Skip to main content

Advertisement

Log in

MiR-30c-5p-Targeted Regulation of GNAI2 Improves Neural Function Injury and Inflammation in Cerebral Ischemia-Reperfusion Injury

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MiRNAs are related to neuronal proliferation and apoptosis following cerebral ischemia-reperfusion injury (CIRI). This study focused on miR-30c-5p in the disease. An oxygen-glucose deprivation/re-oxygenation (OGD/R) model was prepared in HT22 cells and transfected to overexpress miR-30c-5p and G Protein Subunit Alpha I2 (GNAI2) respectively or co-transfected to silence miR-30c-5p and GNAI2. Meanwhile, a middle cerebral artery occlusion (MCAO) model was constructed in mice, and miR-30c-5p and GNAI2 were silenced in vivo simultaneously. The mice were evaluated for neurological damage, apoptosis, and inflammation. HT22 cells were tested for cytotoxicity, proliferation, apoptosis, and inflammatory factors. The interaction between miR-30c-5p and GNAI2 was predicted, analyzed, and confirmed. MiR-30c-5p was found to be downregulated in both experimental models. miR-30c-5p reduced lactate dehydrogenase production, inflammatory response, inhibit apoptosis, and enhanced neuronal proliferation, while GNAI2 overexpression showed the opposite results. Downregulated miR-30c-5p worsened neurological function, apoptosis, and inflammation of MCAO mice while silencing GNAI2 attenuated the influence of downregulated miR-30c-5p. MiR-30c-5p can improve neuronal apoptosis and inflammatory response caused by CIRI and is neuroprotective by targeting GNAI2, providing a new target for treating CIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Lallukka, T. (2018). Trends in diagnosis-specific work disability before and after stroke: A longitudinal population-based study in Sweden. Journal of the American Heart Association, 7(1), e006991.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moskowitz, M. A., Lo, E. H., & Iadecola, C. (2010). The science of stroke: Mechanisms in search of treatments. Neuron, 67(2), 181–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion–From mechanism to translation. Nature Medicine, 17(11), 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  4. Radak, D., Resanovic, I., & Isenovic, E. R. (2014). Link between oxidative stress and acute brain ischemia. Angiology, 65(8), 667–676.

    Article  CAS  PubMed  Google Scholar 

  5. Khoshnam, S. E., Winlow, W., & Farzaneh, M. (2017). The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. Journal of Neuropathology and Experimental Neurology, 76(7), 548–561.

    Article  CAS  PubMed  Google Scholar 

  6. Lu, T. X., & Rothenberg, M. E. (2018). MicroRNA J Allergy Clin Immunol, 141(4): 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  7. Macfarlane, L. A., & Murphy, P. R. (2010). MicroRNA: Biogenesis, function and role in cancer. Curr Genomics, 11(7), 537–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hamzei Taj, S., et al. (2016). Dynamic modulation of microglia/macrophage polarization by miR-124 after focal cerebral ischemia. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on Neuroimmune Pharmacology, 11(4), 733–748.

    Article  PubMed  Google Scholar 

  9. Zhao, F., et al. (2017). miR-30d-5p plays an important role in autophagy and apoptosis in developing rat brains after hypoxic-ischemic injury. Journal of Neuropathology and Experimental Neurology, 76(8), 709–719.

    Article  CAS  PubMed  Google Scholar 

  10. Kanagaraj, N., et al. (2014). Downregulation of miR-124 in MPTP-treated mouse model of Parkinson’s disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience, 272, 167–179.

    Article  CAS  PubMed  Google Scholar 

  11. Rink, C., & Khanna, S. (2011). MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics, 43(10), 521–528.

    Article  CAS  PubMed  Google Scholar 

  12. Saugstad, J. A. (2010). MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. Journal of Cerebral Blood Flow and Metabolism, 30(9), 1564–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, F., et al. (2021). miR-19a/b-3p promotes inflammation during cerebral ischemia/reperfusion injury via SIRT1/FoxO3/SPHK1 pathway. J Neuroinflammation, 18(1), 122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ouyang, Y. B., et al. (2013). Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Glia, 61(11), 1784–1794.

    Article  PubMed  Google Scholar 

  15. Diwan, D., et al. (2021). Sirtuin 1 mediates protection against delayed cerebral ischemia in subarachnoid hemorrhage in response to hypoxic postconditioning. J Am Heart Assoc, 10(20), e021113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, M., et al. (2021). MicroRNA-30c-5p protects against myocardial ischemia/reperfusion injury via regulation of Bach1/Nrf2. Toxicol Appl Pharmacol, 426, 115637.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, M., et al. (2020). Neuroprotective effects of miR-30c on rats with cerebral ischemia/reperfusion injury by targeting SOX9. Pathology, Research and Practice, 216(12), 153271.

    Article  CAS  PubMed  Google Scholar 

  18. Downes, G. B., & Gautam, N. (1999). The G protein subunit gene families. Genomics, 62(3), 544–552.

    Article  CAS  PubMed  Google Scholar 

  19. Wong, Y. H., et al. (1991). Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation. Nature, 351(6321), 63–65.

    Article  CAS  PubMed  Google Scholar 

  20. Hilger, D., Masureel, M., & Kobilka, B. K. (2018). Structure and dynamics of GPCR signaling complexes. Nature Structural & Molecular Biology, 25(1), 4–12.

    Article  CAS  Google Scholar 

  21. Dhanasekaran, N., et al. (1998). Regulation of cell proliferation by G proteins. Oncogene, 17(11 Reviews), 1383–1394.

    Article  CAS  PubMed  Google Scholar 

  22. Feigin, M. E., & Muthuswamy, S. K. (2009). Polarity proteins regulate mammalian cell-cell junctions and cancer pathogenesis. Current Opinion in Cell Biology, 21(5), 694–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luttrell, L. M. (2008). Reviews in molecular biology and biotechnology: Transmembrane signaling by G protein-coupled receptors. Molecular Biotechnology, 39(3), 239–264.

    Article  CAS  PubMed  Google Scholar 

  24. Sun, Q., et al. (2019). Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling. The FASEB Journal, 33(6), 7049–7060.

    Article  CAS  PubMed  Google Scholar 

  25. Hamada, N., et al. (2017). Role of a heterotrimeric G-protein, Gi2, in the corticogenesis: Possible involvement in periventricular nodular heterotopia and intellectual disability. Journal of Neurochemistry, 140(1), 82–95.

    Article  CAS  PubMed  Google Scholar 

  26. Boularan, C., et al. (2015). Lymphocyte-specific loss of Ric-8A results in a Gα protein deficit and severe humoral immunodeficiency. The Journal of Immunology, 195(5), 2090–2102.

    Article  CAS  PubMed  Google Scholar 

  27. Devanathan, V., et al. (2015). Platelet Gi protein Gαi2 is an essential mediator of thrombo-inflammatory organ damage in mice. Proceedings of the National Academy of Sciences of the United States of America, 112(20), 6491–6496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han, B., et al. (2018). Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: Implications for cerebral ischemic stroke. Autophagy, 14(7), 1164–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, M., et al. (2019). Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke. Cell Death and Disease, 10(8), 561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, Y., et al. (2000). Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. Journal of Cerebral Blood Flow and Metabolism, 20(9), 1311–1319.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, X. Q., Sheng, R., & Qin, Z. H. (2009). The neuroprotective mechanism of brain ischemic preconditioning. Acta Pharmacologica Sinica, 30(8), 1071–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sommer, C. J. (2017). Ischemic stroke: Experimental models and reality. Acta Neuropathologica, 133(2), 245–261.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu, X. (2019). The potential role of microRNA-124 in cerebral ischemia injury. International Journal Of Molecular Sciences, 21(1), 120.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.

    Article  CAS  PubMed  Google Scholar 

  35. Di, Y., et al. (2014). MicroRNAs expression and function in cerebral ischemia reperfusion injury. Journal of Molecular Neuroscience, 53(2), 242–250.

    Article  CAS  PubMed  Google Scholar 

  36. Khoshnam, S. E., et al. (2017). Emerging roles of microRNAs in ischemic stroke: As possible therapeutic agents. Journal of Stroke, 19(2), 166–187.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun, M., et al. (2019). Dynamic changes in miR-124 levels in patients with acute cerebral infarction. International Journal of Neuroscience, 129(7), 649–653.

    Article  CAS  PubMed  Google Scholar 

  38. Chen, S. H., et al. (2016). Effects of acupuncture at Baihui (GV 20) and Zusanli (ST 36) on peripheral serum expression of microRNA 124, laminin and integrin β1 in rats with cerebral ischemia reperfusion injury. Chinese Journal of Integrative Medicine, 22(1), 49–55.

    Article  CAS  PubMed  Google Scholar 

  39. Sun, Y., et al. (2013). MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. Cns Neuroscience & Therapeutics, 19(10), 813–819.

    Article  CAS  Google Scholar 

  40. Sun, T., Li, W., & Ling, S. (2016). miR-30c and semaphorin 3A determine adult neurogenesis by regulating proliferation and differentiation of stem cells in the subventricular zones of mouse. Cell Proliferation, 49(3), 270–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yi, S., et al. (2017). miR-30c promotes Schwann cell remyelination following peripheral nerve injury. Neural Regeneration Research, 12(10), 1708–1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simon, M. I., Strathmann, M. P., & Gautam, N. (1991). Diversity of G proteins in signal transduction. Science, 252(5007), 802–808.

    Article  CAS  PubMed  Google Scholar 

  43. Syrovatkina, V., et al. (2016). Regulation, signaling, and physiological functions of G-proteins. Journal of Molecular Biology, 428(19), 3850–3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

XD designed the study, performed animal experiments, and wrote the manuscript. YZ performed in vitro assays, analyzed, and interpretated data. DD revised the manuscript, provided technical support, and supervised the project. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Dan Ding.

Ethics declarations

Ethics Approval

The present study was approved by the Animal experiments were approved by Yichun People’Hospital of Jiangxi Province Animal Experimental Ethics Committee. and all procedures complied with the National Institutes of Health Guide for the Use of Laboratory Animals.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Zeng, Y. & Ding, D. MiR-30c-5p-Targeted Regulation of GNAI2 Improves Neural Function Injury and Inflammation in Cerebral Ischemia-Reperfusion Injury. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04802-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04802-5

Keywords

Navigation