Skip to main content
Log in

Copper Deficiency Induces Oxidative Stress in Liver of Mice by Blocking the Nrf2 Pathway

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper (Cu) is an essential metal required for many physiological processes and biological reactions. Liver is the main organ of metabolism of Cu and is also the site where synthesis of some metalloproteins. The purpose of this study is to explore the effects of Cu deficiency on the liver and to evaluate the changes in liver oxidative stress levels to reveal its possible impact mechanisms. Mice were feed to a nutritional Cu-deficiency diet from weaning and injected with copper sulfate (CuSO4) intraperitoneally to correct Cu deficiency. Cu deficiency resulted in reduced liver index, liver histological alteration, and oxidative stress; decreased the contents of Cu and ALB; elevated ALT and AST concentrations in serum together with decreased mRNA and protein expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO1); and increased mRNA and protein expressions of Keap1. However, the supplement of copper sulfate (CuSO4) significantly ameliorated the changes mentioned above. Our results indicate that Cu deficiency can cause hepatic damage in mice is associated with the activation of oxidative stress and inhibition of Nrf2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available on request due to restrictions privacy. The data presented in this study are available on request from the corresponding author. The data are not publicly available due to this paper is part of a series of studies, and disclosure of data may influence the publication of subsequent papers.

References

  1. Durand A, Azzouzi A, Bourbon ML, Steunou AS, Liotenberg S, Maeshima A, Astier C, Argentini M, Saito S, Ouchane S (2015) c-Type cytochrome assembly is a key target of copper toxicity within the bacterial periplasm. MBio 6(5):e1007–e1015. https://doi.org/10.1128/mBio.01007-15

    Article  CAS  Google Scholar 

  2. Liu JB, Xue PC, Cao SC, Liu J, Chen L, Zhang HF (2018) Effects of dietary phosphorus concentration and body weight on postileal phosphorus digestion in pigs. Animal Feed ence and Technology 242:86–94

    Article  CAS  Google Scholar 

  3. Liu JB, Yan HL, Cao SC, Liu J, Zhang HF (2018) Effect of feed intake level on the determination of apparent and standardized total tract digestibility of phosphorus for growing pigs. Anim Feed Sci Tech 246: 137–143. https://doi.org/10.1016/j.anifeedsci.2018.10.012

  4. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26(4–5):268–298. https://doi.org/10.1016/j.mam.2005.07.015

    Article  PubMed  CAS  Google Scholar 

  5. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115

    Article  PubMed  CAS  Google Scholar 

  6. Budkar LN, Gurvich VB, Karpova EA, Kudrina KS, Shteen TN (2020) Cardiovascular toxicity in copper production workers exposed to heavy metals. Gig Sanit 99(1):37–44

    Article  Google Scholar 

  7. Miranda CL, Henderson MC, Buhler DR (1981) Dietary copper enhances the hepatotoxicity of Senecio jacobaea in rats. Toxicol Appl Pharmacol 60(3):418–423. https://doi.org/10.1016/0041-008x(81)90326-4

    Article  PubMed  CAS  Google Scholar 

  8. Gulcin I (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94(3):651–715. https://doi.org/10.1007/s00204-020-02689-3

    Article  PubMed  CAS  Google Scholar 

  9. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1–2):147–163. https://doi.org/10.1016/s0300-483x(03)00159-8

    Article  PubMed  CAS  Google Scholar 

  10. Hawk SN, Lanoue L, Keen CL, Kwik-Uribe CL, Rucker RB, Uriu-Adams JY (2003) Copper-deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions. Biol Reprod 68(3):896–903. https://doi.org/10.1095/biolreprod.102.009167

    Article  PubMed  CAS  Google Scholar 

  11. Pan Y, Loo G (2000) Effect of copper deficiency on oxidative DNA damage in Jurkat T-lymphocytes. Free Radic Biol Med 28(5):824–830. https://doi.org/10.1016/s0891-5849(00)00165-9

    Article  PubMed  CAS  Google Scholar 

  12. Rock E, Gueux E, Mazur A, Motta C, Rayssiguier Y (1995) Anemia in copper-deficient rats: role of alterations in erythrocyte membrane fluidity and oxidative damage. Am J Physiol 269(5 Pt 1):C1245–C1249. https://doi.org/10.1152/ajpcell.1995.269.5.C1245

    Article  PubMed  CAS  Google Scholar 

  13. Song M, Schuschke DA, Zhou Z, Chen T, Pierce WJ, Wang R, Johnson WT, Mcclain CJ (2012) High fructose feeding induces copper deficiency in Sprague-Dawley rats: a novel mechanism for obesity related fatty liver. J Hepatol 56(2):433–440. https://doi.org/10.1016/j.jhep.2011.05.030

    Article  PubMed  CAS  Google Scholar 

  14. Husain N, Mahmood R (2019) Copper(II) generates ROS and RNS, impairs antioxidant system and damages membrane and DNA in human blood cells. Environ Sci Pollut Res Int 26(20):20654–20668. https://doi.org/10.1007/s11356-019-05345-1

    Article  PubMed  CAS  Google Scholar 

  15. Aigner E, Strasser M, Haufe H, Sonnweber T, Hohla F, Stadlmayr A, Solioz M, Tilg H, Patsch W, Weiss G, Stickel F, Datz C (2010) A role for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am J Gastroenterol 105(9):1978–1985. https://doi.org/10.1038/ajg.2010.170

    Article  PubMed  CAS  Google Scholar 

  16. Aigner E, Weiss G, Datz C (2015) Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World J Hepatol 7(2):177–188. https://doi.org/10.4254/wjh.v7.i2.177

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fang J, Yin H, Yang Z, Tan M, Wang F, Chen K, Zuo Z, Shu G, Cui H, Ouyang P, Guo H, Chen Z, Huang C, Geng Y, Liu W (2021) Vitamin E protects against cadmium-induced sub-chronic liver injury associated with the inhibition of oxidative stress and activation of Nrf2 pathway. Ecotoxicol Environ Saf 208:111610. https://doi.org/10.1016/j.ecoenv.2020.111610

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  PubMed  CAS  Google Scholar 

  19. Liang SA, Qian WA, Rui WA, Ke SA, Sha LA, Gui LB, Peng L, Hong X (2022) Effect of dietary poly-γ-glutamic acid on growth, digestive enzyme activity, antioxidant capacity, and TOR pathway gene expression of Gibel carp (Carassius auratus gibelio). Aquaculture Reports 27:101412

    Article  Google Scholar 

  20. Hwab C, Zdab C, Wang Z, Ml D, Ylab C, Gang YA, Mcab C, Jing S, Yu W (2021) Effects of air exposure at different temperatures in selected breeding lines of Pinctada fucata with different shell color. Aquaculture Reports 21:100879

    Article  Google Scholar 

  21. Tian BA, Lei XA, Xin ZA, Jia CA, Yl A, Li LB, Lb A, Wc A (2021) Influence of short-term fasting on oxidative stress, antioxidant-related signaling molecules and autophagy in the intestine of adult Siniperca chuatsi - ScienceDirect. Aquaculture Reports 21:100933

    Article  Google Scholar 

  22. Tao ZA, Rui J, Lcb C, Jdb C, Zg A, Qin HC, Pxab C, Gyab C (2021) Alleviative effects of Ginkgo biloba extract on oxidative stress, inflammatory response and immune suppression induced by long-term glyphosate exposure in tilapia (Oreochromis niloticus). Aquaculture 546(15):737325

    Google Scholar 

  23. Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S (2020) Back to nucleus: combating with cadmium toxicity using Nrf2 signaling pathway as a promising therapeutic target. Biol Trace Elem Res 197(1):52–62. https://doi.org/10.1007/s12011-019-01980-4

    Article  PubMed  CAS  Google Scholar 

  24. Hu Z, Nie G, Luo J, Hu R, Li G, Hu G, Zhang C (2023) Molybdenum and cadmium co-induce pyroptosis via inhibiting Nrf2-mediated antioxidant defense response in the brain of ducks. Biol Trace Elem Res 201(2):874–887. https://doi.org/10.1007/s12011-022-03170-1

    Article  PubMed  CAS  Google Scholar 

  25. Collins JF (2021) Copper nutrition and biochemistry and human (patho)physiology. Adv Food Nutr Res 96:311–364. https://doi.org/10.1016/bs.afnr.2021.01.005

    Article  PubMed  CAS  Google Scholar 

  26. Matak P, Zumerle S, Mastrogiannaki M, El BS, Delga S, Mathieu JR, Canonne-Hergaux F, Poupon J, Sharp PA, Vaulont S, Peyssonnaux C (2013) Copper deficiency leads to anemia, duodenal hypoxia, upregulation of HIF-2alpha and altered expression of iron absorption genes in mice. Plos One 8(3):e59538. https://doi.org/10.1371/journal.pone.0059538

  27. Tallino S, Duffy M, Ralle M, Cortés MP, Latorre M, Burkhead JL (2015) Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J Nutr Biochem 26(10):996–1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Aupperle H, Schoon HA, Frank A (2001) Experimental copper deficiency, chromium deficiency and additional molybdenum supplementation in goats–pathological findings. Acta Vet Scand 42(3):311–321. https://doi.org/10.1186/1751-0147-42-311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Penkowa M, Giralt M, Thomsen PS, Carrasco J, Hidalgo J (2001) Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes. J Neurotraum 18(4):447–463

    Article  CAS  Google Scholar 

  30. Saari JT (2000) Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol 78(10):848–855. https://doi.org/10.1139/cjpp-78-10-848

    Article  PubMed  CAS  Google Scholar 

  31. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hybertson BM, Gao B, Bose SK, Mccord JM (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 32(4–6):234–246. https://doi.org/10.1016/j.mam.2011.10.006

    Article  PubMed  CAS  Google Scholar 

  33. Shin SM, Yang JH, Ki SH (2013) Role of the Nrf2-ARE pathway in liver diseases. Oxid Med Cell Longev 2013:763257. https://doi.org/10.1155/2013/763257

  34. Xu SF, Ji LL, Wu Q, Li J, Liu J (2018) Ontogeny and aging of Nrf2 pathway genes in livers of rats. Life Sci 203:99–104. https://doi.org/10.1016/j.lfs.2018.04.018

    Article  PubMed  CAS  Google Scholar 

  35. Ferrandiz ML, Devesa I (2008) Inducers of heme oxygenase-1. Curr Pharm Des 14(5):473–486. https://doi.org/10.2174/138161208783597399

    Article  PubMed  CAS  Google Scholar 

  36. Li M, Peng Y, Chen W, Gao Y, Yang M, Li J, He J (2023) Active Nrf2 signaling flexibly regulates HO-1 and NQO-1 in hypoxic Gansu zokor (Eospalax cansus). Comp Biochem Physiol B Biochem Mol Biol 264:110811. https://doi.org/10.1016/j.cbpb.2022.110811

  37. Lu Q, Zhang Y, Zhao C, Zhang H, Pu Y, Yin L (2022) Copper induces oxidative stress and apoptosis of hippocampal neuron via pCREB/BDNF/ and Nrf2/HO-1/NQO1 pathway. J Appl Toxicol 42(4):694–705. https://doi.org/10.1002/jat.4252

    Article  PubMed  CAS  Google Scholar 

  38. Schwarz M, Lossow K, Kopp JF, Schwerdtle T, Kipp AP (2019) Crosstalk of Nrf2 with the trace elements selenium, iron, zinc, and copper. Nutrients 11(9). https://doi.org/10.3390/nu11092112

  39. Liao J, Yang F, Chen H, Yu W, Han Q, Li Y, Hu L, Guo J, Pan J, Liang Z, Tang Z (2019) Effects of copper on oxidative stress and autophagy in hypothalamus of broilers. Ecotoxicol Environ Saf 185:109710. https://doi.org/10.1016/j.ecoenv.2019.109710

Download references

Funding

This work was supported by Sichuan Mianyang 404 Hospital (No: 404–220611).

Author information

Authors and Affiliations

Authors

Contributions

Zhiying Pan, Bing Liu, and Heng Yin designed and performed experiments, collected and analyzed data, and wrote the paper. Chengfeng Deng and Lian Shui performed experiments. All authors contributed discussions and interpretations.

Corresponding author

Correspondence to Bing Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Deng, C., Shui, L. et al. Copper Deficiency Induces Oxidative Stress in Liver of Mice by Blocking the Nrf2 Pathway. Biol Trace Elem Res 202, 1603–1611 (2024). https://doi.org/10.1007/s12011-023-03769-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03769-y

Keywords

Navigation