Skip to main content

Advertisement

Log in

Therapeutic Benefits of Tuna Oil by In Vitro and In Vivo Studies Using a Rat Model of Acetic Acid-Induced Ulcerative Colitis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ulcerative colitis (UC), an inflammation of the colon lining, represents the main form of inflammatory bowel disease IBD. Nutritional therapy is extremely important in the management of ulcerative colitis. Fish oil contains long-chain omega-3 polyunsaturated fatty acids, which have beneficial effects on health, including anti-inflammatory effects. This study aims to investigate the benefits of bluefin tuna oil extracted by the Soxhlet method in vitro by determining the anti-radical and anti-inflammatory activities and in vivo by evaluating the preventive and curative effects. The experiments were carried out using two doses of oil (100 and 260 mg/kg) and glutamine (400 and 1000 mg/kg) on the acetic acid-induced UC model. UC has been induced in Wistar rats by intrarectal administration of a single dose of 1 mL acetic acid (5% v/v in distilled water). The obtained results indicate that tuna oil and glutamine have a significant anti-free radical effect. Tuna oil has a marked anti-inflammatory power based on membrane stabilization and inhibiting protein denaturation. The reduction of various UC parameters, such as weight loss, disease activity score DAS, and colonic ulceration in rats pre-treated with tuna oil and glutamine, demonstrate that these treatments have a significant effect on UC. Total glutathione GSH, superoxide dismutase SOD, and catalase activities are significantly restored in the tuna oil and glutamine groups, while lipid peroxidation has been markedly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

UC:

ulcerative colitis

IBD:

inflammatory bowel disease

WHO:

World Health Organization

ROS:

reactive oxygen species

PRDX2:

peroxiredoxin 2

GSH:

glutathione

TNF-α:

tumor necrosis factor

SOD:

superoxide dismutase

GPX:

glutathione peroxidase

CAT:

catalase

LOOH:

lipid hydroperoxide

HRQoL:

health-related quality of life

EPA:

eicosapentaenoic acid

DHA:

docosahexaenoic acid

IL-6:

interleukin 6

TO:

tuna oil

GC-MS:

gas chromatography coupled to mass spectrophotometer

AMDIS:

automated mass spectral deconvolution and identification system

HPLC:

high-performance liquid chromatography

FLD:

fluorescence detector

DPPH:

2,2-diphenyl-1-picrylhydrazyl

DMSO:

dimethyl sulfoxide

GLu:

glutamine

EDTA:

ethylenediaminetetraacetic acid

RSA%:

radical scavenging capacity

IC50 :

Half maximal inhibitory concentration

DS:

Diclofenac sodium

PMP:

percentage of membrane stabilization or protection

NC:

negative control group

PC:

positive control

SUL:

sulfasalazine

AA:

acetic acid

DAI:

disease activity index

MDA:

oxidative stress malondialdehyde

ELISA:

enzyme-linked immunosorbent assay

PMS:

post-mitochondrial supernatant

TCA:

trichloroacetic acid

H&E:

hematoxylin-eosin

BTO:

bluefin tuna oil

ARA:

arachidonic acid

COX:

cyclooxygenase

LOX:

lipoxygenase

NSAIDs:

non-steroidal anti-inflammatory drugs

PGs:

prostaglandins

TXBs:

thromboxanes

HETEs:

hydroxyeicosatetraenoic acids

LXs:

lipoxins

LTs:

leukotrienes

RvEs:

E-series resolvins

RvDs:

D-series resolvins

MaRs:

maresins

PDs:

protectins

NF-κB:

nuclear factor-κB chemokines

ω-3 PUFAs:

omega-3 polyunsaturated fatty acids

ω-6 PUFAs:

omega-6 polyunsaturated fatty acids

TNBS:

2,4,6-trinitrobenzenesulfonic acid

References

  1. Magro, F., Gionchetti, P., Eliakim, R., Ardizzone, S., Armuzzi, A., Barreiro-de Acosta, M., Burisch, J., Gecse, K. B., Hart, A. L., Hindryckx, P., Langner, C., Limdi, J. K., Pellino, G., Zagórowicz, E., Raine, T., Harbord, M., & Rieder, F. (2017). Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 1: Definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. Journal of Crohn's & Colitis, 11, 649–670.

    Article  Google Scholar 

  2. Da Silva, B. C., Lyra, A. C., Rocha, R., & Santana, G. O. (2014). Epidemiology, demographic characteristics and prognostic predictors of ulcerative colitis. World Journal of Gastroenterology, 20, 9458.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Panaccione, R., Lee, W. J., Clark, R., Kligys, K., Campden, R. I., Grieve, S., & Raine, T. (2023). Dose escalation patterns of advanced therapies in Crohn’s disease and ulcerative colitis: A systematic literature review. Advances in Therapy, 40, 2051–2081.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gupta, M., Mishra, V., Gulati, M., Kapoor, B., Kaur, A., Gupta, R., & Tambuwala, M. M. (2022). Natural compounds as safe therapeutic options for ulcerative colitis. Inflammopharmacology, 30, 397–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yangyang, R. Y., & Rodriguez, J. R. (2017). Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes. Seminars in Pediatric Surgery, 26, 349–355.

    Article  Google Scholar 

  6. Calvet, X., Argüelles-Arias, F., López-Sanromán, A., Cea-Calvo, L., Juliá, B., De Santos, C. R., & Carpio, D. (2018). Patients’ perceptions of the impact of ulcerative colitis on social and professional life: Results from the UC-LIFE survey of outpatient clinics in Spain. Patient Preference and Adherence, 12, 1815–1823.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsuoka, K., Kobayashi, T., Ueno, F., Matsui, T., Hirai, F., Inoue, N., Kato, J., Kobayashi, K., Kobayashi, K., Koganei, K., Kunisaki, R., Motoya, S., Nagahori, M., Nakase, H., Omata, F., Saruta, M., Watanabe, T., Tanaka, T., Kanai, T., et al. (2018). Evidence-based clinical practice guidelines for inflammatory bowel disease. Journal of Gastroenterology, 53, 305–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jairath, V., & Feagan, B. G. (2020). Global burden of inflammatory bowel disease. The Lancet Gastroenterology & Hepatology, 5, 2–3.

    Article  Google Scholar 

  9. Sonnenberg, E., & Siegmund, B. (2017). Ulcerative Colitis. Digestion, 94, 181–185.

    Article  Google Scholar 

  10. Trivedi, P., Mytton, J., Evison, F., Kamarajah, S. K., Reece, J., Iqbal, T., Cooney, R., Thompson, F., Walmsley, M., & Ferguson, J. (2018). A nationwide population-based evaluation of mortality and cancer-risk in patients with ulcerative colitis/primary sclerosing cholangitis–young age at diagnosis and the unmet need to reduce mortality. Journal of Hepatology, 68, S220–S221.

    Article  Google Scholar 

  11. Low, D., Nguyen, D. D., & Mizoguchi, E. (2013). Animal models of ulcerative colitis and their application in drug research. Drug Design, Development and Therapy, 7, 1341.

    PubMed  PubMed Central  Google Scholar 

  12. Ghezzi, P. (2011). Role of glutathione in immunity and inflammation in the lung. International Journal of General Medicine, 4, 105–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Behl, T., Rana, T., Alotaibi, G. H., Shamsuzzaman, M., Naqvi, M., Sehgal, A., Singh, S., Sharma, N., Almoshari, Y., Abdellatif, A. A. H., Iqbal, M. S., Bhatia, S., Al-Harrasi, A., & Bungau, S. (2022). Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomedicine & Pharmacotherapy, 146, 112545.

    Article  CAS  Google Scholar 

  14. Vera-Ramirez, L., Ramirez-Tortosa, M., Perez-Lopez, P., Granados-Principal, S., Battino, M., & Quiles, J. L. (2012). Long-term effects of systemic cancer treatment on DNA oxidative damage: The potential for targeted therapies. Cancer Letters, 327, 134–141.

    Article  CAS  PubMed  Google Scholar 

  15. Leyane, T. S., Jere, S. W., & Houreld, N. N. (2022). Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. International Journal of Molecular Sciences, 23, 7273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yasukawa, K., Hirago, A., Yamada, K., Tun, X., Ohkuma, K., & Utsumi, H. (2019). In vivo redox imaging of dextran sodium sulfate-induced colitis in mice using Overhauser-enhanced magnetic resonance imaging. Free Radical Biology & Medicine, 136, 1–11.

    Article  CAS  Google Scholar 

  17. Matsuoka, K., Yamazaki, H., Nagahori, M., Kobayashi, T., Omori, T., Mikami, Y., Fujii, T., Shinzaki, S., Saruta, M., Matsuura, M., Yamamoto, T., Motoya, S., Hibi, T., Watanabe, M., Fernandez, J., Fukuhara, S., & Hisamatsu, T. (2023). Association of ulcerative colitis symptom severity and proctocolectomy with multidimensional patient-reported outcomes: A cross-sectional study. Journal of Gastroenterology, 58, 751–765. https://doi.org/10.1007/s00535-023-02005-7

  18. Lasa, J. S., Olivera, P. A., Danese, S., & Peyrin-Biroulet, L. (2022). Efficacy and safety of biologics and small molecule drugs for patients with moderate-to-severe ulcerative colitis: A systematic review and network meta-analysis. The Lancet Gastroenterology & Hepatology, 7, 161–170.

    Article  Google Scholar 

  19. Liu, Y., Li, B.-G., Su, Y.-H., Zhao, R.-X., Song, P., Li, H., Cui, X.-H., Gao, H.-M., Zhai, R.-X., & Fu, X.-J. (2022). Potential activity of traditional Chinese medicine against ulcerative colitis: A review. Journal of Ethnopharmacology, 289, 115084.

    Article  CAS  PubMed  Google Scholar 

  20. Huang, R., Yao, J., Zhou, L., Li, X., Zhu, J., Hu, Y., & Liu, J. (2023). Protective effect and mechanism insight of purified Antarctic kill phospholipids against mice ulcerative colitis combined with bioinformatics, Natural Products and Bioprospecting, 13, 11. https://doi.org/10.1007/s13659-023-00375-2

  21. Sales-Campos, H., Basso, P. J., Alves, V. B. F., Fonseca, M. T. C., Bonfá, G., Nardini, V., & Cardoso, C. R. B. (2014). Classical and recent advances in the treatment of inflammatory bowel diseases. Brazilian Journal of Medical and Biological Research, 48, 96–107.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bouglé, D., & Bouhallab, S. (2017). Dietary bioactive peptides: Human studies. Critical Reviews in Food Science and Nutrition, 57, 335–343.

    Article  PubMed  Google Scholar 

  23. Rohman, A., Putri, A. R., Irnawati, Windarsih, A., Nisa, K., & Lestari, L. A. (2021). The employment of analytical techniques and chemometrics for authentication of fish oils: A review. Food Control, 124, 107864.

    Article  CAS  Google Scholar 

  24. Chen, J., Jayachandran, M., Bai, W., & Xu, B. (2022). A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chemistry, 369, 130874.

    Article  CAS  PubMed  Google Scholar 

  25. Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83, 770–803.

    Article  CAS  PubMed  Google Scholar 

  26. Freitas, A. C., Rodrigues, D., Rocha-Santos, T. A. P., Gomes, A. M. P., & Duarte, A. C. (2012). Marine biotechnology advances towards applications in new functional foods. Biotechnology Advances, 30, 1506–1515.

    Article  CAS  PubMed  Google Scholar 

  27. Castellano, C.-A., Audet, I., Laforest, J.-P., Matte, J. J., & Suh, M. (2011). Fish oil diets alter the phospholipid balance, fatty acid composition, and steroid hormone concentrations in testes of adult pigs. Theriogenology, 76, 1134–1145.

    Article  CAS  PubMed  Google Scholar 

  28. Ghasemifard, S., Hermon, K., Turchini, G. M., & Sinclair, A. J. (2015). Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat. The British Journal of Nutrition, 114, 684–692.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J., Yi, C., Han, J., Ming, T., Zhou, J., Lu, C., Li, Y., & Su, X. (2020). Novel high-docosahexaenoic-acid tuna oil supplementation modulates gut microbiota and alleviates obesity in high-fat diet mice. Food Science & Nutrition, 8, 6513–6527.

    Article  CAS  Google Scholar 

  30. Azizi Khesal, M., Sharifan, A., Hoseini, E., & Ghavami, A. (2020). Optimization of enzymatic hydrolysis conditions of Caspian kutum (Rutilus frisii kutum)ˮ by-product for production of bioactive peptides with antioxidative properties. International Journal of Peptide Research and Therapeutics, 26, 1829–1838.

    Article  CAS  Google Scholar 

  31. Guérard, F., Guimas, L., & Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic, 19, 489–498.

    Article  Google Scholar 

  32. Khelladi, H. M., Krouf, D., & Taleb-Dida, N. (2018). Sardine proteins (Sardina pilchardus) combined with green lemon zest (Citrus latifolia) improve blood pressure, lipid profile and redox status in diabetic hypertensive rats. Nutrition & Food Science, 48, 654–668.

    Article  Google Scholar 

  33. Adeoti, I. A., & Hawboldt, K. (2014). A review of lipid extraction from fish processing by-product for use as a biofuel. Biomass and Bioenergy, 63, 330–340.

    Article  CAS  Google Scholar 

  34. Alara, O. R., & Abdurahman, N. H. (2019). Kinetics studies on effects of extraction techniques on bioactive compounds from Vernonia cinerea leaf. Journal of Food Science and Technology, 56, 580–588.

    Article  CAS  PubMed  Google Scholar 

  35. Song, G., Zhang, M., Zhang, Y., Wang, H., Chen, K., Dai, Z., & Shen, Q. (2019). Development of a 450 nm laser irradiation desorption method for fast headspace solid-phase microextraction of volatiles from krill oil (Euphausia superba). European Journal of Lipid Science and Technology, 121, 1–9.

    Article  Google Scholar 

  36. Huang, L., Li, J., Bi, Y., Xu, Y., Wang, Y., Wang, J., & Peng, D. (2021). Simultaneous determination of α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol, sesamin, sesamolin, sesamol, and asarinin in sesame oil by normal-phase high performance liquid chromatography. Journal of Food Composition and Analysis, 104, 104132.

    Article  CAS  Google Scholar 

  37. Memarpoor-Yazdi, M., Asoodeh, A., & Chamani, J. (2012). A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Functional Foods, 4, 278–286.

    Article  CAS  Google Scholar 

  38. Chirumamilla, P., Vankudoth, S., Dharavath, S. B., Dasari, R., & Taduri, S. (2022). In vitro anti-inflammatory activity of green synthesized silver nanoparticles and leaf methanolic extract of Solanum khasianum Clarke. The Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 92, 301–307.

    Article  CAS  Google Scholar 

  39. Mirke, N. B., Shelke, P. S., Malavdkar, P. R., & Jagtap, P. N. (2020). In vitro protein denaturation inhibition assay of Eucalyptus globulus and glycine max for potential antiinflammatory activity. Innovations in Pharmaceuticals and Pharmacotherapy, 8, 28.

    CAS  Google Scholar 

  40. Rafeeq, M., Murad, H. A. S., Abdallah, H. M., & El-Halawany, A. M. (2021). Protective effect of 6-paradol in acetic acid-induced ulcerative colitis in rats. BMC Complementary Medicine and Therapies, 21, 1–10.

    Google Scholar 

  41. de Oliveira Santos, R., da Silva Cardoso, G., da Costa Lima, L., de Sousa Cavalcante, M. L., Silva, M. S., Cavalcante, A. K. M., Severo, J. S., de Melo Sousa, F. B., Pacheco, G., & Alves, E. H. P. (2021). l-Glutamine and physical exercise prevent intestinal inflammation and oxidative stress without improving gastric dysmotility in rats with ulcerative colitis. Inflammation, 44, 617–632.

    Article  PubMed  Google Scholar 

  42. Ansari, M. N., Rehman, N. U., Karim, A., Soliman, G. A., Ganaie, M. A., Raish, M., & Hamad, A. M. (2021). Role of oxidative stress and inflammatory cytokines (Tnf-α and il-6) in acetic acid-induced ulcerative colitis in rats: Ameliorated by otostegia fruticosa. Life, 11, 1–17.

    Article  Google Scholar 

  43. Xiang, X.-W., Zhou, X.-L., Wang, R., Shu, C.-H., Zhou, Y.-F., Ying, X.-G., & Zheng, B. (2021). Protective effect of tuna bioactive peptide on dextran sulfate sodium-induced colitis in mice. Marine Drugs, 19, 127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morris, G. P., Beck, P. L., Herridge, M. S., Depew, W. T., Szewczuk, M. R., & Wallace, J. L. (1989). Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 96, 795–803.

    Article  CAS  PubMed  Google Scholar 

  45. Millar, A. D., Rampton, D. S., Chander, C. L., Claxson, A. W., Blades, S., Coumbe, A., Panetta, J., Morris, C. J., & Blake, D. R. (1996). Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut, 39, 407–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Imam, F., Al-Harbi, N. O., Al-Harbi, M. M., Ansari, M. A., Almutairi, M. M., Alshammari, M., Almukhlafi, T. S., Ansari, M. N., Aljerian, K., & Ahmad, S. F. (2016). Apremilast reversed carfilzomib-induced cardiotoxicity through inhibition of oxidative stress, NF-κB and MAPK signaling in rats. Toxicology Mechanisms and Methods, 26, 700–708.

    Article  CAS  PubMed  Google Scholar 

  47. Jollow, D. J., Mitchell, J. R., Zampaglione, N., & Gillette, J. R. (1974). Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 11, 151–169.

    Article  CAS  PubMed  Google Scholar 

  48. Ain, Q. T., Haq, S. H., Alshammari, A., Al-Mutlaq, M. A., & Anjum, M. N. (2019). The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein Journal of Nanotechnology, 10, 901–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bastaki, S. M. A., Amir, N., Adeghate, E., & Ojha, S. (2022). Lycopodium mitigates oxidative stress and inflammation in the colonic mucosa of acetic acid-induced colitis in rats. Molecules, 27, 2774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Esterbauer, H., & Cheeseman, K. H. (1990). [42] Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407–421.

    Article  CAS  PubMed  Google Scholar 

  51. Leiwakabessy, J., & Wenno, M. R. (2019). Penambahan asap cair mampu mempertahankan profil asam lemak ikan tuna kering blok. Journal Masyarakat Pengolahan Hasil Perikanan Indonesia, 22, 520–525.

  52. Innes, J. K., & Calder, P. C. (2020). Marine omega-3 (N-3) fatty acids for cardiovascular health: An update for 2020. International Journal of Molecular Sciences, 21, 1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, K. Y., Nakatsu, C. H., Jones-Hall, Y., Kozik, A., & Jiang, Q. (2021). Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice. Free Radical Biology & Medicine, 163, 180–189.

    Article  CAS  Google Scholar 

  54. Grar, H., Dib, W., Gourine, H., Benattia, S. B., Kheroua, O., & Saidi, D. (2017). La vitamine E protège la muqueuse intestinale des lésions histologiques induites par la sensibilisation à la β-lactoglobuline. Revue Française d'Allergologie, 57, 280.

    Article  Google Scholar 

  55. Umayaparvathi, S., Meenakshi, S., Vimalraj, V., Arumugam, M., Sivagami, G., & Balasubramanian, T. (2014). Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition, 4, 343–353.

    Article  Google Scholar 

  56. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118, 559–565.

    Article  CAS  Google Scholar 

  57. Kim, E., Kang, Y.-G., Kim, J. H., Kim, Y.-J., Lee, T. R., Lee, J., Kim, D., & Cho, J. Y. (2018). The antioxidant and anti-inflammatory activities of 8-hydroxydaidzein (8-HD) in activated macrophage-like RAW264. 7 cells. International Journal of Molecular Sciences, 19, 1828.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Moon, S. W., Ahn, C.-B., Oh, Y., & Je, J.-Y. (2019). Lotus (Nelumbo nucifera) seed protein isolate exerts anti-inflammatory and antioxidant effects in LPS-stimulated RAW264. 7 macrophages via inhibiting NF-κB and MAPK pathways, and upregulating catalase activity. International Journal of Biological Macromolecules, 134, 791–797.

    Article  CAS  PubMed  Google Scholar 

  59. Ahn, C.-B., Cho, Y.-S., & Je, J.-Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry, 168, 151–156.

    Article  CAS  PubMed  Google Scholar 

  60. Kumar, L. V., Shakila, R. J., & Jeyasekaran, G. (2019). In vitro anti-cancer, anti-diabetic, anti-inflammation and wound healing properties of collagen peptides derived from unicorn leatherjacket (Aluterus monoceros) at different hydrolysis. Turkish Journal of Fisheries and Aquatic Sciences, 19, 551–560.

    Google Scholar 

  61. Gautam, R. K., Sharma, S., & Sharma, K. (2013). Comparative evaluation of anti-arthritic activity of Pongamia pinnata (Linn.) Pierre and Punica granatum Linn.: An in vitro study. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 721–724.

    Google Scholar 

  62. Hossain, M. M., Ahamed, S. K., Dewan, S. M. R., Hassan, M. M., Istiaq, A., Islam, M. S., & Moghal, M. M. R. (2014). In vivo antipyretic, antiemetic, in vitro membrane stabilization, antimicrobial, and cytotoxic activities of different extracts from Spilanthes paniculata leaves. Biological Research, 47, 1–9.

    Article  Google Scholar 

  63. Chandra, S., Chatterjee, P., Dey, P., & Bhattacharya, S. (2012). Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pacific Journal of Tropical Biomedicine, 2, S178–S180.

    Article  Google Scholar 

  64. Krishnaraju, A. V., Rao, C. V., Rao, T. V. N., Reddy, K. N., & Trimurtulu, G. (2009). In vitro and in vivo antioxidant activity of Aphanamixis polystachya bark. American Journal of Infectious Diseases, 5, 60–67.

    Article  Google Scholar 

  65. Elson, C. O., Sartor, R. B., Tennyson, G. S., & Riddell, R. H. (1995). Experimental models of inflammatory bowel disease. Gastroenterology, 109, 1344–1367.

    Article  CAS  PubMed  Google Scholar 

  66. Soliman, G. A., Gabr, G. A., Al-Saikhan, F. I., Ansari, M. N., Khan, T. H., Ganaie, M. A., Abdulaziz, S. S., & Alankuş-Çalışkan, Ö. (2016). Protective effects of two Astragalus species on ulcerative colitis in rats. Tropical Journal of Pharmaceutical Research, 15, 2155–2163.

    Article  Google Scholar 

  67. Gonzalez-Rey, E., Chorny, A., & Delgado, M. (2006). Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology, 130, 1707–1720.

    Article  CAS  PubMed  Google Scholar 

  68. Hunschede, S., Kubant, R., Akilen, R., Thomas, S., & Anderson, G. H. (2017). Decreased appetite after high-intensity exercise correlates with increased plasma interleukin-6 in normal-weight and overweight/obese boys. Current Developments in Nutrition, 1, e000398.

  69. Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiological Reviews, 88, 1397–1406.

    Article  Google Scholar 

  70. Bhattacharyya, A., Chattopadhyay, R., Mitra, S., & Crowe, S. E. (2014). Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiological Reviews, 94, 329–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carroll, I. M., Andrus, J. M., Bruno-Bárcena, J. M., Klaenhammer, T. R., Hassan, H. M., & Threadgill, D. S. (2007). Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. American Journal of Physiology Gastrointestinal and Liver Physiology, 293, G729–G738.

  72. Krzemińska, J., Wronka, M., Młynarska, E., Franczyk, B., & Rysz, J. (2022). Arterial hypertension—oxidative stress and inflammation. Antioxidants, 11, 172.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ran, Z. H., Chen, C., & Xiao, S. D. (2008). Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomedicine & Pharmacotherapy, 62, 189–196.

    Article  CAS  Google Scholar 

  74. Nurilmala, M., Hizbullah, H. H., Karnia, E., Kusumaningtyas, E., & Ochiai, Y. (2020). Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna (Thunnus albacares) skin. Marine Drugs, 18, 98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 524, 13–30.

    Article  CAS  PubMed  Google Scholar 

  76. Drouin, G., Catheline, D., Guillocheau, E., Gueret, P., Baudry, C., Le Ruyet, P., Rioux, V., & Legrand, P. (2019). Comparative effects of dietary n-3 docosapentaenoic acid (DPA), DHA and EPA on plasma lipid parameters, oxidative status and fatty acid tissue composition. The Journal of Nutritional Biochemistry, 63, 186–196.

    Article  CAS  PubMed  Google Scholar 

  77. Lima Rocha, J. É., Mendes Furtado, M., Mello Neto, R. S., da Silva Mendes, A. V., da Silva Brito, A. K., de Almeida, J. O. C. S., Queiroz, E. I. R., de Sousa França, J. V., Primo, M. G. S., de Carvalho Cunha Sales, A. L., Vasconcelos, A. G., Cabral, W. F., Kückelhaus, S. A. S., de Souza de Almeida Leite, J. R., Lustosa, A. K. M. F., Lucarini, M., Durazzo, A., Arcanjo, D. D. R., & do Carmo de Carvalho e Martins, M. (2022). Effects of fish oil supplementation on oxidative stress biomarkers and liver damage in hypercholesterolemic rats. Nutrients, 14, 1–15.

    Article  Google Scholar 

  78. Kang, J. X., & Liu, A. (2013). The role of the tissue omega-6/omega-3 fatty acid ratio in regulating tumor angiogenesis. Cancer Metastasis Reviews, 32, 201–210.

    Article  CAS  PubMed  Google Scholar 

  79. Dennis, E. A., & Norris, P. C. (2015). Eicosanoid storm in infection and inflammation. Nature Reviews. Immunology, 15, 511–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bonafini, S., & Fava, C. (2017). Omega-3 fatty acids and cytochrome P450-derived eicosanoids in cardiovascular diseases: Which actions and interactions modulate hemodynamics? Prostaglandins & Other Lipid Mediators, 128-129, 34–42.

    Article  CAS  Google Scholar 

  81. Shibabaw, T. (2021). Omega-3 polyunsaturated fatty acids: Anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Molecular and Cellular Biochemistry, 476, 993–1003.

    Article  CAS  PubMed  Google Scholar 

  82. Sundaram, T. S., Giromini, C., Rebucci, R., Pistl, J., Bhide, M., & Baldi, A. (2022). Role-of-omega3-polyunsaturated-fatty-acids-citrus-pectin-and-milkderived-exosomes-on-intestinal-barrier-integrity-and-immunity-in-animalsJournal-of-Animal-Science-and-Biotechnology.pdf. Journal of Animal Science and Biotechnology, 7, 1–22.

    CAS  Google Scholar 

  83. Sherratt, S. C. R., Libby, P., Budoff, M. J., Bhatt, D. L., & Mason, R. P. (2023). Role of omega-3 fatty acids in cardiovascular disease: The debate continues. Current Atherosclerosis Reports, 25, 1–17.

    Article  CAS  PubMed  Google Scholar 

  84. Sugihara, K., Morhardt, T. L., & Kamada, N. (2019). The role of dietary nutrients in inflammatory bowel disease. Frontiers in Immunology, 10, 1–16.

    Google Scholar 

  85. Calder, P. C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids, 1851, 469–484.

    Article  CAS  Google Scholar 

  86. Feng, J., Wang, Q., Yang, W., Liu, J., & Gao, M. Q. (2021). Omega-3 polyunsaturated fatty acids ameliorated inflammatory response of mammary epithelial cells and mammary gland induced by lipopolysaccharide. Acta Biochimica et Biophysica Sinica Shanghai, 53, 1142–1153.

    Article  CAS  Google Scholar 

  87. Velasque, M. J. S. G., Branchini, G., Catarina, A. V., Bettoni, L., Fernandes, R. S., Da Silva, A. F., Dorneles, G. P., da Silva, I. M., Santos, M. A., & Sumienski, J. (2023). Fish oil-omega-3 exerts protective effect in oxidative stress and liver dysfunctions resulting from experimental sepsis. Journal of Clinical and Experimental Hepatology, 13, 64–74.

    Article  CAS  PubMed  Google Scholar 

  88. Yorulmaz, E., Yorulmaz, H., Gökmen, E. S., Altınay, S., Küçük, S. H., Zengi, O., Çelik, D. S., & Şit, D. (2019). Therapeutic effectiveness of rectally administered fish oil and mesalazine in trinitrobenzenesulfonic acid-induced colitis. Biomedicine & Pharmacotherapy, 118, 109247.

    Article  CAS  Google Scholar 

  89. Zhou, X., Xiang, X., Zhou, Y., Zhou, T., Deng, S., Zheng, B., & Zheng, P. (2021). Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice. Journal of Functional Foods, 79, 104394.

    Article  CAS  Google Scholar 

  90. Owusu, G., Obiri, D. D., Ainooson, G. K., Osafo, N., Antwi, A. O., Duduyemi, B. M., & Ansah, C. (2020). Acetic acid-induced ulcerative colitis in Sprague Dawley rats is suppressed by hydroethanolic extract of Cordia vignei leaves through reduced serum levels of TNF- α and IL-6. International Journal of Chronic Diseases, 2020, 1–11.

  91. Bejeshk, M. A., Aminizadeh, A. H., Rajizadeh, M. A., Khaksari, M., Lashkarizadeh, M., Shahrokhi, N., Zahedi, M. J., & Azimi, M. (2022). The effect of combining basil seeds and gum Arabic on the healing process of experimental acetic acid-induced ulcerative colitis in rats. Journal of Traditional and Complementary Medicine, 12, 599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Z., Shi, Q., Feng, Y., Han, J., Lu, C., Zhou, J., Wang, Z., Su, X. (2023) Targeted screening of an anti-inflammatory polypeptide from Rhopilema esculentum Kishinouye cnidoblasts and elucidation of its mechanism in alleviating ulcerative colitis based on an analysis of the gut microbiota and metabolites. Food Science and Human Wellness, 13https://doi.org/10.26599/FSHW.2022.9250112

Download references

Acknowledgements

The author would like to thank Prince Sultan University for their support.

Funding

This work is supported by the Ministry of Higher Education and Scientific Research, Abdelhamid Ibn Badis University, Mostaganem, Algeria. As a part of the Research Project Projets de Recherche-Formation Universitaire (PRFU). Code: D00L01UN270120200002 “The contribution of the intestinal microbiota to the physiological balance of the body.”

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by AB and SK. The first draft of the manuscript was written by AB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Conceptualization: SK and AB; methodology: SK and AB; formal analysis and investigation: SK, AB, and YI; writing—original draft preparation: AB, SK, and MB; writing—review and editing: AB, SK, and MB; funding acquisition: AB and SK; resources: AB, SK, and OS; supervision: SK

Corresponding authors

Correspondence to Soumia Keddari or Mohamed Bououdina.

Ethics declarations

Ethical Approval

All experimental procedures and animal protocols were approved by the Animal Protection Ethics Committee of the Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University, Algeria.

Consent to Participate

All authors contributed to the study and approved their consent to participate in this research.

Consent for Publication

All authors contributed to the study and approved their consent to publish this research.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhend, A., Keddari, S., Yahla, I. et al. Therapeutic Benefits of Tuna Oil by In Vitro and In Vivo Studies Using a Rat Model of Acetic Acid-Induced Ulcerative Colitis. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04736-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04736-y

Keywords

Navigation