Skip to main content
Log in

The Reference Values of Hair Content of Trace Elements in Dairy Cows of Holstein Breed

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this study was to assess trace element content in hair of Holstein dairy cows bred in the Leningrad Region of Russia and to calculate the site-specific reference intervals. Hair content of arsenic, boron, cadmium, cobalt, chromium, copper, iron, mercury, iodine, lithium, manganese, lead, selenium, silicon, tin, strontium, vanadium, and zinc in 148 cows during first (n = 50), second (n = 48), and third (n = 50) lactation periods of life was determined using inductively coupled plasma mass spectrometry. Dietary intake of trace elements corresponded to the adequate values according to national and international recommendations. Comparative analysis did not reveal any significant differences in hair content of main essential elements on the animals depending on the number of lactation. At the same time, the first-lactation cows had significantly (P < 0.05) lower concentration of lead in hair as compared to the third-lactation cows and a higher level of mercury as compared to the second-lactation cows. The reference intervals and 90% confidence intervals for the lower and upper limits were calculated in agreement with the American Society for Veterinary Clinical Pathology Quality Assurance and Laboratory Standard Guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kossaibati MA, Esslemont RJ (1997) The costs of production diseases in dairy herds in England. Vet J 154:41–51

    Article  CAS  PubMed  Google Scholar 

  2. Donat K, Siebert W, Menzer E, Söllner-Donat S (2016) Long-term trends in the metabolic profile test results in German Holstein dairy herds in Thuringia, Germany. Tierarztl Prax Ausg G Grosstiere Nutztiere. 44(2):73–82

    Article  CAS  PubMed  Google Scholar 

  3. Vallee BL, Auld DS (1993) Cocatalytic zinc motifs in enzyme catalysis. Proc Natl Acad Sci U S A. 90(7):2715–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guyot H, Rollin F (2007) The diagnosis of selenium and iodine deficiencies in cattle. Ann Med Vet 151:166–191

    Google Scholar 

  5. Radostits OM, Gay CC, Hinchcliff KW, Constable PD (2007) Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats, 10th edn. Saunders, Madrid

    Google Scholar 

  6. Zimmermann MB, Jooste PL, Pandav CS (2008) Iodine-deficiency disorders. Lancet 372:1251–1262

    Article  CAS  PubMed  Google Scholar 

  7. Hansen SL, Ashwell MS, Moeser AJ, Fry RS, Knutson MD, Spears JW (2010) High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. J Dairy Sci 93(2):656–665

    Article  CAS  PubMed  Google Scholar 

  8. Peters JC (2006) Evaluating the efficacy of dietary organic and inorganic trace minerals in reproducing female pigs on reproductive performance and body mineral composition. PhD dissertation, The Ohio State University

  9. Hansen SL, Trakooljul N, Liu HC, Moeser AJ, Spears JW (2009) Iron transporters are differentially regulated by dietary iron, and modifications are associated with changes in manganese metabolism in young pigs. J Nutr 139(8):1474–1479

    Article  CAS  PubMed  Google Scholar 

  10. Spears JW (2000) Micronutrients and immune function in cattle. Proc Nutr Soc 59:587–594

    Article  CAS  PubMed  Google Scholar 

  11. Atyabi N, Gharagozloo F, Nassiri SM (2006) The necessity of iron supplementation for normal development of commercially reared suckling calves. Comp Clin Pathol 15:165–168

    Article  CAS  Google Scholar 

  12. Mittag J, Behrends T, Hoefig CS, Vennström B, Schomburg L (2010) Thyroid hormones regulate selenoprotein expression and selenium status in mice. PLoS ONE 5:e12931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Abuelo A, Alves-Nores V, Hernandez J, Muiño R, Benedito JL, Castillo C (2016) Effect of parenteral antioxidant supplementation during the dry period on postpartum glucose tolerance in dairy cows. J Vet Int Med 30:892–898

    Article  CAS  Google Scholar 

  14. Tamburo E, Varrica D, Dongarrà G, Grimaldi LM (2015) Trace elements in scalp hair samples from patients with relapsing-remitting multiple sclerosis. PLoS One 10(4):e0122142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Maziar A, Shahbazi-Gahrouei D, Tavakoli MB, Changizi V (2015) Non invasive XRF analysis of human hair for health state determination of breast tissue. Iran J Cancer Prev 8(6):e3983

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wozniak A, Napierala M, Golasik M, Herman M, Walas S, Piekoszewski W, Szyfter W, Szyfter K, Golusinski W, Baralkiewicz D, Florek E (2016) Metal concentrations in hair of patients with various head and neck cancers as a diagnostic aid. Biometals 29(1):81–93

    Article  CAS  PubMed  Google Scholar 

  17. Park SB, Choi SW, Nam AY (2009) Hair tissue mineral analysis and metabolic syndrome. Biol Trace Elem Res 130(3):218–228

    Article  CAS  PubMed  Google Scholar 

  18. Grabeklis AR, Skalny AV, Nechiporenko SP, Lakarova EV (2011) Indicator ability of biosubstances in monitoring the moderate occupational exposure to toxic metals. J Trace Elem Med Biol 25(S1):S41–S44

    Article  CAS  PubMed  Google Scholar 

  19. Asano R, Suzuki K, Otsuka T, Otsuka M, Sakurai H (2002) Concentrations of toxic metals and essential minerals in the mane hair of healthy racing horses and their relation to age. J Vet Med Sci 64(7):607–610

    Article  CAS  PubMed  Google Scholar 

  20. Asano K, Suzuki K, Chiba M, Sera K, Asano R, Sakai T (2005) Twenty-eight element concentrations in mane hair samples of adult riding horses determined by particle-induced X-ray emission. Biol Trace Elem Res 107(2):135–140

    Article  CAS  PubMed  Google Scholar 

  21. Asano K, Suzuki K, Chiba M, Sera K, Matsumoto T, Asano R, Sakai T (2005) Correlation between 25 element contents in mane hair in riding horses and atrioventricular block. Biol Trace Elem Res 108(1-3):127–136

    Article  CAS  PubMed  Google Scholar 

  22. Ghorbani A, Mohit A, Darmani Kuhi H (2015) Effects of dietary mineral intake on hair and serum mineral contents of horses. Journal of Equine Veterinary Science 35(4):295–300

    Article  Google Scholar 

  23. Pavlata L, Chomat M, Pechova A, Misurova L, Dvorak R (2011) Impact of long-term supplementation of zinc and selenium on their content in blood and hair in goats. Veterinarni Medicina 56:63–74

    Article  CAS  Google Scholar 

  24. Rzymski P, Niedzielski P, Dąbrowski P (2015) Assessment of iron in uterine and testicular tissues and hair of free-ranging and household cats. Pol J Vet Sci 18(4):677–682

    Article  CAS  PubMed  Google Scholar 

  25. So KM, Lee Y, Bok JD, Kim EB, Chung MI (2016) Analysis of ionomic profiles of canine hairs exposed to lipopolysaccharide (LPS)-induced stress. Biol Trace Elem Res 172(2):364–371

    Article  CAS  PubMed  Google Scholar 

  26. Kośla T, Skibniewska EM, Skibniewski M (2011) The state of bioelements in the hair of free-ranging European bisons from Białowie a Primeval Forest. Pol J Vet Sci 14(1):81–86

    Article  PubMed  CAS  Google Scholar 

  27. Roug A, Swift PK, Gerstenberg G, Woods LW, Kreuder-Johnson C, Torres SG, Puschner B (2015) Comparison of trace mineral concentrations in tail hair, body hair, blood, and liver of mule deer (Odocoileus hemionus) in California. J Vet Diagn Invest 27(3):295–305

    Article  CAS  PubMed  Google Scholar 

  28. Pieper L, Schmidt F, Müller AE, Staufenbiel R (2017) Zinc concentrations in different sample media from dairy cows and establishment of reference values. Tierarztl Prax Ausg G Grosstiere Nutztiere 45(4):213–218

    Article  PubMed  Google Scholar 

  29. Patra RC, Swarup D, Sharma MC, Naresh R (2006) Trace mineral profile in blood and hair from cattle environmentally exposed to lead and cadmium around different industrial units. J Vet Med A 53:511–517

    Article  CAS  Google Scholar 

  30. Combs DK (1987) Hair analysis as an indicator of mineral status of livestock. J Anim Sci 65:1753–1758

    Article  CAS  PubMed  Google Scholar 

  31. Zhao XJ, Wang XY, Wang JH, Wang ZY, Wang L, Wang ZH (2015) Oxidative stress and imbalance of mineral metabolism contribute to lameness in dairy cows. Biol Trace Elem Res 164(1):43–49

    Article  CAS  PubMed  Google Scholar 

  32. Pieper L, Wall K, Müller AE, Roder A, Staufenbiel R (2016) Evaluation of sulfur status in dairy cows in Germany. Tierarztl Prax Ausg G Grosstiere Nutztiere 44(2):92–98

    Article  CAS  PubMed  Google Scholar 

  33. Druyan ME, Bass D, Puchyr R, Urek K, Quig D, Harmon E, Marquardt W (1998) Determination of reference ranges for elements in human scalp hair. Biol Trace Elem Res 62(3):183–197

    Article  CAS  PubMed  Google Scholar 

  34. Skalny AV, Skalnaya MG, Tinkov AA, Serebryansky EP, Demidov VA, Lobanova YN, Grabeklis AR, Berezkina ES, Gryazeva IV, Skalny AA, Skalnaya OA, Zhivaev NG, Nikonorov AA (2015) Hair concentration of essential trace elements in adult non-exposed Russian population. Environ Monit Assess 187(11):677

    Article  PubMed  CAS  Google Scholar 

  35. USSR State Agriculture Committee (1987) Temporary maximum allowable levels of certain chemical elements and gossypol in feeds for farm animals and feed additives. Gosagroprom USSR, Moscow

    Google Scholar 

  36. National Research Council (2001) Nutrient requirements of dairy cattle. National Academy Press, Washington, DC

    Google Scholar 

  37. National Research council (2005) Mineral tolerance of animals. National Academy Press, Washington, DC

    Google Scholar 

  38. Miroshnikov S, Kharlamov A, Zavyalov O, Frolov A, Duskaev G, Bolodurina I, Arapova O (2015) Method of sampling beef cattle hair for assessment of elemental profile. Pak J Nutr 14(9):632–636

    Article  CAS  Google Scholar 

  39. Friedrichs KR, Harr KE, Freeman KP, Szladovits B, Walton RM, Barnhart KF, Blanco-Chavez J (2012) ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet Clin Pathol 41:441–453

    Article  PubMed  Google Scholar 

  40. Geffré A, Concordet D, Braun JP, Trumel C (2011) Reference value advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet Clin Path 40:107–112

    Article  Google Scholar 

  41. Gräsbeck R, Saris NE (1969) Establishment and use of normal values. Scand J Clin Invest 26:S62–S63

    Google Scholar 

  42. Siest G, Henny J, Grasbeck R, Wilding P, Petitclerc C, Queralto JM et al (2013) The theory of reference values: an unfinished symphony. Clin Chem Lab Med 51:47–64

    Article  CAS  PubMed  Google Scholar 

  43. Henny J, Petitclerc C, Fuentes-Arderiu X, Hyltoft Petersen P, Queraltó JM, Schiele F et al (2000) Need for revisiting the concept of reference values. Clin Chem Lab Med 38:589–595

    Article  CAS  PubMed  Google Scholar 

  44. Horn PS, Pesce AJ (2005) Reference intervals: a user’s guide. American Association for Clinical Chemistry, Washington, DC

    Google Scholar 

  45. Horowitz GL (2012) Establishment and use of reference values. In: Burtis CA, Ashwood ER, Bruns DE (eds) Tietz textbook of clinical chemistry and molecular diagnostics, 5th edn. Elsevier, St. Louis, pp 95–118

    Chapter  Google Scholar 

  46. Engelhard C (2011) Inductively coupled plasma mass spectrometry: recent trends and developments. Anal Bioanal Chem 399(1):213–219

    Article  CAS  PubMed  Google Scholar 

  47. Rodushkin I, Engström E, Baxter DC (2013) Review isotopic analyses by ICP-MS in clinical samples. Anal Bioanal Chem 405(9):2785–2797

    Article  CAS  PubMed  Google Scholar 

  48. Skalnaya MG, Demidov VA, Skalny AV (2003) About the limits of physiological (normal) content of Ca, Mg, P, Fe, Zn and Cu in human hair. Trace Elem Med (Moscow) 4(2):5–10

    Google Scholar 

  49. Miroshnikov SA, Zavyalov OA, Frolov AN, Bolodurina IP, Skalny AV, Kalashnikov VV, Grabeklis AR, Tinkov AA (2017) The reference intervals of hair trace element content in hereford cows and heifers (Bos taurus). Biol Trace Elem Res 180(1):56–62

    Article  CAS  PubMed  Google Scholar 

  50. GabryszukM SK, Metera E, Sakowski T (2010) Content of mineral elements in milk and hair of cows from organic farms. J Elem 15:259–267

    Google Scholar 

  51. Wang ZY, Cao GX, Hu ZZ, Dinng YW (1995) Mineral element metabolism and animal disease. Shanghai Sci Technol Pr:106–108

  52. Jarvis SC, Austin AR (1983) Soil and plant factor limiting the availability of copper to beef suckler herd. J Agric Sci (Camb) 101:39–46

    Article  Google Scholar 

  53. Kincaid RL (2000) Assessment of tracemineral status of ruminants: a review. J Anim Sci 77:1–10

    Article  Google Scholar 

  54. Demesko J, Markowski J, Słaba M, Hejduk J, Minias P (2018) Age-related patterns in trace element content vary between bone and teeth of the European roe deer (Capreolus capreolus). Archives of Environmental Contamination and Toxicology 74(2):330–338

    Article  CAS  PubMed  Google Scholar 

  55. Sobota S, Baranowska-Bosiacka I, Gutowska I, Kupiec M, Dusza K, Machoy Z, Chlubek D (2011) Biomonitoring of lead and fluoride contamination in forests using chemical analysis of hard tissues of roe deer (Capreolus capreolus L.). Pol J Environ Stud 20:435–443

    CAS  Google Scholar 

  56. Kierdorf H, Kierdorf U (2002) Reconstruction of a decline of ambient lead levels in the Ruhr area (Germany) by studying lead concentrations in antlers of roe deer (Capreolus capreolus). Sci Total Environ 296(1-3):153–158

    Article  CAS  PubMed  Google Scholar 

  57. Alonso ML, Benedito JL, Miranda M, Castillo C, Hernández J, Shore RF (2003) Mercury concentrations in cattle from NW Spain. Sci Total Environ 302:93–100

    Article  Google Scholar 

Download references

Funding

The research is carried out through the grant of the Russian Science Foundation (project 14-16-00060 P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Grabeklis.

Ethics declarations

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnikov, S.A., Skalny, A.V., Zavyalov, O.A. et al. The Reference Values of Hair Content of Trace Elements in Dairy Cows of Holstein Breed. Biol Trace Elem Res 194, 145–151 (2020). https://doi.org/10.1007/s12011-019-01768-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01768-6

Keywords

Navigation