Skip to main content
Log in

Molybdenum and Cadmium Co-induce Pyroptosis via Inhibiting Nrf2-Mediated Antioxidant Defense Response in the Brain of Ducks

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but the neurotoxic mechanism co-induced by Mo and Cd is unclear. To estimate the effects of Mo and Cd co-exposure on pyroptosis by nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant defense response in duck brains, 40 healthy 7-day-old ducks were randomly assigned to 4 groups and fed diet supplemented with Mo or/and Cd for 16 weeks, respectively. Results showed that Mo or/and Cd markedly increased Mo and Cd contents; decreased iron (Fe), copper (Cu), zinc (Zn), and selenium (Se) contents, elevated malondialdehyde (MDA) content; and decreased total-antioxidant capacity (T-AOC), total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities accompanied by pathological damage in brain. Additionally, Mo or/and Cd inhibited Nrf2 pathway via decreasing Nrf2, CAT, SOD1, glutathione S-transferase (GST), hemeoxygenase-1 (HO-1), NAD (P) H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC), and modifier subunit (GCLM) mRNA levels and Nrf2 protein level, which induced pyroptosis through upregulating nucleotide oligomerization domain-like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin A (GSDMA), gasdermin E (GSDME), interleukin-1β (IL-1β), interleukin-18 (IL-18), Caspase-1, NIMA-related kinase 7 (NEK7) mRNA levels and NLRP3, Caspase-1 p20, gasdermin D (GSDMD), ASC protein levels and IL-1β, and IL-18 contents. Besides, the changes of these indicators were most apparent in the Mo and Cd co-treated group. Collectively, the results certificated that Mo and Cd might synergistically induce pyroptosis via inhibiting Nrf2-mediated antioxidant defense response in duck brains, whose mechanism is closely related to Mo and Cd accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this article.

References

  1. Mendel RR (2009) Cell biology of molybdenum. BioFactors 35(5):429–434. https://doi.org/10.1002/biof.55

    Article  CAS  Google Scholar 

  2. Novotny JA, Peterson CA (2018) Molybdenum Advances in nutrition 9(3):272–273. https://doi.org/10.1093/advances/nmx001

    Article  Google Scholar 

  3. Wang HW, Zhou BH, Zhang S, Guo HW, Zhang JL, Zhao J, Tian EJ (2016) Reproductive toxicity in male mice after exposure to high molybdenum and low copper concentrations. Toxicol Ind Health 32(9):1598–1606. https://doi.org/10.1177/0748233715569269

    Article  CAS  Google Scholar 

  4. Jarrell WM, Page AL, Elseewi AA (1980) Molybdenum in the environment. Residue Rev 74:1–43. https://doi.org/10.1007/978-1-4612-6096-7_1

    Article  CAS  Google Scholar 

  5. Timofeev I, Kosheleva N, Kasimov N (2018) Contamination of soils by potentially toxic elements in the impact zone of tungsten-molybdenum ore mine in the Baikal region: a survey and risk assessment. Sci Total Environ 642:63–76. https://doi.org/10.1016/j.scitotenv.2018.06.042

    Article  CAS  Google Scholar 

  6. Wang X, Brunetti G, Tian W, Owens G, Qu Y, Jin C, Lombi E (2021) Effect of soil amendments on molybdenum availability in mine affected agricultural soils. Environ Pollut 269:116132. https://doi.org/10.1016/j.envpol.2020.116132

    Article  CAS  Google Scholar 

  7. Xu S, Hu C, Tan Q, Qin S, Sun X (2018) Subcellular distribution of molybdenum, ultrastructural and antioxidative responses in soybean seedlings under excess molybdenum stress. Plant phys biochem PPB 123:75–80. https://doi.org/10.1016/j.plaphy.2017.11.023

    Article  CAS  Google Scholar 

  8. Shi L, Cao H, Luo J, Liu P, Wang T, Hu G, Zhang C (2017) Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in duck. Ecotoxicol Environ Saf 145:24–31. https://doi.org/10.1016/j.ecoenv.2017.07.006

    Article  CAS  Google Scholar 

  9. Cao H, Gao F, Xia B, Zhang M, Liao Y, Yang Z, Hu G, Zhang C (2016) Alterations in trace element levels and mRNA expression of Hsps and inflammatory cytokines in livers of duck exposed to molybdenum or/and cadmium. Ecotoxicol Environ Saf 125:93–101. https://doi.org/10.1016/j.ecoenv.2015.12.003

    Article  CAS  Google Scholar 

  10. Yang P, Ke S, Tu L, Wang Y, Ye S, Kou S, Ren L (2020) Regulation of autophagy orchestrates pyroptotic cell death in molybdenum disulfide quantum dot-induced microglial toxicity. ACS Biomater Sci Eng 6(3):1764–1775. https://doi.org/10.1021/acsbiomaterials.9b01932

    Article  CAS  Google Scholar 

  11. Loganathan P, Hedley MJ, Grace ND (2008) Pasture soils contaminated with fertilizer-derived cadmium and fluorine: livestock effects. Rev Environ Contam Toxicol 192:29–66. https://doi.org/10.1007/978-0-387-71724-1_2

    Article  CAS  Google Scholar 

  12. Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013:898034. https://doi.org/10.1155/2013/898034

    Article  CAS  Google Scholar 

  13. Bandara JM, Wijewardena HV, Bandara YM, Jayasooriya RG, Rajapaksha H (2011) Pollution of River Mahaweli and farmlands under irrigation by cadmium from agricultural inputs leading to a chronic renal failure epidemic among farmers in NCP. Sri Lanka Environmental geochemistry and health 33(5):439–453. https://doi.org/10.1007/s10653-010-9344-4

    Article  CAS  Google Scholar 

  14. Zhang X, Chen D, Zhong T, Zhang X, Cheng M, Li X (2015) Assessment of cadmium (Cd) concentration in arable soil in China. Environ Sci Pollut Res Int 22(7):4932–4941. https://doi.org/10.1007/s11356-014-3892-6

    Article  CAS  Google Scholar 

  15. Liu ZP (2003) Lead poisoning combined with cadmium in sheep and horses in the vicinity of non-ferrous metal smelters. Sci Total Environ 309(1–3):117–126. https://doi.org/10.1016/S0048-9697(03)00011-1

    Article  CAS  Google Scholar 

  16. Liu S, Fu Y, Shi M, Wang H, Guo J (2021) Pollution level and risk assessment of lead, cadmium, mercury, and arsenic in edible mushrooms from Jilin Province. China J food sci 86(8):3374–3383. https://doi.org/10.1111/1750-3841.15849

    Article  CAS  Google Scholar 

  17. Chen X, Bi M, Yang J, Cai J, Zhang H, Zhu Y, Zheng Y, Liu Q, Shi G, Zhang Z (2022) Cadmium exposure triggers oxidative stress, necroptosis, Th1/Th2 imbalance and promotes inflammation through the TNF-α/NF-κB pathway in swine small intestine. J Hazard Mater 421:126704. https://doi.org/10.1016/j.jhazmat.2021.126704

    Article  CAS  Google Scholar 

  18. Gong ZG, Zhao Y, Wang ZY, Fan RF, Liu ZP, Wang L (2022) Epigenetic regulator BRD4 is involved in cadmium-induced acute kidney injury via contributing to lysosomal dysfunction, autophagy blockade and oxidative stress. J Hazard Mater 423(Pt A):127110. https://doi.org/10.1016/j.jhazmat.2021.127110

    Article  CAS  Google Scholar 

  19. Khan A, Ikram M, Muhammad T, Park J, Kim MO (2019) Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating Nrf-2/HO-1 in vivo and in vitro. J Clin Med 8(5):680. https://doi.org/10.3390/jcm8050680

    Article  CAS  Google Scholar 

  20. Rinaldi M, Micali A, Marini H, Adamo EB, Puzzolo D, Pisani A, Trichilo V, Altavilla D, Squadrito F, Minutoli L (2017) Cadmium, organ toxicity and therapeutic approaches: a review on brain, kidney and testis damage. Curr Med Chem 24(35):3879–3893. https://doi.org/10.2174/0929867324666170801101448

    Article  CAS  Google Scholar 

  21. Forcella M, Lau P, Oldani M, Melchioretto P, Bogni A, Gribaldo L, Fusi P, Urani C (2020) Neuronal specific and non-specific responses to cadmium possibly involved in neurodegeneration: a toxicogenomics study in a human neuronal cell model. Neurotoxicology 76:162–173. https://doi.org/10.1016/j.neuro.2019.11.002

    Article  CAS  Google Scholar 

  22. Amuno S, Shekh K, Kodzhahinchev V, Niyogi S (2020) Neuropathological changes in wild muskrats (Ondatra zibethicus) and red squirrels (Tamiasciurus hudsonicus) breeding in arsenic endemic areas of Yellowknife, Northwest Territories (Canada): arsenic and cadmium accumulation in the brain and biomarkers of oxidative stress. Sci Total Environ 704:135426. https://doi.org/10.1016/j.scitotenv.2019.135426

    Article  CAS  Google Scholar 

  23. Hybertson BM, Gao B, Bose SK, McCord JM (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med 32(4–6):234–246. https://doi.org/10.1016/j.mam.2011.10.006

    Article  CAS  Google Scholar 

  24. Liao J, Yang F, Chen H, Yu W, Han Q, Li Y, Hu L, Guo J, Pan J, Liang Z, Tang Z (2019) Effects of copper on oxidative stress and autophagy in hypothalamus of broilers. Ecotoxicol Environ Saf 185:109710. https://doi.org/10.1016/j.ecoenv.2019.109710

    Article  CAS  Google Scholar 

  25. Jiang X, Xing X, Zhang Y, Zhang C, Wu Y, Chen Y, Meng R, Jia H, Cheng Y, Zhang Y, Su J (2021) Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. Ecotoxicol Environ Saf 207:111231. https://doi.org/10.1016/j.ecoenv.2020.111231

    Article  CAS  Google Scholar 

  26. Nazimabashir M, V, & Miltonprabu, S (2015) Cadmium induced cardiac oxidative stress in rats and its attenuation by GSP through the activation of Nrf2 signaling pathway. Chem Biol Interact 242:179–193. https://doi.org/10.1016/j.cbi.2015.10.005

    Article  CAS  Google Scholar 

  27. Dai Z, Cheng J, Bao L, Zhu X, Li H, Chen X, Zhang Y, Zhang J, Chu W, Pan Y, Huang H (2020) Exposure to waterborne cadmium induce oxidative stress, autophagy and mitochondrial dysfunction in the liver of Procypris merus. Ecotoxicol Environ Saf 204:111051. https://doi.org/10.1016/j.ecoenv.2020.111051

    Article  CAS  Google Scholar 

  28. Diao C, Chen Z, Qiu T, Liu H, Yang Y, Liu X, Wu J, Wang L (2019) Inhibition of PRMT5 attenuates oxidative stress-induced pyroptosis via activation of the Nrf2/HO-1 signal pathway in a mouse model of renal ischemia-reperfusion injury. Oxid Med Cell Longev 2019:2345658. https://doi.org/10.1155/2019/2345658

    Article  CAS  Google Scholar 

  29. Ding R, Ou W, Chen C, Liu Y, Li H, Zhang X, Chai H, Ding X, Wang Q (2020) Endoplasmic reticulum stress and oxidative stress contribute to neuronal pyroptosis caused by cerebral venous sinus thrombosis in rats: involvement of TXNIP/peroxynitrite-NLRP3 inflammasome activation. Neurochem Int 141:104856. https://doi.org/10.1016/j.neuint.2020.104856

    Article  CAS  Google Scholar 

  30. VandeWalle L, Lamkanfi M (2016) Pyroptosis. Current biol CB 26(13):R568–R572. https://doi.org/10.1016/j.cub.2016.02.019

    Article  CAS  Google Scholar 

  31. Rubartelli A (2012) Redox control of NLRP3 inflammasome activation in health and disease. J Leukoc Biol 92(5):951–958. https://doi.org/10.1189/jlb.0512265

    Article  CAS  Google Scholar 

  32. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. https://doi.org/10.1038/nature15514

    Article  CAS  Google Scholar 

  33. Rheinheimer, J., de Souza, B. M., Cardoso, N. S., Bauer, A. C., & Crispim, D. (2017). Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism: clinical and experimental, 74, 1–9. https://doi.org/10.1016/j.metabol.2017.06.002

  34. Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, Liu D, Chen Y, Zhang D, Zhang H (2019) Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett 450:22–31. https://doi.org/10.1016/j.canlet.2019.02.014

    Article  CAS  Google Scholar 

  35. Zhang C, Hu Z, Hu R, Pi S, Wei Z, Wang C, Yang F, Xing C, Nie G, Hu G (2021) New insights into crosstalk between pyroptosis and autophagy co-induced by molybdenum and cadmium in duck renal tubular epithelial cells. J Hazard Mater 416:126138. https://doi.org/10.1016/j.jhazmat.2021.126138

    Article  CAS  Google Scholar 

  36. Miao Z, Miao Z, Shi X, Wu H, Yao Y, Xu S (2022) The antagonistic effect of selenium on lead-induced apoptosis and necroptosis via P38/JNK/ERK pathway in chicken kidney. Ecotoxicol Environ Saf 231:113176. https://doi.org/10.1016/j.ecoenv.2022.113176

    Article  CAS  Google Scholar 

  37. Zhang C, Lin T, Nie G, Hu R, Pi S, Wei Z, Wang C, Li G, Hu G (2021) In vivo assessment of molybdenum and cadmium co-induce nephrotoxicity via causing calcium homeostasis disorder and autophagy in ducks (Anas platyrhyncha). Ecotoxicol Environ Saf 230:113099. https://doi.org/10.1016/j.ecoenv.2021.113099

  38. Wei Z, Nie G, Yang F, Pi S, Wang C, Cao H, Guo X, Liu P, Li G, Hu G, Zhang C (2020) Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis attenuates cadmium-induced apoptosis in duck renal tubular epithelial cells. Environ Pollut 273:115919. https://doi.org/10.1016/j.envpol.2020.115919

    Article  CAS  Google Scholar 

  39. Liu G, Wang ZK, Wang ZY, Yang DB, Liu ZP, Wang L (2016) Mitochondrial permeability transition and its regulatory components are implicated in apoptosis of primary cultures of rat proximal tubular cells exposed to lead. Arch Toxicol 90(5):1193–1209. https://doi.org/10.1007/s00204-015-1547-0

    Article  CAS  Google Scholar 

  40. Liu Q, Du P, Zhu Y, Zhang X, Cai J, Zhang Z (2022) Thioredoxin reductase 3 suppression promotes colitis and carcinogenesis via activating pyroptosis and necrosis. Cellular and molecular life sciences : CMLS 79(2):106. https://doi.org/10.1007/s00018-022-04155-y

    Article  CAS  Google Scholar 

  41. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350. https://doi.org/10.1016/j.chemosphere.2020.128350

    Article  CAS  Google Scholar 

  42. Liao Y, Cao H, Xia B, Xiao Q, Liu P, Hu G, Zhang C (2017) Changes in trace element contents and morphology in bones of duck exposed to molybdenum or/and cadmium. Biol Trace Elem Res 175(2):449–457. https://doi.org/10.1007/s12011-016-0778-0

    Article  CAS  Google Scholar 

  43. Shao JJ, Yao HD, Zhang ZW, Li S, Xu SW (2012) The disruption of mitochondrial metabolism and ion homeostasis in chicken hearts exposed to manganese. Toxicol Lett 214(2):99–108. https://doi.org/10.1016/j.toxlet.2012.08.011

    Article  CAS  Google Scholar 

  44. Diyabalanage S, Dangolla A, Mallawa C, Rajapakse S, Chandrajith R (2020) Bioavailability of selenium (Se) in cattle population in Sri Lanka based on qualitative determination of glutathione peroxidase (GSH-Px) activities. Environ Geochem Health 42(2):617–624. https://doi.org/10.1007/s10653-019-00395-3

    Article  CAS  Google Scholar 

  45. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87. https://doi.org/10.1016/j.tox.2011.03.001

    Article  CAS  Google Scholar 

  46. Li Y, Shen X, Liu F, Luo L, Wang Y (2021) Molybdenum fertilization improved antioxidant capacity of grazing Nanjiang brown goat on Copper-contaminated pasture. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02735-w

    Article  Google Scholar 

  47. Ge J, Zhang C, Sun YC, Zhang Q, Lv MW, Guo K, Li JL (2019) Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Sci Total Environ 689:1160–1171. https://doi.org/10.1016/j.scitotenv.2019.06.405

    Article  CAS  Google Scholar 

  48. Tang KK, Li HQ, Qu KC, Fan RF (2019) Selenium alleviates cadmium-induced inflammation and meat quality degradation via antioxidant and anti-inflammation in chicken breast muscles. Environ Sci Pollut Res Int 26(23):23453–23459. https://doi.org/10.1007/s11356-019-05675-0

    Article  CAS  Google Scholar 

  49. Wang Y, Chen H, Chang W, Chen R, Xu S, Tao D (2020) Protective effects of selenium yeast against cadmium-induced necroptosis via inhibition of oxidative stress and MAPK pathway in chicken liver. Ecotoxicol Environ Saf 206:111329. https://doi.org/10.1016/j.ecoenv.2020.111329

    Article  CAS  Google Scholar 

  50. Koto KS, Lescault P, Brard L, Kim K, Singh RK, Bond J, Illenye S, Slavik MA, Ashikaga T, SaulnierSholler GL (2011) Antitumor activity of nifurtimox is enhanced with tetrathiomolybdate in medulloblastoma. Int J Oncol 38(5):1329–1341. https://doi.org/10.3892/ijo.2011.971

    Article  CAS  Google Scholar 

  51. Helaly AM, Mokhtar N, Firgany A, Hazem NM, El Morsi E, Ghorab D (2018) Molybdenum bupropion combined neurotoxicity in rats. Regulatory toxicology and pharmacology : RTP 98:224–230. https://doi.org/10.1016/j.yrtph.2018.08.001

    Article  CAS  Google Scholar 

  52. Das S, Dewanjee S, Dua TK, Joardar S, Chakraborty P, Bhowmick S, Saha A, Bhattacharjee S, De Feo V (2019) Carnosic acid attenuates Cadmium induced nephrotoxicity by inhibiting oxidative stress, promoting Nrf2/HO-1 signalling and impairing TGF-β1/Smad/Collagen IV signalling. Molecules 24(22):4176. https://doi.org/10.3390/molecules24224176

    Article  CAS  Google Scholar 

  53. Liu C, Zhu Y, Lu Z, Guo W, Tumen B, He Y, Chen C, Hu S, Xu K, Wang Y, Li L, Li S (2019) Cadmium induces acute liver injury by inhibiting Nrf2 and the role of NF-κB, NLRP3, and MAPKs signaling pathway. Int J Environ Res Public Health 17(1):138. https://doi.org/10.3390/ijerph17010138

    Article  CAS  Google Scholar 

  54. Cai J, Guan H, Jiao X, Yang J, Chen X, Zhang H, Zheng Y, Zhu Y, Liu Q, Zhang Z (2021) NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology 453:152720. https://doi.org/10.1016/j.tox.2021.152720

    Article  CAS  Google Scholar 

  55. Zhang Y, Liu Q, Yin H, Li S (2020) Cadmium exposure induces pyroptosis of lymphocytes in carp pronephros and spleens by activating NLRP3. Ecotoxicol Environ Saf 202:110903. https://doi.org/10.1016/j.ecoenv.2020.110903

    Article  CAS  Google Scholar 

  56. Zhang C, Lin T, Nie G, Hu R, Pi S, Wei Z, Wang C, Xing C, Hu G (2021) Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells. Environ Pollut 272:116403. https://doi.org/10.1016/j.envpol.2020.116403

    Article  CAS  Google Scholar 

  57. Zhao Y, Du ZH, Talukder M, Lin J, Li XN, Zhang C, Li JL (2018) Crosstalk between unfolded protein response and Nrf2-mediated antioxidant defense in Di-(2-ethylhexyl) phthalate-induced renal injury in quail (Coturnix japonica). Environ Pollut 242(Pt B):1871–1879. https://doi.org/10.1016/j.envpol.2018.07.080

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (No. 31960722).

Author information

Authors and Affiliations

Authors

Contributions

Zhisheng Hu: conceptualization, software, formal analysis, writing-original draft, data curation, visualization, writing-review and editing, validation. Gaohui Nie: methodology, visualization, resources. Junrong Luo: data curation, validation, formal analysis. Ruiming Hu: data curation, validation, formal analysis. Chenghong Xing: methodology, formal analysis. Guoliang Hu: resources, validation. Caiying Zhang: conceptualization, project administration, writing-review and editing, funding acquisition.

Corresponding author

Correspondence to Caiying Zhang.

Ethics declarations

Consent for publication

All authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the Journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Nie, G., Luo, J. et al. Molybdenum and Cadmium Co-induce Pyroptosis via Inhibiting Nrf2-Mediated Antioxidant Defense Response in the Brain of Ducks. Biol Trace Elem Res 201, 874–887 (2023). https://doi.org/10.1007/s12011-022-03170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03170-1

Keywords

Navigation