cai, X. T. et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer 2019, 7, 326.

    Article  Google Scholar 

  124. Zhang, L.; He, F. J.; Gao, L. N.; Cong, M. H.; Sun, J.; Xu, J. L.; Wang, Y. T.; Hu, Y.; Asghar, S.; Hu, L. H. et al. Engineering exosome-like nanovesicles derived from Asparagus cochinchinensis can inhibit the proliferation of hepatocellular carcinoma cells with better safety profile. Int. J. Nanomedicine 2021, 16, 1575–1586.

    Article  Google Scholar 

  125. Tong, L. J.; Hao, H. N.; Zhang, Z.; Lv, Y. Y.; Liang, X.; Liu, Q. Q.; Liu, T. J.; Gong, P. M.; Zhang, L. W.; Cao, F. F. et al. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics 2021, 11, 8570–8586.

    Article  CAS  Google Scholar 

  126. Lei, J. H.; Jiang, X. Y.; Li, W.; Ren, J.; Wang, D. T.; Ji, Z. J.; Wu, Z. M.; Cheng, F.; Cai, Y. S.; Yu, Z. R. et al. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein Cell 2022, 13, 220–226.

    Article  CAS  Google Scholar 

  127. Chen, X. Y.; Liu, B. L.; Li, X. Z.; An, T. T.; Zhou, Y.; Li, G.; Wu-Smart, J.; Alvarez, S.; Naldrett, M. J.; Eudy, J. et al. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J. Extracell. Vesicles 2021, 10, e12069.

    Article  CAS  Google Scholar 

  128. Park, K. S.; Svennerholm, K.; Crescitelli, R.; Lässer, C.; Gribonika, I.; Lötvall, J. Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy. J. Extracell. Vesicles 2021, 10, e12120.

  129. Haraszti, R. A.; Miller, R.; Didiot, M. C.; Biscans, A.; Alterman, J. F.; Hassler, M. R.; Roux, L.; Echeverria, D.; Sapp, E.; DiFiglia, M. et al. Optimized cholesterol-SiRNA chemistry improves productive loading onto extracellular vesicles. Mol. Ther. 2018, 26, 1973–1982.

    Article  CAS  Google Scholar 

  130. Lunavat, T. R.; Jang, S. C.; Nilsson, L.; Park, H. T.; Repiska, G.; Lässer, C.; Nilsson, J. A.; Gho, Y. S.; Lötvall, J. RNAi delivery by exosome-mimetic nanovesicles—Implications for targeting c-Myc in cancer. Biomaterials 2016, 102, 231–238.

    Article  CAS  Google Scholar 

  131. Cooper, J. M.; Wiklander, P. B. O.; Nordin, J. Z.; Al-Shawi, R.; Wood, M. J.; Vithlani, M.; Schapira, A. H. V.; Simons, J. P.; El-Andaloussi, S.; Alvarez-Erviti, L. Systemic exosomal SiRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 2014, 29, 1476–1485.

    Article  CAS  Google Scholar 

  132. Wang, K.; Kumar, U. S.; Sadeghipour, N.; Massoud, T. F.; Paulmurugan, R. A microfluidics-based scalable approach to generate extracellular vesicles with enhanced therapeutic MicroRNA loading for intranasal delivery to mouse glioblastomas. ACS Nano 2021, 15, 18327–18346.

    Article  CAS  Google Scholar 

  133. Yang, Z. G.; Shi, J. F.; Xie, J.; Wang, Y. F.; Sun, J. Y.; Liu, T. Z.; Zhao, Y. R.; Zhao, X. T.; Wang, X. M.; Ma, Y. F. et al. Large-scale generation of functional MRNA-encapsulating exosomes via cellular nanoporation. Nat. Biomed. Eng. 2020, 4, 69–83.

    Article  CAS  Google Scholar 

  134. Lai, C. P.; Mardini, O.; Ericsson, M.; Prabhakar, S.; Maguire, C. A.; Chen, J. W.; Tannous, B. A.; Breakefield, X. O. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 2014, 8, 483–494.

    Article  CAS  Google Scholar 

  135. Liu, Y.; Huang, R. Q.; Han, L.; Ke, W. L.; Shao, K.; Ye, L. Y.; Lou, J. N.; Jiang, C. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 2009, 30, 4195–4202.

    Article  CAS  Google Scholar 

  136. Alvarez-Erviti, L.; Seow, Y.; Yin, H. F.; Betts, C.; Lakhal, S.; Wood, M. J. A. Delivery of SiRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345.

    Article  CAS  Google Scholar 

  137. Yu, X. Y.; Bai, Y.; Han, B.; Ju, M. Z.; Tang, T. C.; Shen, L.; Li, M. Y.; Yang, L.; Zhang, Z.; Hu, G. K. et al. Extracellular vesicle-mediated delivery of CircDYM alleviates CUS-induced depressive-like behaviours. J. Extracell. Vesicles 2022, 11, e12185.

    Article  CAS  Google Scholar 

  138. Kim, G.; Kim, M.; Lee, Y.; Byun, J. W.; Hwang, D. W.; Lee, M. Systemic delivery of MicroRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J. Control. Release 2020, 317, 273–281.

    Article  CAS  Google Scholar 

  139. Huang, R. X.; Rofstad, E. K. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J. Exp. Clin. Cancer Res. 2018, 37, 92.

    Article  Google Scholar 

  140. Mead, B. P.; Mastorakos, P.; Suk, J. S.; Klibanov, A. L.; Hanes, J.; Price, R. J. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J. Control. Release 2016, 223, 109–117.

    Article  CAS  Google Scholar 

  141. Du, J. B.; Wan, Z.; Wang, C.; Lu, F.; Wei, M. Y.; Wang, D. S.; Hao, Q. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics 2021, 11, 8185–8196.

    Article  CAS  Google Scholar 

  142. Kamerkar, S.; LeBleu, V. S.; Sugimoto, H.; Yang, S. J.; Ruivo, C. F.; Melo, S. A.; Lee, J. J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017, 546, 498–503.

    Article  CAS  Google Scholar 

  143. Chen, Y. D.; Wang, L. X.; Zheng, M. F.; Zhu, C. D.; Wang, G. S.; Xia, Y. Q.; Blumenthal, E. J.; Mao, W. J.; Wan, Y. Engineered extracellular vesicles for concurrent anti-PDL1 immunotherapy and chemotherapy. Bioact. Mater. 2022, 9, 251–265.

    Article  CAS  Google Scholar 

  144. Li, L.; Yang, W. W.; Xu, D. G. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J. Drug Target. 2019, 27, 423–433.

    Article  CAS  Google Scholar 

  145. Chen, M. C.; Lin, Z. W.; Ling, M. H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 2016, 10, 93–101.

    Article  CAS  Google Scholar 

  146. Donohoe, C.; Senge, M. O.; Arnaut, L. G.; Gomes-Da-Silva, L. C. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 188308.

    Article  CAS  Google Scholar 

  147. Chang, M. Y.; Hou, Z. Y.; Wang, M.; Li, C. X.; Lin, J. Recent advances in hyperthermia therapy-based synergistic immunotherapy. Adv. Mater. 2021, 33, 2004788.

    Article  CAS  Google Scholar 

  148. Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

    Article  CAS  Google Scholar 

  149. Zhang, W.; Yu, Z. L.; Wu, M.; Ren, J. G.; Xia, H. F.; Sa, G. L.; Zhu, J. Y.; Pang, D. W.; Zhao, Y. F.; Chen, G. Magnetic and folate functionalization enables rapid isolation and enhanced tumor-targeting of cell-derived microvesicles. ACS Nano 2017, 11, 277–290.

    Article  CAS  Google Scholar 

  150. Jia, G.; Han, Y.; An, Y. L.; Ding, Y. N.; He, C.; Wang, X. H.; Tang, Q. S. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018, 178, 302–316.

    Article  CAS  Google Scholar 

  151. Wang, J.; Chen, P.; Dong, Y.; Xie, H.; Wang, Y. C.; Soto, F.; Ma, P.; Feng, X. J.; Du, W.; Liu, B. F. Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy. Biomaterials 2021, 276, 121056.

    Article  CAS  Google Scholar 

  152. Bai, L. M.; Liu, Y. C.; Guo, K. L.; Zhang, K.; Liu, Q. H.; Wang, P.; Wang, X. B. Ultrasound facilitates naturally equipped exosomes derived from macrophages and blood serum for orthotopic glioma treatment. ACS Appl. Mater. Interfaces 2019, 11, 14576–14587.

    Article  CAS  Google Scholar 

  153. Ji, W. H.; Li, Y.; Peng, H.; Zhao, R. C.; Zhang, X. Nature-inspired dynamic gene-loaded nanoassemblies for the treatment of brain diseases. Adv. Drug Deliv. Rev. 2022, 180, 114029.

    Article  CAS  Google Scholar 

  154. Keith, B.; Simon, M. C. Hypoxia-inducible factors, stem cells, and cancer. Cell 2007, 129, 465–472.

    Article  CAS  Google Scholar 

  155. Filipczak, N.; Joshi, U.; Attia, S. A.; Fridman, I. B.; Cohen, S.; Konry, T.; Torchilin, V. Hypoxia-sensitive drug delivery to tumors. J. Control. Release 2022, 341, 431–442.

    Article  CAS  Google Scholar 

  156. Wang, X. J.; Ding, H.; Li, Z. Y.; Peng, Y. N.; Tan, H.; Wang, C. L.; Huang, G. D.; Li, W. P.; Ma, G. H.; Wei, W. Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduct. Target. Ther. 2022, 7, 74.

    Article  CAS  Google Scholar 

  157. Niu, B. Y.; Liao, K. X.; Zhou, Y. X.; Wen, T.; Quan, G. L.; Pan, X.; Wu, C. B. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021, 277, 121110.

    Article  CAS  Google Scholar 

  158. Xiao, T. T.; He, M. J.; Xu, F.; Fan, Y.; Jia, B. Y.; Shen, M. W.; Wang, H.; Shi, X. Y. Macrophage membrane-camouflaged responsive polymer nanogels enable magnetic resonance imaging-guided chemotherapy/chemodynamic therapy of orthotopic glioma. ACS Nano 2021, 15, 20377–20390.

    Article  CAS  Google Scholar 

  159. Li, M.; Li, S. Y.; Zhou, H.; Tang, X. F.; Wu, Y.; Jiang, W.; Tian, Z. G.; Zhou, X. C.; Yang, X. Z.; Wang, Y. C. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun. 2020, 11, 1126.

    Article  CAS  Google Scholar 

  160. D’Souza, A.; Dave, K. M.; Stetler, R. A.; Manickam, D. S. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv. Drug Deliv. Rev. 2021, 171, 332–351.

    Article  Google Scholar 

  161. Wang, Q.; Li, T.; Yang, J. Y.; Zhao, Z. N.; Tan, K. Y.; Tang, S. W.; Wan, M. M.; Mao, C. Engineered exosomes with independent module/cascading function for therapy of Parkinson’s disease by multistep targeting and multistage intervention method. Adv. Mater. 2022, 34, 2201406.

    Article  CAS  Google Scholar 

  162. Li, Y. J.; Wu, J. Y.; Liu, J. H.; Xu, W. J.; Qiu, X. H.; Huang, S.; Hu, X. B.; Xiang, D. X. Artificial exosomes for translational nanomedicine. J. Nanobiotechnol. 2021, 19, 242.

    Article  Google Scholar 

  163. Wu, J. Y.; Li, Y. J.; Hu, X. B.; Huang, S.; Luo, S. L.; Tang, T. T.; Xiang, D. X. Exosomes and biomimetic nanovesicles-mediated anti-glioblastoma therapy: A head-to-head comparison. J. Control. Release 2021, 336, 510–521.

    Article  CAS  Google Scholar 

  164. Kim, H. Y.; Bhang, S. H. Stem cell-engineered nanovesicles exert proangiogenic and neuroprotective effects. Materials 2021, 14, 1078.

    Article  CAS  Google Scholar 

  165. Lee, J. R.; Kyung, J. W.; Kumar, H.; Kwon, S. P.; Song, S. Y.; Han, I. B.; Kim, B. S. Targeted delivery of mesenchymal stem cell-derived nanovesicles for spinal cord injury treatment. Int. J. Mol. Sci. 2020, 21, 4185.

    Article  CAS  Google Scholar 

  166. Yu, W. Y.; Yin, N.; Yang, Y.; Xuan, C. P.; Liu, X.; Liu, W.; Zhang, Z. Z.; Zhang, K. X.; Liu, J. J.; Shi, J. J. Rescuing ischemic stroke by biomimetic nanovesicles through accelerated thrombolysis and sequential ischemia-reperfusion protection. Acta Biomater. 2022, 140, 625–640.

    Article  CAS  Google Scholar 

  167. Li, M. X.; Liu, Y.; Chen, J. P.; Liu, T. T.; Gu, Z. X.; Zhang, J. Q.; Gu, X. C.; Teng, G. J.; Yang, F.; Gu, N. Platelet bio-nanobubbles as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics. Theranostics 2018, 8, 4870–4883.

    Article  CAS  Google Scholar 

  168. Dong, X. Y.; Gao, J.; Zhang, C. Y.; Hayworth, C.; Frank, M.; Wang, Z. J. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 2019, 13, 1272–1283.

    CAS  Google Scholar 

  169. Meng, L. T.; Wang, C. R.; Lu, Y. P.; Sheng, G.; Yang, L.; Wu, Z. Y.; Xu, H.; Han, C.; Lu, Y. M.; Han, F. Targeted regulation of blood-brain barrier for enhanced therapeutic efficiency of hypoxia-modifier nanoparticles and immune checkpoint blockade antibodies for glioblastoma. ACS Appl. Mater. Interfaces 2021, 13, 11657–11671.

    Article  CAS  Google Scholar 

  170. Fernandes, M.; Lopes, I.; Magalhães, L.; Sárria, M. P.; Machado, R.; Sousa, J. C.; Botelho, C.; Teixeira, J.; Gomes, A. C. Novel concept of exosome-like liposomes for the treatment of Alzheimer’ s disease. J. Control. Release 2021, 336, 130–143.

    Article  CAS  Google Scholar 

  171. Wu, J. Y.; Li, Y. J.; Wang, J. M.; Hu, X. B.; Huang, S.; Luo, S. L.; Xiang, D. X. Multifunctional exosome-mimetics for targeted anti-glioblastoma therapy by manipulating protein corona. J. Nanobiotechnol. 2021, 19, 405.

    Article  CAS  Google Scholar 

  172. Shende, P.; Trivedi, R. Biofluidic material-based carriers: Potential systems for crossing cellular barriers. J. Control. Release 2021, 329, 858–870.

    Article  CAS  Google Scholar 

  173. Tian, X.; Fan, T. J.; Zhao, W. T.; Abbas, G.; Han, B.; Zhang, K.; Li, N.; Liu, N.; Liang, W. Y.; Huang, H. et al. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact. Mater. 2021, 6, 2854–2869.

    Article  CAS  Google Scholar 

  174. Wang, J.; Zhu, M. T.; Nie, G. J. Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv. Drug Deliv. Rev. 2021, 178, 113974.

    Article  CAS  Google Scholar 

  175. Gregoriadis, G.; Ryman, B. E. Liposomes as carriers of enzymes or drugs: A new approach to the treatment of storage diseases. Biochem. J. 1971, 124, 58P.

    Article  CAS  Google Scholar 

  176. Khan, A. R.; Yang, X. Y.; Fu, M. F.; Zhai, G. X. Recent progress of drug nanoformulations targeting to brain. J. Control. Release 2018, 291, 37–64.

    Article  CAS  Google Scholar 

  177. Gabizon, A.; Shmeeda, H.; Tahover, E.; Kornev, G.; Patil, Y.; Amitay, Y.; Ohana, P.; Sapir, E.; Zalipsky, S. Development of Promitil®, a lipidic prodrug of mitomycin c in PEGylated liposomes: From bench to bedside. Adv. Drug Deliv. Rev. 2020, 154–155, 13–26.

    Article  Google Scholar 

  178. Zheng, Z. N.; Zhang, J. X.; Jiang, J. Z.; He, Y.; Zhang, W. Y.; Mo, X. P.; Kang, X. J.; Xu, Q.; Wang, B.; Huang, Y. Z. Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery. J. Immunother. Cancer 2020, 8, e000207.

    Article  Google Scholar 

  179. Skrott, Z.; Mistrik, M.; Andersen, K. K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P. et al. Alcohol-abuse drug disulfiram targets cancer via P97 segregase adaptor NPL4. Nature 2017, 552, 194–199.

    Article  CAS  Google Scholar 

  180. Hou, J.; Yang, X.; Li, S. Y.; Cheng, Z. K.; Wang, Y. H.; Zhao, J.; Zhang, C.; Li, Y. J.; Luo, M.; Ren, H. W. et al. Accessing neuroinflammation sites: Monocyte/neutrophil-mediated drug delivery for cerebral ischemia. Sci. Adv. 2019, 5, eaau8301.

    Article  CAS  Google Scholar 

  181. Lu, L.; Zhao, X. J.; Fu, T. W.; Li, K.; He, Y.; Luo, Z.; Dai, L. L.; Zeng, R.; Cai, K. Y. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials 2020, 230, 119666.

    Article  CAS  Google Scholar 

  182. Lu, Y. F.; Li, C.; Chen, Q. J.; Liu, P. X.; Guo, Q.; Zhang, Y.; Chen, X. L.; Zhang, Y. J.; Zhou, W. X.; Liang, D. H. et al. Microthrombus-targeting micelles for neurovascular remodeling and enhanced microcirculatory perfusion in acute ischemic stroke. Adv. Mater. 2019, 31, 1808361.

    Article  Google Scholar 

  183. Israel, L. L.; Braubach, O.; Galstyan, A.; Chiechi, A.; Shatalova, E. S.; Grodzinski, Z.; Ding, H.; Black, K. L.; Ljubimova, J. Y.; Holler, E. A combination of tri-leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the blood-brain barrier. ACS Nano 2019, 13, 1253–1271.

    CAS  Google Scholar 

  184. Lee, Y.; Lee, J.; Kim, M.; Kim, G. Y.; Choi, J. S.; Lee, M. Brain gene delivery using histidine and arginine-modified dendrimers for ischemic stroke therapy. J. Control. Release 2021, 330, 907–919.

    Article  CAS  Google Scholar 

  185. Lugasi, L.; Grinberg, I.; Rudnick-Glick, S.; Okun, E.; Einat, H.; Margel, S. Designed proteinoid polymers and nanoparticles encapsulating risperidone for enhanced antipsychotic activity. J. Nanobiotechnol. 2020, 18, 149.

    Article  CAS  Google Scholar 

  186. Mukherjee, A.; Waters, A. K.; Kalyan, P.; Achrol, A. S.; Kesari, S.; Yenugonda, V. M. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomedicine 2019, 14, 1937–1952.

    Article  CAS  Google Scholar 

  187. Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

    Article  CAS  Google Scholar 

  188. Spinelli, A.; Girelli, M.; Arosio, D.; Polito, L.; Podini, P.; Martino, G.; Seneci, P.; Muzio, L.; Menegon, A. Intracisternal delivery of PEG-coated gold nanoparticles results in high brain penetrance and long-lasting stability. J. Nanobiotechnol. 2019, 17, 49.

    Article  Google Scholar 

  189. Vangijzegem, T.; Stanicki, D.; Laurent, S. Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics. Expert Opin. Drug Deliv. 2019, 16, 69–78.

    Article  CAS  Google Scholar 

  190. Chen, D. Q.; Dougherty, C. A.; Zhu, K. C.; Hong, H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J. Control. Release 2015, 210, 230–245.

    Article  CAS  Google Scholar 

  191. Anfray, C.; Komaty, S.; Corroyer-Dulmont, A.; Zaarour, M.; Helaine, C.; Ozcelik, H.; Allioux, C.; Toutain, J.; Goldyn, K.; Petit, E. et al. Nanosized zeolites as a gas delivery platform in a glioblastoma model. Biomaterials 2020, 257, 120249.

    Article  CAS  Google Scholar 

  192. Wu, V. M.; Huynh, E.; Tang, S.; Uskoković, V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater. 2019, 88, 422–447.

    Article  CAS  Google Scholar 

  193. Hashemi, P.; Luckau, L.; Mischnick, P.; Schmidt, S.; Stosch, R.; Wünsch, B. Biomacromolecules as tools and objects in nanometrology-current challenges and perspectives. Anal. Bioanal. Chem. 2017, 409, 5901–5909.

    Article  CAS  Google Scholar 

  194. Yang, Z. Z.; Du, Y. T.; Sun, Q.; Peng, Y. W.; Wang, R. D.; Zhou, Y.; Wang, Y. Q.; Zhang, C. L.; Qi, X. R. Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma. ACS Nano 2020, 14, 6191–6212.

    Article  CAS  Google Scholar 

  195. Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.

    Article  Google Scholar 

  196. Zhuang, J.; Gong, H.; Zhou, J. R.; Zhang, Q. Z.; Gao, W. W.; Fang, R. H.; Zhang, L. F. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci. Adv. 2020, 6, eaaz6108.

  197. Chen, H. Y.; Deng, J.; Wang, Y.; Wu, C. Q.; Li, X.; Dai, H. W. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater. 2020, 112, 1–13.

    Article  Google Scholar 

  198. He, W. X.; Mei, Q. Y.; Li, J.; Zhai, Y. T.; Chen, Y. T.; Wang, R.; Lu, E. H.; Zhang, X. Y.; Zhang, Z. W.; Sha, X. Y. Preferential targeting cerebral ischemic lesions with cancer cell-inspired nanovehicle for ischemic stroke treatment. Nano Lett. 2021, 21, 3033–3043.

    Article  CAS  Google Scholar 

  199. Zheng, T.; Wang, W. T.; Ashley, J.; Zhang, M.; Feng, X. T.; Shen, J.; Sun, Y. Self-assembly protein superstructures as a powerful chemodynamic therapy nanoagent for glioblastoma treatment. Nano-Micro Lett. 2020, 12, 151.

    Article  CAS  Google Scholar 

  200. Cully, M. Exosome-based candidates move into the clinic. Nat. Rev. Drug Discov. 2021, 20, 6–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from National Natural Science Foundation of China (Nos. 82274104, 81903557, and 82074024), Natural Science Foundation of Jiangsu Province (No. BK20190802), Young Elite Scientists Sponsorship Program by CACM (No. 2021-QNRC2-A01), Natural Science Foundation Youth Project of Nanjing University of Chinese Medicine (No. NZY81903557), College Students’ Innovative Entrepreneurial Training of Jiangsu Province (No. 202110315021), and College Students’ Innovative Entrepreneurial Training of Kangyuan School of Chinese Herbal Medicine of Nanjing University of Chinese Medicine (No. kyxysc12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruoning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Ma, L., Sun, D. et al. Bioengineering extracellular vesicles as novel nanocarriers towards brain disorders. Nano Res. 16, 2635–2659 (2023). https://doi.org/10.1007/s12274-022-4913-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4913-2

Keywords

Navigation