Skip to main content
Log in

Copper and Melanoma Risk: Results from NHANES 2007–2018 and Mendelian Randomization Analyses

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper is an essential trace element obtained from food. There is a paucity of observational or prospective studies that have investigated the relationship between copper and melanoma risk. Copper serves as a cofactor for pivotal enzymes involved in mitochondrial respiration, antioxidant defense, and neurotransmitter synthesis. Undoubtedly, copper plays an indispensable role in the initiation and progression of tumors, particularly melanoma; however, further investigations are warranted to elucidate the underlying mechanisms linking copper and melanoma risk. Given the availability of dietary copper and serum copper data in the NHANES database, we conducted an investigation into the association between dietary copper intake and serum copper levels with melanoma risk. We enrolled 26,401 individuals with dietary copper data in the 2007–2018 NHANES database. To mitigate confounding variables, a propensity score matching (PSM) was performed. To assess the association between dietary copper intake and melanoma risk, we employed a multivariate logistic regression analysis before and after PSM. The restricted cubic spline analysis was utilized to determine whether there is a non-linear relationship between dietary copper intake and melanoma risk, with subgroup analysis conducted to determine beneficiaries. Then, those with blood copper data from the enrolled population with dietary copper intake were screened out, and subsequently, multivariate logistic regression models were subsequently constructed to investigate the association between serum copper levels and melanoma risk after PSM. Mendelian analysis was further utilized to validate the results of the NHANES database using serum copper as the exposure factor and melanoma as the outcome variable. The study found that melanoma risk was associated with dietary copper intake before and after PSM, demonstrated by multiple logistic regression. The relationship between dietary copper intake and melanoma risk was non-linear, with a reduced risk observed above approximately 2.5 mg/day, as shown by the RCS. The evidence suggests that an increased intake of copper is linked to a decreased risk of melanoma. To clarify the mechanism behind the increased risk of melanoma due to higher dietary copper intake, we analyzed the population data from the NHANES database on serum copper and dietary copper intake. Our results indicated that there is no causal relationship between serum copper and melanoma risk. Mendelian randomization analysis of multi-database data sources confirmed the conclusion of the NHANES database analysis. Dietary copper is a protective factor against melanoma, and serum copper or blood copper is not associated with melanoma risk. This suggests that serum or blood copper is not responsible for the protective effect of dietary copper intake on melanoma risk, and the mechanisms need to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Publicly available datasets were analyzed in this study. This data of observational study can be found here: https://www.cdc.gov/nchs/nhanes/. The GWAS data are available through the MRC IEU Open GWAS database (https://gwas.mrcieu.ac.uk/), UK biobank (http://www.nealelab.is/uk-biobank), and the FinnGen consortium round 7 (https://www.finngen.fi/en).

Abbreviations

BMI:

Body mass index

CI:

Confidence interval

IVW:

Inverse-variance weighted

GWAS:

Genome-wide association studies

RCS:

Restricted cubic splines

PSM:

Propensity score matching

OR:

Odds ratio

References

  1. Sanchez JA, Robinson WA (1993) Malignant melanoma. Annu Rev Med 44:335–342

    Article  CAS  PubMed  Google Scholar 

  2. Bergomi M, Pellacani G, Vinceti M, Bassissi S, Malagoli C, Alber D et al (2005) Trace elements and melanoma. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 19:69–73

    Article  CAS  Google Scholar 

  3. Masri GD, Clark WH, Guerry D, Halpern A, Thompson CJ, Elder DE (1990) Screening and surveillance of patients at high risk for malignant melanoma result in detection of earlier disease. J Am Acad Dermatol 22:1042–1048

    Article  CAS  PubMed  Google Scholar 

  4. Asgari MM, Chien AJ, Tsai AL, Fireman B, Quesenberry CP (2017) Association between lithium use and melanoma risk and mortality: a population-based study. J Invest Dermatol 137:2087–2091

    Article  CAS  PubMed  Google Scholar 

  5. Filippini T, Malagoli C, Wise LA, Malavolti M, Pellacani G, Vinceti M (2019) Dietary cadmium intake and risk of cutaneous melanoma: an Italian population-based case-control study. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 56:100–106

    Article  CAS  Google Scholar 

  6. Liu J-Y, Liu L-P, Li Z, Luo Y-W, Liang F (2022) The role of cuproptosis-related gene in the classification and prognosis of melanoma. Front Immunol 13:986214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS et al (2020) Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585:113–118

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO et al (2020) Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun 11:433

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu D, Yang F, Zhang T, Mao R (2023) Leveraging a cuproptosis-based signature to predict the prognosis and drug sensitivity of cutaneous melanoma. J Transl Med 21:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie J, Yang Y, Gao Y, He J (2023) Cuproptosis: mechanisms and links with cancers. Mol Cancer 22:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM et al (2022) Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 22:102–113

    Article  CAS  PubMed  Google Scholar 

  12. Guan D, Zhao L, Shi X, Ma X, Chen Z (2023) Copper in cancer: from pathogenesis to therapy. Biomed Pharmacother Biomedecine Pharmacother 163:114791

    Article  CAS  Google Scholar 

  13. Harvey LJ, Ashton K, Hooper L, Casgrain A, Fairweather-Tait SJ (2009) Methods of assessment of copper status in humans: a systematic review. Am J Clin Nutr 89:2009S-2024S

    Article  CAS  PubMed  Google Scholar 

  14. Linder MC (2016) Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics Integr Biometal Sci 8:887–905

    Article  CAS  Google Scholar 

  15. Meyer LA, Durley AP, Prohaska JR, Harris ZL (2001) Copper transport and metabolism are normal in aceruloplasminemic mice. J Biol Chem 276:36857–36861

    Article  CAS  PubMed  Google Scholar 

  16. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ (2021) Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res 1868:118893

    Article  CAS  PubMed  Google Scholar 

  17. Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, Hanahan D (2013) Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci U S A 110:19507–19512

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang H, Ralle M, Wolfgang MJ, Dhawan N, Burkhead JL, Rodriguez S et al (2018) Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol 16:e2006519

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shanbhag V, Jasmer-McDonald K, Zhu S, Martin AL, Gudekar N, Khan A et al (2019) ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci U S A 116:6836–6841

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiriyasermkul P, Moriyama S, Nagamori S (2020) Membrane transport proteins in melanosomes: regulation of ions for pigmentation. Biochim Biophys Acta Biomembr 1862:183318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng P, Zhou C, Lu L, Liu B, Ding Y (2022) Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res 41:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ascierto PA, Kirkwood JM, Grob J-J, Simeone E, Grimaldi AM, Maio M et al (2012) The role of BRAF V600 mutation in melanoma. J Transl Med 10:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Day SJ, Eggermont AMM, Chiarion-Sileni V, Kefford R, Grob JJ, Mortier L et al (2013) Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol 31:1211–1218

    Article  Google Scholar 

  24. Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J et al (2012) The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic Biol Med 52:2142–2150

    Article  CAS  PubMed  Google Scholar 

  25. Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W et al (2019) Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol 15:681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. O’Day S, Gonzalez R, Lawson D, Weber R, Hutchins L, Anderson C et al (2009) Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol 27:5452–5458

    Article  Google Scholar 

  27. Sekula P, Del Greco MF, Pattaro C, Köttgen A (2016) Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol JASN 27:3253–3265

    Article  PubMed  Google Scholar 

  28. Levin MG, Burgess S (2023) Mendelian randomization as a tool for cardiovascular research: a review. JAMA Cardiol

  29. Evans DM, Zhu G, Dy V, Heath AC, Madden PAF, Kemp JP et al (2013) Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum Mol Genet 22:3998–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fisher GL, Spitler LE, McNeill KL, Rosenblatt LS (1981) Serum copper and zinc levels in melanoma patients. Cancer 47:1838–1844

    Article  CAS  PubMed  Google Scholar 

  31. Bedrick AE, Ramasamy G, Tchertkoff V (1991) Histochemical determinations of copper, zinc, and iron in pigmented nevi and melanoma. Am J Dermatopathol 13:575–578

    Article  CAS  PubMed  Google Scholar 

  32. Ros-Bullón MR, Sánchez-Pedreño P, Martínez-Liarte JH (1998) Serum zinc levels are increased in melanoma patients. Melanoma Res 8:273–277

    Article  PubMed  Google Scholar 

  33. Vinceti M, Bassissi S, Malagoli C, Pellacani G, Alber D, Bergomi M et al (2005) Environmental exposure to trace elements and risk of cutaneous melanoma. J Expo Anal Environ Epidemiol 15:458–462

    Article  CAS  PubMed  Google Scholar 

  34. Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A et al (2014) Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509:492–496

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang D, Chen X, Kroemer G (2022) Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res 32:417–418

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pierson H, Yang H, Lutsenko S (2019) Copper transport and disease: what can we learn from organoids? Annu Rev Nutr 39:75–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chambers A, Krewski D, Birkett N, Plunkett L, Hertzberg R, Danzeisen R et al (2010) An exposure-response curve for copper excess and deficiency. J Toxicol Environ Health B Crit Rev 13:546–578

    Article  CAS  PubMed  Google Scholar 

  38. Kolarić K, Roguljić A, Fuss V (1975) Serum copper levels in patients with solid tumors. Tumori 61:173–177

    Article  PubMed  Google Scholar 

  39. Stepien M, Jenab M, Freisling H, Becker N-P, Czuban M, Tjønneland A et al (2017) Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Carcinogenesis 38:699–707

    Article  CAS  PubMed  Google Scholar 

  40. Aubert L, Nandagopal N, Steinhart Z, Lavoie G, Nourreddine S, Berman J et al (2020) Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun 11:3701

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Basu S, Singh MK, Singh TB, Bhartiya SK, Singh SP, Shukla VK (2013) Heavy and trace metals in carcinoma of the gallbladder. World J Surg 37:2641–2646

    Article  PubMed  Google Scholar 

  42. Kucharzewski M, Braziewicz J, Majewska U, Gózdz S (2003) Selenium, copper, and zinc concentrations in intestinal cancer tissue and in colon and rectum polyps. Biol Trace Elem Res 92:1–10

    Article  CAS  PubMed  Google Scholar 

  43. Ressnerova A, Raudenska M, Holubova M, Svobodova M, Polanska H, Babula P et al (2016) Zinc and copper homeostasis in head and neck cancer: review and meta-analysis. Curr Med Chem 23:1304–1330

    Article  CAS  PubMed  Google Scholar 

  44. Jouybari L, Kiani F, Islami F, Sanagoo A, Sayehmiri F, Hosnedlova B et al (2020) Copper concentrations in breast cancer: a systematic review and meta-analysis. Curr Med Chem 27:6373–6383

    Article  CAS  PubMed  Google Scholar 

  45. Parsons PG, Morrison LE (1982) DNA damage and selective toxicity of dopa and ascorbate: copper in human melanoma cells. Cancer Res 42:3783–3788

    CAS  PubMed  Google Scholar 

  46. Matthews NH, Fitch K, Li W-Q, Morris JS, Christiani DC, Qureshi AA et al (2019) Exposure to trace elements and risk of skin cancer: a systematic review of epidemiologic studies. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 28:3–21

    Article  CAS  Google Scholar 

  47. Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 35:107–115

    Article  CAS  Google Scholar 

  48. Jaiser SR, Winston GP (2010) Copper deficiency myelopathy. J Neurol 257:869–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gletsu-Miller N, Broderius M, Frediani JK, Zhao VM, Griffith DP, Davis SS et al (2005) Incidence and prevalence of copper deficiency following roux-en-y gastric bypass surgery. Int J Obes 2012(36):328–335

    Google Scholar 

  50. Ma X, Yang Y, Li H-L, Zheng W, Gao J, Zhang W et al (2017) Dietary trace element intake and liver cancer risk: results from two population-based cohorts in China. Int J Cancer 140:1050–1059

    Article  CAS  PubMed  Google Scholar 

  51. Thompson CA, Habermann TM, Wang AH, Vierkant RA, Folsom AR, Ross JA et al (2010) Antioxidant intake from fruits, vegetables and other sources and risk of non-Hodgkin’s lymphoma: the Iowa Women’s Health Study. Int J Cancer 126:992–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cavallo F, Gerber M, Marubini E, Richardson S, Barbieri A, Costa A et al (1991) Zinc and copper in breast cancer. A joint study in northern Italy and southern France. Cancer. 67:738–745

    Article  CAS  PubMed  Google Scholar 

  53. Muka T, Kraja B, Ruiter R, Lahousse L, de Keyser CE, Hofman A et al (2017) Dietary mineral intake and lung cancer risk: the Rotterdam Study. Eur J Nutr 56:1637–1646

    Article  CAS  PubMed  Google Scholar 

  54. Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 101:294–301

    Article  CAS  PubMed  Google Scholar 

  55. Milne DB, Nielsen FH (1996) Effects of a diet low in copper on copper-status indicators in postmenopausal women. Am J Clin Nutr 63:358–364

    Article  CAS  PubMed  Google Scholar 

  56. Harvey LJ, Majsak-Newman G, Dainty JR, Lewis DJ, Langford NJ, Crews HM et al (2003) Adaptive responses in men fed low- and high-copper diets. Br J Nutr 90:161–168

    Article  CAS  PubMed  Google Scholar 

  57. Turnlund JR, Keen CL, Smith RG (1990) Copper status and urinary and salivary copper in young men at three levels of dietary copper. Am J Clin Nutr 51:658–664

    Article  CAS  PubMed  Google Scholar 

  58. Baker A, Harvey L, Majask-Newman G, Fairweather-Tait S, Flynn A, Cashman K (1999) Effect of dietary copper intakes on biochemical markers of bone metabolism in healthy adult males. Eur J Clin Nutr 53:408–412

    Article  CAS  PubMed  Google Scholar 

  59. Davis CD (2003) Low dietary copper increases fecal free radical production, fecal water alkaline phosphatase activity and cytotoxicity in healthy men. J Nutr 133:522–527

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by funds from the foundation of National Natural Science Foundation of China (82030082, 82002719 and 82172676), and the foundation of Natural Science Foundation of Shandong (ZR2020LZL014 and ZR2020LZL016). D-WC has received grants from the Young Elite Scientist Sponsorship Program by Cast (no. YESS20210137).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. D-WC and J-MY designed the study. JW and JW collected the data, conducted the experiments, and drafted the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jinming Yu or Dawei Chen.

Ethics declarations

Ethics Approval

It is worth noting that the data collected adhered to the ethical guidelines set forth by the relevant institutional and/or national research committee, as well as the 1964 Helsinki declaration and its subsequent amendments or equivalent ethical standards.

Informed Consent

All research data is publicly available and no research permission is required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. 4

Propensity score matching (PSM) analysis performed for participants with both serum and dietary copper intaking (PNG 58.6 kb)

Supplementary file1 (TIF 2100 KB)

Supplementary file2 (DOCX 18 KB)

Supplementary file3 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, J., Yu, J. et al. Copper and Melanoma Risk: Results from NHANES 2007–2018 and Mendelian Randomization Analyses. Biol Trace Elem Res (2024). https://doi.org/10.1007/s12011-024-04072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-024-04072-0

Keywords

Navigation