Skip to main content

Advertisement

Log in

Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fruit seeds are leftovers from a variety of culinary sectors. They are generally unutilized and contribute greatly to global disposals. These seeds not only possess various nutritional attributes but also have many heath-beneficial properties. One way to make use of these seeds is to extract their bioactive components and create fortified food items. Nowadays, researchers are highly interested in creating innovative functional meals and food components from these unconventional resources. The main objective of this manuscript was to determine the usefulness of seed powder from 70 highly consumed fruits, including Apple, Apricot, Avocado, Banana, Blackberry, Blackcurrant, Blueberry, Cherry, Common plum, Cranberry, Gooseberry, Jackfruit, Jamun, Kiwi, Lemon, Mahua, Mango, Melon, Olive, Orange, and many more have been presented. The nutritional attributes, phytochemical composition, health advantages, nanotechnology applications, and toxicity of these fruit seeds have been fully depicted. This study also goes into in-depth detailing on creating useful food items out of these seeds, such as bakery goods, milk products, cereal-based goods, and meat products. It also identifies enzymes purified from these seeds along with their biochemical applications and any research openings in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All relevant data are within the paper.

Code Availability

Not applicable.

References

  1. Crops, P. (2020). Crop production guide agriculture 2020. Univ.

    Google Scholar 

  2. Valdez-Morales, M., Espinosa-Alonso, L. G., Espinoza-Torres, L. C., Delgado-Vargas, F., & Medina-Godoy, S. (2014). Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. Journal of Agriculture and Food Chemistry, 62, 5281–5289. https://doi.org/10.1021/jf5012374

    Article  CAS  Google Scholar 

  3. UNICEF. (2019). The state of the world’s children 2019. In Children, food and nutrition: growing well in a changing world. UNICEF, New York, NY, USA. https://www.unicef.org/media/63016/file/SOWC-2019.pdf

  4. Bevan, J. R., Firth, C., Neicho, M. (1997). Storage of organically produced crops, the henry doubleday research. Association, Coventry.

  5. Su, W.-H., He, H.-J., & Sun, D.-W. (2017). Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: A review. Critical Reviews in Food Science and Nutrition, 57, 1039–1051. https://doi.org/10.1080/10408398.2015.1082966

    Article  CAS  PubMed  Google Scholar 

  6. Samtiya, M., Aluko, R. E., Dhewa, T., Moreno-Rojas, J. M. (2021). Potential health benefits of plant food-derived bioactive components: An overview., Foods (Basel, Switzerland), 10. https://doi.org/10.3390/foods10040839

  7. Zhou, Y., Wang, J., Cao, L., Shi, M., Liu, H., Zhao, Y., & Xia, Y. (2022). Fruit and vegetable consumption and cognitive disorders in older adults: A meta-analysis of observational studies. Frontiers in Nutrition, 9, 871061. https://doi.org/10.3389/fnut.2022.871061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morlock, G. E., Wutthinithisanand, N., Rauhut, D. (2021). Puree and juice of thai mango and pineapple analyzed by high-performance thin-layer chromatography hyphenated with effect-directed assays, Molecules, 26. https://doi.org/10.3390/molecules26247683

  9. Lau, K. Q., Sabran, M. R., & Shafie, S. R. (2021). Utilization of vegetable and fruit by-products as functional ingredient and food. Frontiers in Nutrition, 8, 661693. https://doi.org/10.3389/fnut.2021.661693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruiz Rodríguez, L., Gasga, V. M., Pescuma, M., Nieuwenhove, C., Mozzi, F., Alberto, J., Sanchez-Burgos, J. (2020). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages, Food Research International, 140. https://doi.org/10.1016/j.foodres.2020.109854

  11. Aqilah, N. N., Rovina, K., Xia, W., Felicia, L., Vonnie, J. M. (2023). A review on the potential bioactive components in fruits and vegetable wastes as value-added products in the food industry, Molecules, 28. https://doi.org/10.3390/molecules28062631

  12. O’Shea, N., Arendt, E. K., & Gallagher, E. (2012). Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innovative Food Science and Emerging Technologies, 16, 1–10. https://doi.org/10.1016/j.ifset.2012.06.002

    Article  CAS  Google Scholar 

  13. Wadhwa, M., Bakshi, S. P. M. (2013). Utilization of fruit and vegetable wastes as livestock feed and as substrates for generation of other value-added products, RAP Publication 2013/04, Rome, Italy. http://www.fao.org.webtranslate-widget.systransoft.com/docrep/018/i3273e/i3273e.pdf

  14. Lappi, J., Silventoinen-Veijalainen, P., Vanhatalo, S., Rosa-Sibakov, N., & Sozer, N. (2022). The nutritional quality of animal-alternative processed foods based on plant or microbial proteins and the role of the food matrix. Trends in Food Science & Technology, 129, 144–154. https://doi.org/10.1016/j.tifs.2022.09.020

    Article  CAS  Google Scholar 

  15. Kyriakopoulou, K., Keppler, J. K., van der Goot, A. J. (2021). Functionality of ingredients and additives in plant-based meat analogues., Foods (Basel, Switzerland), 10. https://doi.org/10.3390/foods10030600

  16. Siacor, F. D. C., Lobarbio, C. F. Y., & Taboada, E. B. (2021). Pretreatment of mango (Mangifera indica L. Anacardiaceae) seed husk for bioethanol production by dilute acid treatment and enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 193, 1338–1350. https://doi.org/10.1007/s12010-020-03387-7

    Article  CAS  PubMed  Google Scholar 

  17. Sofowora, A., Ogunbodede, E., & Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10, 210–229. https://doi.org/10.4314/ajtcam.v10i5.2

    Article  Google Scholar 

  18. Zhou, Y., Zhao, W., Lai, Y., Zhang, B., Zhang, D. (2020). Edible plant oil: Global status, health issues, and perspectives , Frontiers in Plant Science, 11https://www.frontiersin.org/articles/10.3389/fpls.2020.01315.

  19. Aljaafari, A., Fattah, I. M. R., Jahirul, M. I., Gu, Y., Mahlia, T. M. I., Islam, M. A., & Islam, M. S. (2022). Biodiesel emissions: A state-of-the-art review on health and environmental impacts. Energies, 15, 1–24. https://doi.org/10.3390/en15186854

    Article  CAS  Google Scholar 

  20. Kaseke, T., Opara, U. L., & Fawole, O. A. (2020). Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: Effect of preharvest and processing factors. Heliyon, 6, e04962. https://doi.org/10.1016/j.heliyon.2020.e04962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., Leschik-Bonnet, E., Müller, M. J., Oberritter, H., Schulze, M., Stehle, P., & Watzl, B. (2012). Critical review: Vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition, 51, 637–663. https://doi.org/10.1007/s00394-012-0380-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarkic, A., Stappen, I. (2018). Essential oils and their single compounds in cosmetics—A critical review, Cosmetics, 5. https://doi.org/10.3390/cosmetics5010011

  23. Allaqaband, S., Dar, A. H., Patel, U., Kumar, N., Nayik, G. A., Khan, S. A., Ansari, M. J., Alabdallah, N. M., Kumar, P., Pandey, V. K., Kovács, B., & Shaikh, A. M. (2022). Utilization of fruit seed-based bioactive compounds for formulating the nutraceuticals and functional food: A review. Frontiers in Nutrition, 9, 902554. https://doi.org/10.3389/fnut.2022.902554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumoro, A. C., Alhanif, M., Wardhani, D. H. (2020). A critical review on tropical fruits seeds as prospective sources of nutritional and bioactive compounds for functional foods development: A case of Indonesian exotic fruits, International Journal of Food Science, 2020. https://doi.org/10.1155/2020/4051475

  25. Fidelis, M., De Moura, C., Kabbas, T., Pap, N., Mattila, P., Mäkinen, S., Putnik, P., Kovačević, D. B., Tian, Y., Yang, B., & Granato, D. (2019). Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from by-products within circular economy. Molecules, 24, 1–54. https://doi.org/10.3390/molecules24213854

    Article  CAS  Google Scholar 

  26. Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., Nepovimova, E., & Kuca, K. (2020). Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants., 9, 1–38. https://doi.org/10.3390/antiox9111123

    Article  CAS  Google Scholar 

  27. Patra, A., Abdullah, S., Pradhan, R. C. (2022). Review on the extraction of bioactive compounds and characterization of fruit industry by-products, Bioresources and Bioprocessing, 9. https://doi.org/10.1186/s40643-022-00498-3

  28. Mustafa, M.A.-M., Sorour, M.A.-H., Mehanni, A.-H.E., & Hussien, S. M. (2023). Amino acid profile, physico-chemical properties and fatty acids composition of some fruit seed kernels after detoxification. Chemical and Biological Technologies in Agriculture, 10, 1–11.

    Article  Google Scholar 

  29. Manoj, A. A., Fathima, A., Naushad, B., Sunilkumar, S., Shanker, M. A., Abdullah, S. (2023). Valorization of fruit seeds by polyphenol recovery using microwave-assisted aqueous extraction: modelling and optimization of process parameters, Journal of Food Measurement and Characterization, 1–14.

  30. Górska, A., Piasecka, I., Wirkowska-Wojdyła, M., Bryś, J., Kienc, K., Brzezińska, R., & Ostrowska-Ligęza, E. (2023). Berry seeds—A by-product of the fruit industry as a source of oils with beneficial nutritional characteristics. Applied Sciences, 13, 5114.

    Article  Google Scholar 

  31. Cautela, D., Pastore, A., Ferrari, G., Laratta, B., D’Onofrio, N., Balestrieri, M. L., Servillo, L., & Castaldo, D. (2021). Global warming threatens the world production of bergamot essential oil. Industrial Crops and Products, 172, 113986. https://doi.org/10.1016/j.indcrop.2021.113986

    Article  Google Scholar 

  32. Yu, X., Van De Voort, F. R., Li, Z., Yue, T. (2007). Proximate composition of the apple seed and characterization of its oil, International Journal of Food Engineering, 3. https://doi.org/10.2202/1556-3758.1283

  33. Samia El-Safy, F., Salem, R. H., & Abd El-Ghany, M. E. (2012). Chemical and nutritional evaluation of different seed flours as novel sources of protein. World Journal of Dairy & Food Sciences, 7, 59–65. https://doi.org/10.5829/idosi.wjdfs.2012.7.1.61215

    Article  CAS  Google Scholar 

  34. Akubot, P. I., Yusuf, D., & Obiegunam, J. E. (2013). Proximate composition and some functional properties of flour from the kernel of African star apple (Chrysophyllual albidum ). International Journal of Agricultural Policy and Research, 1, 62–66.

    Google Scholar 

  35. Ifesan, B. O. T., Olorunsola, B. O., & Ifesan. (2015). Nutritional composition and acceptability of candy from avocado seed (Persea americana). International Journal of Agriculture Innovations and Research, 3, 2319–1473.

    Google Scholar 

  36. Singh, U., Anita Kochhar, R. B. (2012). Proximate composition, available carbohydrates, dietary fibres and anti-nutritional factors in BAEL (Aegle Maemelos L.) leaf, pulp and seed powder, International Journal of Scientific and Research Publications, 2.

  37. Abubakar, S. (2014). In vitro antioxidant, antimicrobial and phytochemical properties of wild banana [Ensete gilletii (E. A. J. DE Wildman)] seeds extract. International Journal of Advanced Chemistry, 2, 59–61.

    Google Scholar 

  38. Rahman, M., Jahan, F., & Mim, S. (2019). A brief phytochemical investigation and pharmacological uses of citrus seed—A review. Pharmacologyonline, 1, 94–103.

    Google Scholar 

  39. Riaz, H., Ali, S., Chatha, S., Hussain, A. I., Anwer, S., Hussain, S. M., & Zafar, K. (2015). Physico-chemical characterization of bitter apple ( C itrullus colosynthis ) seed oil and seed residue. International Journal of Biosciences, 6, 283–292.

    Google Scholar 

  40. Dimić, E. B., Vujasinovic, V., Radočaj, O. F., & Pastor, O. P. (2012). Characteristics of blackberry and raspberry seeds and oils. Acta Periodica Technologica, 43, 1–9. https://doi.org/10.2298/APT1243001D

    Article  CAS  Google Scholar 

  41. Ismael, M. F., Selvin, A. S. M., Vany, P. F., Ricardo, S. A., Jhunior, A. M. F., & de MF Antonio, A. (2020). Chemical characterization of seeds of Amazon fruits as nutritional contribution with functional medicinal potential. African Journal of Pharmacy and Pharmacology, 14, 67–76. https://doi.org/10.5897/ajpp2020.5124

    Article  CAS  Google Scholar 

  42. Animashaun, O., Raji, O. H., & Orelaja, O. T. (2014). Nutritional composition and oil characteristics of golden melon (Cucumis melo) seeds. Food Science and Quality Management, 27, 18–21.

    Google Scholar 

  43. García-aguilar, L., Rojas-molina, A., Ibarra-alvarado, C., Rojas-molina, J. I., Vázquez-landaverde, P. A., Luna-vázquez, F. J., Zavala-sánchez, M. A. (2015). Nutritional value and volatile compounds of black cherry (Prunus serotina) seeds, 3479–3495. https://doi.org/10.3390/molecules20023479

  44. Hassan, L. G., Muhammad, M. U., Umar, K. J., & Sokoto, A. M. (2008). Comparative study on the proximate and mineral contents of the seed and pulp of sugar apple (Annona squamosa). Nigerian Journal of Basic and Applied Sciences, 16, 179–182.

    Google Scholar 

  45. Adebayo, S. F., & Arinola, S. O. (2017). Effect of germination on the nutrient and antioxidant properties of tigernut (Cyperus esculentus). Journal of Biology, Agriculture and Healthcare, 7, 88–94.

    Google Scholar 

  46. Shukla, R. K., Kishan, Shukla, A., & Singh, R. (2021). Evaluation of nutritive value, phytochemical screening, total phenolic content and in-vitro antioxidant activity of the seed of Prunus domestica L. Plant Science Today, 8, 830–835. https://doi.org/10.14719/PST.2021.8.4.1231

    Article  CAS  Google Scholar 

  47. Kamel, B. S., & Kakuda, Y. (1992). Characterization of the seed oil and meal from apricot, cherry, nectarine, peach and plum. Journal of the American Oil Chemists Society, 69, 492–494. https://doi.org/10.1007/BF02540957

    Article  CAS  Google Scholar 

  48. Aremu, M. O., Olaofe, O., Basu, S. K., Abdulazeez, G., & Acharya, S. N. (2010). Processed cranberry bean (Phaseolus coccineus L.) seed flour for the African diet. Canadian Journal of Plant Science, 90, 719–728. https://doi.org/10.4141/CJPS09149

    Article  CAS  Google Scholar 

  49. Al-farsi, M. A., Lee, C. Y. (2011). Usage of date ( Phoenix dactylifera L .) seeds in human health and animal feed, Nuts and Seeds in Health and Disease Prevention, 447–452. https://doi.org/10.1016/B978-0-12-375688-6.10053-2

  50. Özcan, M. (2002). Nutrient composition of rose (Rosa Canina L.) seed and oils. Journal of Medicinal Food, 5, 137–140. https://doi.org/10.1089/10966200260398161

    Article  PubMed  Google Scholar 

  51. Permatasari, N. D., Witoyo, J. E., Masruri, M., Yuwono, S. S., Widjanarko, S. B. (2021). Nutritional and structural properties of durian seed ( Durio Zibenthinus Murr.) flour originated from West Kalimantan, Indonesia, IOP Conference Series: Earth and Environmental Science, 1012. https://doi.org/10.1088/1755-1315/1012/1/012038

  52. Beevi, T., District, R., District, R., & Nadu, T. (2022). Nutrient analysis of Indian Gooseberry seeds. International Journal of Innovative Science and Research, 8, 407–410.

    Google Scholar 

  53. Rao, P. U. (1994). Nutrient composition of some less-familiar oil seeds. Food Chemistry, 50, 379–382. https://doi.org/10.1016/0308-8146(94)90208-9

    Article  CAS  Google Scholar 

  54. Karaman, E., Karabiber, E. B., & Yilmaz, E. (2018). Physicochemical and functional properties of the cold press lemon, orange, and grapefruit seed meals. Quality Assurance and Safety of Crops & Foods, 10, 233–243. https://doi.org/10.3920/QAS2017.1218

    Article  CAS  Google Scholar 

  55. Marques, L. L. M., Panizzon, G. P., Aguiar, B. A. A., Simionato, A. S., Cardozo-Filho, L., Andrade, G., de Oliveira, A. G., Guedes, T. A., & de Mello, J. C. P. (2016). Guaraná (Paullinia cupana) seeds: Selective supercritical extraction of phenolic compounds. Food Chemistry, 212, 703–711. https://doi.org/10.1016/j.foodchem.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  56. Esua, O. J., Makinde, O. O., Arueya, G. L., Chin, N. L. (2016). Antioxidant potential, phytochemical and nutrient compositions of Nigerian hog plum (Spondias mombin) seed kernel as a new food source., International Food Research Journal, 23.

  57. Yerima, B. I., & Adamu, H. M. (2011). Proximate chemical analysis of nutritive contents of Jujube (Ziziphus mauritiana) seeds. International Journal of Physical Sciences, 6, 8079–8082. https://doi.org/10.5897/IJPS09.024

    Article  CAS  Google Scholar 

  58. Kim, I., Dhungana, S. K., Kim, H., & Shin, D. (2017). Quality characteristics and antioxidant potential of seeds of native Korean persimmon genotypes. Korean J. Plant Resour., 30, 670–678.

    CAS  Google Scholar 

  59. Carolina, A., Hacke, M., & Granato, D. (2016). Jabuticaba ( Myrciaria cauliflora ) seeds : Chemical characterization and extraction of antioxidant and antimicrobial compounds. Journal of Food Science, 81, C2206–C2217. https://doi.org/10.1111/1750-3841.13405

    Article  CAS  Google Scholar 

  60. Wasswa, M., Tumuhimbise, G. A., & Acham, H. (2019). Chemical characterisation of pulp, seed powder and a ready- to-drink juice produced from Syzygium cumini fruit, Makerere Univ. Journal of Agriculture and Environmental Sciences, 8, 44–57.

    Google Scholar 

  61. Deng, J., Liu, Q., Zhang, Q., Zhang, C., Liu, D., Fan, D., & Yang, H. (2018). Comparative study on composition, physicochemical and antioxidant characteristics of different varieties of kiwifruit seed oil in China. Food Chemistry, 264, 411–418. https://doi.org/10.1016/j.foodchem.2018.05.063

    Article  CAS  PubMed  Google Scholar 

  62. Okolo, D. U. C. (2021). Comparative analysis on the phytochemical, proximate and mineral composition of the seeds and peels of lime. Journal of Chemical Society of Nigeria, 46, 6.

    Google Scholar 

  63. Punia, S., & Kumar, M. (2021). Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends in Food Science & Technology, 108, 58–70. https://doi.org/10.1016/j.tifs.2020.12.005

    Article  CAS  Google Scholar 

  64. Yang, E. Y., Han, Y. S., Sim K. H. (2021). Characterisation of nutritional, physiochemical, and mineral compositions of aril and seed of longan fruit (Dimocarpus longan L.)., International Food Research Journal, 28.

  65. Ramadan, M. F., Abdelrazek, A., & Mohdaly, A. (2016). Functional characteristics, nutritional value and industrial applications of Madhuca longifolia seeds : An overview. Journal of Food Science and Technology, 53, 2149–2157. https://doi.org/10.1007/s13197-015-2095-6

    Article  CAS  PubMed  Google Scholar 

  66. El-Sharnouby, S. (2003). Evaluation of some physical, chemical and nutritional characteristics of some Egyptian citrus seeds. Journal of Food and Dairy Sciences, 28, 6795–6806. https://doi.org/10.21608/jfds.2003.252948

    Article  Google Scholar 

  67. Joseph, K. S., Bolla, S., Joshi, K., Bhat, M., Naik, K., Patil, S., Bendre, S., Gangappa, B., Haibatti, V., Payamalle, S., Shinde, S., Dewir, Y. H., & Murthy, H. N. (2017). Ermittlung der chemischen Zusammensetzung und des Nährstoffgehaltes anhand der Fettsäurezusammensetzungen bei der afrikanischen Mangostane (Garcinia livingstonei). Erwerbs-Obstbau, 59, 195–202. https://doi.org/10.1007/s10341-016-0311-9

    Article  Google Scholar 

  68. Apostol, L., Iorga, C. S., Șoiu, C. M. O., Must, G., Ea, ĂȚ, & Cucu, Ș. (2017). Nutrient composition of partially defatted milk thistle seeds. Scientific Bulletin Series F Biotechnologies, XXI, 165–172.

    Google Scholar 

  69. Mehra, M., Pasricha, V., & Gupta, R. K. (2015). Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (Cucumis melo) and water melon (Citrullus lanatus) and nutritional analysis of their respective oils. Journal of Pharmacognosy and Phytochemistry, 3, 98–102.

    Google Scholar 

  70. Jahurul, M. H. A., Patricia, M., Shihabul, A., Norazlina, M. R., Ramlah George, M. R., Noorakmar, A. W., Lee, J. S., Jumardi, R., Jinap, S., & Zaidul, I. S. M. (2021). A review on functional and nutritional properties of noni fruit seed (Morinda citrifolia L.) and its oil. Food Bioscience, 41, 101000. https://doi.org/10.1016/j.fbio.2021.101000

    Article  CAS  Google Scholar 

  71. Maestri, D., Barrionuevo, D., Bodoira, R., Zafra, A., Jiménez-López, J., & de D Alché, J. (2019). Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. Journal of Food Science and Technology, 56, 4359–4370. https://doi.org/10.1007/s13197-019-03904-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Egbuonu, A., & Osuji, C. (2016). Proximate compositions and antibacterial activity of Citrus sinensis (Sweet Orange) peel and seed extracts. European Journal of Medicinal Plants, 12, 1–7. https://doi.org/10.9734/ejmp/2016/24122

    Article  Google Scholar 

  73. Aranha, C. P. M., & Jorge, N. (2013). Physico-chemical characterization of seed oils extracted from oranges (Citrus sinensis). Food Science and Technology Research, 19, 409–415. https://doi.org/10.3136/fstr.19.409

    Article  CAS  Google Scholar 

  74. Akpata, M. I., & Akubor, P. I. (1999). Chemical composition and selected functional properties of sweet orange (Citrus sinensis) seed flour. Plant Foods for Human Nutrition, 54, 353–362. https://doi.org/10.1023/A:1008153228280

    Article  CAS  PubMed  Google Scholar 

  75. Prasad, A. R. B., Arunkumar, A., Vignesh, S., Chidanand, D. V., & Baskaran, N. (2022). Exploring the nutritional profiling and health benefits of Palmyra. South African Journal of Botany, 151(Part), 228–237. https://doi.org/10.1016/j.sajb.2022.01.027

    Article  CAS  Google Scholar 

  76. Silva, R. M. (2015). Chemical characterization of passion fruit ( Passiflora edulis f. flavicarpa ) seeds. African Journal of Biotechnology, 14, 1230–1233. https://doi.org/10.5897/AJB2014.13945

    Article  Google Scholar 

  77. Aida, W. (2010). Determination of pitaya seeds as a natural antioxidant and source of essential fatty acids. International Food Research Journal, 17, 1003–1009.

    Google Scholar 

  78. Levent, H., Sayaslan, A., & Yeşil, S. (2021). Physicochemical and sensory quality of gluten-free cakes supplemented with grape seed, pomegranate seed, poppy seed, flaxseed, and turmeric. Journal of Food Processing and Preservation, 45, 1–10. https://doi.org/10.1111/jfpp.15148

    Article  CAS  Google Scholar 

  79. Deng, Y., Huang, L., Zhang, C., Xie, P., Cheng, J., Wang, X., & Li, S. (2019). Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chemistry, 283, 539–548. https://doi.org/10.1016/j.foodchem.2019.01.083

    Article  CAS  PubMed  Google Scholar 

  80. Kosmala, M., Zduńczyk, Z., Jus̈kiewicz, J., Jurgoński, A., Karlińska, E., Macierzyński, J., Jańczak, R., & Rój, E. (2015). Chemical composition of defatted strawberry and raspberry seeds and the effect of these dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats. Journal of Agricultural and Food Chemistry, 63, 2989–2996. https://doi.org/10.1021/acs.jafc.5b00648

    Article  CAS  PubMed  Google Scholar 

  81. Chivandi, E., Mukonowenzou, N., & Berliner, D. (2016). The coastal red-milkwood (Mimusops caffra) seed: Proximate, mineral, amino acid and fatty acid composition. South African Journal of Botany, 102, 137–141. https://doi.org/10.1016/j.sajb.2015.06.016

    Article  CAS  Google Scholar 

  82. Pallavi, J. K., Arcot, J., & Antony, U. (2017). Prebiotic efficiency of custard apple seeds. International Journal of Innovative Science and Research Technology, 2, 162–168.

    Google Scholar 

  83. Aguirre, M., Kiegle, E., Leo, G., & Ezquer, I. (2018). Carbohydrate reserves and seed development: An overview. Plant Reproduction, 31, 263–290. https://doi.org/10.1007/s00497-018-0336-3

    Article  CAS  PubMed  Google Scholar 

  84. Weber, H., Borisjuk, L., & Wobus, U. (2005). Molecular physiology of legume seed development. Annual Review of Plant Biology, 56, 253–279. https://doi.org/10.1146/annurev.arplant.56.032604.144201

    Article  CAS  PubMed  Google Scholar 

  85. Cimini, S., Locato, V., Vergauwen, R., Paradiso, A., Cecchini, C., Vandenpoel, L., Verspreet, J., Courtin, C. M., D’Egidio, M. G., Van den Ende, W., & De Gara, L. (2015). Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation. Frontiers in Plant Science, 6, 89. https://doi.org/10.3389/fpls.2015.00089

    Article  PubMed  PubMed Central  Google Scholar 

  86. Roy, S., Sarkar, T., & Chakraborty, R. (2022). Vegetable seeds: A new perspective in future food development. Journal of Food Processing and Preservation, n/a, e17118. https://doi.org/10.1111/jfpp.17118

    Article  CAS  Google Scholar 

  87. Rao, P. G. P. (2011). Nutritional quality , fatty acid , amino acid and functional characteristics of nutritional quality , fatty acids , amino acids and functional characteristics of bael ( Aegle marmelos L .) Seed Protein Concentrate, Journal of Food and Drug Analysis, 19.

  88. Jabeen, S., & Mohammed, Z. (2017). Bitter apple (Citrullus colocynthis)-A review of a wild plant growing from Asia to Africa with high medicinal potentials. International Journal of Chemical and Biochemical Science, 11, 65–70.

    Google Scholar 

  89. Bushman, B. S., Phillips, B., Isbell, T., Ou, B., Crane, J. M., & Knapp, S. J. (2004). Chemical composition of caneberry (Rubus spp.) seeds and oils and their antioxidant potential. Journal of Agricultural and Food Chemistry, 52, 7982–7987. https://doi.org/10.1021/jf049149a

    Article  CAS  PubMed  Google Scholar 

  90. Helbig, D., Böhm, V., Wagner, A., Schubert, R., & Jahreis, G. (2008). Berry seed press residues and their valuable ingredients with special regard to black currant seed press residues. Food Chemistry, 111, 1043–1049. https://doi.org/10.1016/j.foodchem.2008.05.017

    Article  CAS  Google Scholar 

  91. de Mello, M. L. S., Bora, P. S., & Narain, N. (2001). Fatty and amino acids composition of melon (Cucumis melo Var. saccharinus) Seeds. Journal of Food Composition and Analysis, 14, 69–74. https://doi.org/10.1006/jfca.2000.0952

    Article  CAS  Google Scholar 

  92. Alkhoori, M. A., Kong, A. S. Y., Aljaafari, M. N., Abushelaibi, A., Erin Lim, S. H., Cheng, W. H., Chong, C. M., & Lai, K. S. (2022). Biochemical composition and biological activities of date palm (Phoenix dactylifera L.) Seeds: A Review. Biomolecules, 12, 1–14. https://doi.org/10.3390/biom12111626

    Article  CAS  Google Scholar 

  93. Amid, B. T., Mirhosseini, H., & Kostadinović, S. (2012). Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: Extraction and purification process. Chemistry Central Journal, 6, 1–14. https://doi.org/10.1186/1752-153X-6-117

    Article  CAS  Google Scholar 

  94. Popova, V., Petkova, Z., Ivanova, T., Stoyanova, M., Panayotov, N., Mazova, N., Stoyanova, A. (2020). Determination of the chemical composition of seeds , peels , and seedcakes from two genotypes of Cape gooseberry ( Physalis peruviana L .), Turkish Journal of Agriculture and Forestry, 44.

  95. Muhammed, Y., Miah, M., Bhattacharjee, S., Sultana, A., Bhowmik, S., Sarker, A., Chandra, S., Islam, M., & Zaman, A. (2017). Evaluation of amino acid profile of jackfruit (Artocarpus heterophyllus) seed and its utilization for development of protein enriched supplementary food. Journal Noakhali Science and Technology University, 1, 77–84.

    Google Scholar 

  96. Park, Y. S., Dhungana, S. K., Kim, I. D., & Shin, D. H. (2020). Nutritional value and antioxidant potential of lemon seed and sprout, Korean. Journal of Food Science and Technology, 52, 627–631. https://doi.org/10.3839/10.9721/KJFST.2020.52.6.641

    Article  Google Scholar 

  97. Fathollahy, I., Farmani, J., Kasaai, M. R., & Hamishehkar, H. (2021). Characteristics and functional properties of Persian lime (Citrus latifolia) seed protein isolate and enzymatic hydrolysates. Lwt, 140, 110765. https://doi.org/10.1016/j.lwt.2020.110765

    Article  CAS  Google Scholar 

  98. Nuchprapha, A., Paisansak, S., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Choowongkomon, K., & Karnchanatat, A. (2020). Two novel ACE inhibitory peptides isolated from longan seeds: Purification, inhibitory kinetics and mechanisms. RSC Advances, 10, 12711–12720. https://doi.org/10.1039/d0ra00093k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ajayi, B. I. A., Ifedi, E., Aghanu, V. N. (2013). Amino acid analysis and preliminary toxicological evaluationof Garcinia Mangostana seed cake in albino rats, Global Journal of Science Frontier Research Chemistry, 13.

  100. Bini Etsuyankpa, M. (2017). Chemical analysis of noni (Morinda citrofolia) Seeds and the characterization of the seeds oil. American Journal of Applied Chemistry, 5, 57. https://doi.org/10.11648/j.ajac.20170504.11

    Article  CAS  Google Scholar 

  101. Arunachalam, K., Saravanan, S., & Parimelazhagan, T. (2011). Nutritional analysis and antioxidant activity of palmyrah (Borassus flabellifer L.) seed embryo for potential use as food source. Food Science and Biotechnology, 20, 143–149. https://doi.org/10.1007/s10068-011-0020-y

    Article  CAS  Google Scholar 

  102. Liu, S., Yang, F., Li, J., Zhang, C., Ji, H., & Hong, P. (2008). Physical and chemical analysis of Passiflora seeds and seed oil from China. International Journal of Food Sciences and Nutrition, 59, 706–715. https://doi.org/10.1080/09637480801931128

    Article  CAS  PubMed  Google Scholar 

  103. Deng, Y., Huang, L., Zhang, C., Xie, P., Cheng, J., Wang, X., & Li, S. (2019). Physicochemical and functional properties of Chinese quince seed protein isolate. Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2019.01.083

    Article  Google Scholar 

  104. Augustin, M., Chua, B. (1988). Composition of rambutan seeds, Pertanika. 11: 211–215. http://psasir.upm.edu.my/2559/

  105. Okonwu, K. (2019). Potentials of underexploited seed of Trichosanthes cucumerina Linn, Journal of Applied Sciences and Environmental Management.

  106. Kumari, N., Prakash, S., Kumar, M., Radha, Zhang, B., Sheri, V., Rais, N., Chandran, D., Dey, A., Sarkar, T., Dhumal, S., Kumar, S., Mahato, D. K., Vishvanathan, M., Mohankumar, P., Pateiro, M., Lorenzo, J. M. (2022). Seed waste from custard apple (Annona squamosa L.): A comprehensive insight on bioactive compounds, health promoting activity and safety profile, Processes. 10. https://doi.org/10.3390/pr10102119

  107. Issn, P., & Issn, E. (2019). Proximate, Mineral contents and physicochemical properties of Chrysophyllum albidum ( African Star Apple ) kernel flour and oil. Journal of Applied Sciences and Environmental Management, 23, 1245–1249.

    Google Scholar 

  108. Adubiaro, H. O., Olaleye, A. A. (2016). Proximate , minerals and fatty acids composition of African star apple seed ( Chrysophyllum albidum ), 4–5.

  109. Pa, V. K. (1998). Black currant seeds as a nutrient source in breakfast cereals produced by extrusion cooking, Zeitschrift für Lebensmitteluntersuchung und-Forschung A, 360–363.

  110. Krstić, Đ, Vukojević, V., Mutić, J., Fotirić Akšić, M., Ličina, V., Milojković-Opsenica, D., & Trifković, J. (2019). Distribution of elements in seeds of some wild and cultivated fruits. Nutrition and authenticity aspects. Journal of the Science of Food and Agriculture, 99, 546–554. https://doi.org/10.1002/jsfa.9213

    Article  CAS  PubMed  Google Scholar 

  111. Saveliev, V. V., Levashova, O. L. (2017) Comparative analysis of the mineral composition of amaranth and aronia seed oils, Scientific Development and Achievements Materials of International Scientific And Practicial Conference, 90–93.

  112. Bouhlali, T., Alem, C., Ennassir, J., Benlyas, M., Nait, A., & Filali, Y. (2017). Phytochemical compositions and antioxidant capacity of three date ( Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. Journal of the Saudi Society of Agricultural Sciences, 16, 350–357. https://doi.org/10.1016/j.jssas.2015.11.002

    Article  Google Scholar 

  113. Wijayahena, M. K., Jayaweera, C. D. (2020). Determination of some metals in the processed durian seed powder containing chocolate aroma, In: 1st International Conference on Frontiers in Chemical Technology, Colombo, Sri Lanka, p. 2020.

  114. Chaar, J. M. (1990). Extraction of caffeine from seed of guaraná fruit. University of Tennessee.

    Google Scholar 

  115. Gupta, D., Mann, S., Sood, A., & Gupta, R. K. (2011). Phytochemical, nutritional and antioxidant activity evaluation of seeds of jackfruit (Artocarpous heterolphyllus Lam.). International Journal of Pharma and Bio Sciences, 2, 336–345.

    CAS  Google Scholar 

  116. Kumar, M., Zhang, B., Nishad, J., Verma, A., Sheri, V., Dhumal, S., Radha, Sharma, N., Chandran, D., Senapathy, M., Dey, A., Rajalingam, S., Muthukumar, M., Mohankumar, P., Amarowicz R., Pateiro, M., Lorenzo, J. M. (2022). Jamun (Syzygium cumini (L.) Skeels) seed: A review on nutritional profile, functional food properties, health-promoting applications, and safety aspects, Processes, 10. https://doi.org/10.3390/pr10112169

  117. Health, H., Ramaiya, S. D., Bujang, J. S., Zakaria, M. H. (2018). Nutritive values of passion fruit ( Passiflora Species ) seeds and its role in human health, Journal of Agriculture Food and Development, 4. https://doi.org/10.30635/2415-0142.2018.04.4

  118. Özcan, M. M., & Al Juhaimi, F. Y. (2011). Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Turkey. International Journal of Food Sciences and Nutrition, 62, 533–536. https://doi.org/10.3109/09637486.2011.552569

    Article  CAS  PubMed  Google Scholar 

  119. Nizamlıoğlu, N. M., Ünver, A., & Kadakal, Ç. (2021). Mineral content of pitaya (Hylocereus polyrhizus and Hylocereus undatus) Seeds Grown in Turkey. Erwerbs-Obstbau, 63, 209–213. https://doi.org/10.1007/s10341-021-00561-x

    Article  CAS  Google Scholar 

  120. Krzepiłko, A., & Prażak, R. (2023). Quince seeds as a potential source of mineral and biological active compounds*. Journal of Elementology, 28, 107–122. https://doi.org/10.5601/jelem.2022.27.3.2317

    Article  Google Scholar 

  121. Yusuf, A. A., Folarin, O. M., & Bamiro, F. O. (2007). Chemical composition and functional properties of snake gourd (Trichosanthes cucumerina) seed flour. Nigerian Food Journal, 25, 36–45.

    Article  CAS  Google Scholar 

  122. Gami, B., & Parabia, M. H. (2010). Pharmacognostic evaluation of bark and seeds of Mimusops elengi L. International Journal of Pharmacy and Pharmaceutical Sciences, 2, 110–113.

    Google Scholar 

  123. Grzelak-Błaszczyk, K., Karlińska, E., Grzęda, K., Rój, E., & Kołodziejczyk, K. (2017). Defatted strawberry seeds as a source of phenolics, dietary fiber and minerals. Lwt, 84, 18–22. https://doi.org/10.1016/j.lwt.2017.05.014

    Article  CAS  Google Scholar 

  124. Badenhop-Stevens, N., & Matkovic, V. (2004). Calcium needs in children. Orthopaedic Nursing, 23, 228–232.

    Article  PubMed  Google Scholar 

  125. Miller, G. D., Jarvis, J. K., & McBean, L. D. (2001). The importance of meeting calcium needs with foods. Journal of the American College of Nutrition, 20, 168S-185S.

    Article  CAS  PubMed  Google Scholar 

  126. Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 19, 164–174.

    PubMed  Google Scholar 

  127. Stoltzfus, R. J. (2003). Iron deficiency: Global prevalence and consequences. Food and Nutrition Bulletin, 24, S99–S103.

    Article  PubMed  Google Scholar 

  128. Schwalfenberg, G. K., & Genuis, S. J. (2017). The importance of magnesium in clinical healthcare. Scientifica (Cairo), 2017, 4179326. https://doi.org/10.1155/2017/4179326

    Article  CAS  PubMed  Google Scholar 

  129. Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. BioScience, 61, 117–124. https://doi.org/10.1525/bio.2011.61.2.6

    Article  Google Scholar 

  130. Nielsen, F., (2012). Calcium, magnesium, and potassium in food, Fertilizing Crops to Improve Human Health: A Scientific Review, 123.

  131. Gidigbi, J. A., Ngoshe, A. M., & Martins, A. (2019). Industrial viability study of the avocado seed oil. International Journal of Recent Innovations in Academic Research, 3, 48–57.

    Google Scholar 

  132. Bajaniya, V. K., Kandoliya, U. K., Bodar, N. H., Bhadja, N. V., & Golakiya, B. A. (2015). Fatty acid profile and phytochemical characterization of bael seed (Aegle marmelos L.) Oil. International Journal of Current Microbiology and Applied Sciences, 4, 97–102.

    CAS  Google Scholar 

  133. Sicari, V., Messina, F., & Pellicanò, T. M. (2017). Comparison of physicochemical characteristics and composition of bergamot oil seed extracted from three different cultivars. Emirates Journal of Food and Agriculture, 29, 470–475. https://doi.org/10.9755/ejfa.2017-01-240

    Article  Google Scholar 

  134. Ostoji, S. B., Simonovi, M. B., Pezo, L. L., & Mici, D. M. (2015). Thermochimica acta thermal behavior of raspberry and blackberry seed flours and oils. Thermochimica Acta, 617, 21–27. https://doi.org/10.1016/j.tca.2015.08.017

    Article  CAS  Google Scholar 

  135. Ying, Q., Wojciechowska, P., Siger, A., Kaczmarek, A., & Rudzińska, M. (2018). Phytochemical content, oxidative stability, and nutritional properties of unconventional cold-pressed edible oils. Journal of Food and Nutrition Research, 6, 476–485. https://doi.org/10.12691/jfnr-6-7-9

    Article  CAS  Google Scholar 

  136. Parry, J., Su, L., Luther, M., Zhou, K., Peter Yurawecz, M., Whittaker, P., & Yu, L. (2005). Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. Journal of Agricultural and Food Chemistry, 53, 566–573. https://doi.org/10.1021/jf048615t

    Article  CAS  PubMed  Google Scholar 

  137. Damola Yangomodou, O., Ferry, N., Olajumoke Uthman-Akinhanmi, Y., Solana, O. I., & Olugbemi, M. T. (2023). Nutritional composition, antibacterial and antifungal activities of canary melon seed (Cucumismelo) oil. FUW Trends In Science & Technology Journal, 6, 391.

    Google Scholar 

  138. Tacias-Pascacio, V. G., Rosales-Quintero, A., Rodrigues, R. C., Castañeda-Valbuena, D., Díaz-Suarez, P. F., Torrestiana-Sánchez, B., Jiménez-Gómez, E. F., & Fernandez-Lafuente, R. (2021). Aqueous extraction of seed oil from mamey sapote (Pouteria sapota) after viscozyme l treatment. Catalysts, 11, 1–15. https://doi.org/10.3390/catal11060748

    Article  CAS  Google Scholar 

  139. Ange, A., Ysidor, K., Adama, C., Olivier, C., & Henri, B. (2016). Physico-chemical and nutritive properties of seeds and oil deriving from the sweet pea (Cyperus esculentus L.) marketed in Côte d’Ivoire. International Journal of Biochemistry Research & Review, 13, 1–9. https://doi.org/10.9734/ijbcrr/2016/28217

    Article  CAS  Google Scholar 

  140. Eni, S. R. S. (2001). Kandungan Asam Lemak dalam Biji Durian (Durio zibethinus, Murr). Majalah Farmasi Indonesia, 12, 65–71.

    Google Scholar 

  141. Kamel, B. S., Dawson, H., & Kakuda, Y. (1985). Characteristics and composition of melon and grape seed oils and cakes. Journal of the American Oil Chemists Society, 62, 881–883. https://doi.org/10.1007/BF02541750

    Article  CAS  Google Scholar 

  142. Raihana, A. R. N., Marikkar, J. M. N., Amin, I., & Shuhaimi, M. (2015). A review on food values of selected tropical fruits seeds. International Journal of Food Properties, 18, 2380–2392. https://doi.org/10.1080/10942912.2014.980946

    Article  CAS  Google Scholar 

  143. Orhevba, B. A., & Precious, O. (2020). Influence of extraction temperature and moisture content on the yield and physicochemical properties of hog plum (Spondias mombin) kernel oil. Agricultural Engineering International: CIGR Journal, 22, 151–156.

    Google Scholar 

  144. Savic, I., Gajic, I. S., Gajic, D. (2020). Physico-chemical properties and oxidative stability of fixed oil from plum seeds (Prunus domestica linn.), Biomolecules, 10. https://doi.org/10.3390/biom10020294

  145. Ganesh Babu, N., Kumar, S., & Sundar, S. (2017). Extraction and comparison of properties of jackfruit seed oil and sunflower seed oil. International Journal of Scientific Engineering and Research, 8, 635–639.

    Google Scholar 

  146. Daulatabad, C. M. J. D., Mirajkar, A. M., Hosamani, K. M., & Mulla, G. M. M. (1988). Epoxy and cyclopropenoid fatty acids in Syzygium cuminii seed oil. Journal of the Science of Food and Agriculture, 43, 91–94. https://doi.org/10.1002/jsfa.2740430111

    Article  CAS  Google Scholar 

  147. Ajewole, K., & Adeyeye, A. (1993). Characterisation of Nigerian citrus seed oils. Food Chemistry, 47, 77–78. https://doi.org/10.1016/0308-8146(93)90306-Z

    Article  CAS  Google Scholar 

  148. Nayak, S., Sahoo, U. (2021). Changes in Madhuca latifolia Macbride seed oil content and quality upon storage at different duration and condition, Vegetos, 34. https://doi.org/10.1007/s42535-021-00215-z

  149. Özcan, M. M., İnan, Ö. (2022). Physico-chemical properties, fatty acid composition and tocopherol contents of Mandarin, Orange and Lemon Seed Oils, Erwerbs-Obstbau, 1–9.

  150. Bini Etsuyankpa, M. (2017). Chemical analysis of Noni (Morinda citrofolia) seeds and the characterization of the seeds oil. American Journal of Applied Chemistry, 5, 57. https://doi.org/10.11648/j.ajac.20170504.11

    Article  CAS  Google Scholar 

  151. Olabanji, I. O., Ajayi, S. O., Akinkunmi, E. O., Kilanko, O., & Adefemi, G. O. (2016). Physicochemical and in vitro antimicrobial activity of the oils and soap of the seed and peel of Citrus sinensis, African. Journal of Microbiology Research, 10, 245–253. https://doi.org/10.5897/ajmr2015.7797

    Article  CAS  Google Scholar 

  152. Sodeifian, G., & Sajadian, S. A. (2021). Antioxidant capacity, physicochemical properties, thermal behavior, and oxidative stability of nectarine (Prunus persica var. nucipersica) kernel oil. Journal of Food Processing and Preservation, 45, 1–11. https://doi.org/10.1111/jfpp.15198

    Article  CAS  Google Scholar 

  153. Al-Naqeb, G., Fiori, L., Ciolli, M., Aprea, E. (2021). Prickly pear seed oil extraction, chemical characterization and potential health benefits, Molecules, 26. https://doi.org/10.3390/molecules26165018

  154. Jidimma Augustine, W., Bitrusyelmi, S., Maryann, O., Habila, A., & Moses, M. (2021). Extraction and physicochemical analysis of Punica granatum l. (Pomegranate) Seed Oil. International Journal of Business Innovation and Research, 5, 2454–6194.

    Google Scholar 

  155. Górnaś, P., Siger, A., & Segliņa, D. (2013). Physicochemical characteristics of the cold-pressed Japanese quince seed oil: New promising unconventional bio-oil from by-products for the pharmaceutical and cosmetic industry. Industrial Crops and Products, 48, 178–182. https://doi.org/10.1016/j.indcrop.2013.04.018

    Article  CAS  Google Scholar 

  156. Kumar, C. V., Reddy, P. K., Gopal, N. R., & Ramesh, K. V. (2020). Estimation of Properties of custard apple seed oil and gasohol. International Journal of Engineering Research & Technology, 8, 36–39.

    Google Scholar 

  157. El-adawy, T. A., & Taha, K. M. (2001). Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. Journal of Agriculture and Food Chemistry, 49, 1253–1259.

    Article  CAS  Google Scholar 

  158. Matthä, B. (2015). Oil Content, Fatty acid composition and distributions of vitamin-E-active compounds of some fruit seed oils, Antioxidants, 124–133. https://doi.org/10.3390/antiox4010124

  159. Dubois, V., Breton, S., Linder, M., Fanni, J., & Parmentier, M. (2007). Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology, 109, 710–732. https://doi.org/10.1002/ejlt.200700040

    Article  CAS  Google Scholar 

  160. Maria, G. A., & Riccardo, N. (2020). Citrus bergamia, Risso: The peel, the juice and the seed oil of the bergamot fruit of Reggio Calabria (South Italy). Emirates Journal of Food and Agriculture, 32, 522–532. https://doi.org/10.9755/ejfa.2020.v32.i7.2128

    Article  Google Scholar 

  161. Yang, B., Ahotupa, M., Määttä, P., & Kallio, H. (2011). Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries. Food Research International, 44, 2009–2017. https://doi.org/10.1016/j.foodres.2011.02.025

    Article  CAS  Google Scholar 

  162. Gustinelli, A. G., Eliasson, L., Alminger, M., & Ahrn, L. (2018). Supercritical CO2 extraction of bilberry (Vaccinium myrtillus L.) seed oil: fatty acid composition and antioxidant activity. The Journal of Supercritical Fluids. https://doi.org/10.1016/j.supflu.2018.01.002

    Article  Google Scholar 

  163. Junior, T. K., de Moura, C., Do Carmo, M. A. V., Azevedo, L., Esmerino, L. A., Tardivo, R. C., Kilpeläinen, P., & Granato, D. (2021). Chemical composition, antioxidant, antimicrobial and cytotoxic/cytoprotective activity of non-polar extracts of grape (Vitis labrusca cv. bordeaux) and blackberry (rubus fruticosus) seeds. Molecules, 26, 1–13. https://doi.org/10.3390/molecules26134057

    Article  CAS  Google Scholar 

  164. Piasecka, I., Górska, A., Ostrowska-Ligęza, E., Kalisz, S. (2021). The study of thermal properties of blackberry, chokeberry and raspberry seeds and oils, Applied Sciences, 11. https://doi.org/10.3390/app11167704

  165. Spectrometry, Q. T. M. (2021). Triacylglycerol and fatty acid compositions of blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils by ultra-performance convergence chromatography- quadrupole time-of-flight mass spectrometry, Foods.

  166. Fazio, A., Plastina, P., Meijerink, J., Witkamp, R. F., & Gabriele, B. (2013). Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy : Fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chemistry, 140, 817–824. https://doi.org/10.1016/j.foodchem.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  167. Bakowska-Barczak, A. M., Schieber, A., & Kolodziejczyk, P. (2009). Characterization of Canadian black currant ( Ribes nigrum L. ) seed oils and residues. Journal of Agricultural and Food Chemistry, 57, 11528–11536. https://doi.org/10.1021/jf902161k

    Article  CAS  PubMed  Google Scholar 

  168. Piskernik, S., Vidrih, R., Demšar, L., Koron, D., Rogelj, M., & Žontar, T. P. (2018). Fatty acid profiles of seeds from different Ribes species. Lwt, 98, 424–427. https://doi.org/10.1016/j.lwt.2018.09.011

    Article  CAS  Google Scholar 

  169. Van Hoed, V., De Clercq, N., Echim, C., Andjelkovic, M., Leber, E., Dewettinck, K., & VerhÉ, R. (2009). Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. Journal of Food Lipids, 16, 33–49. https://doi.org/10.1111/j.1745-4522.2009.01130.x

    Article  Google Scholar 

  170. Filho, D., de Melo Fiho, A. A., Magalhães Neto, A. T., Santos, R. C., Chagas, E. A., Chagas, P. C., Montero, I. F., & P de Sousa, R. D. C. (2018). Chemical composition, minerals, physicochemical properties and antioxidant activity in camu camu seed oil. Chemical Engineering Transactions, 64, 325–330. https://doi.org/10.3303/CET1864055

    Article  Google Scholar 

  171. Bouazzaoui, N., & Mulengi, J. K. (2018). Fatty acids and mineral composition of melon ( Cucumis Melo ) and pumpkin ( Cucurbita moschata ) seeds. Journal of Herbs, Spices & Medicinal Plants, 24, 315–322. https://doi.org/10.1080/10496475.2018.1485125

    Article  Google Scholar 

  172. Siano, F., Da Silva, C., & La Cara, F. (2012). Extraction and characterization of vegetable oils from cherry seed by different extraction processes extraction and characterization of vegetable oils from cherry seed by different extraction processes. Chemical Engineering Transactions. https://doi.org/10.3303/CET1227066

    Article  Google Scholar 

  173. Kumar, R. S., Sivakumar, S., Joshuva, A., Deenadayalan, G., & Vishnuvardhan, R. (2019). Data set on optimization of ethyl ester production from sapota seed oil. Data in Brief, 25, 104388. https://doi.org/10.1016/j.dib.2019.104388

    Article  PubMed  PubMed Central  Google Scholar 

  174. Yilmaz, N., Beyhan, Ö., Gerçekçioǧlu, R., & Kalayci, Z. (2011). Determination of fatty acid composition in seed oils of some important berry species and genotypes grown in Tokat province of Turkey, African. Journal of Biotechnology, 10, 8070–8073. https://doi.org/10.5897/ajb11.951

    Article  CAS  Google Scholar 

  175. Rosa, A., Era, B., Masala, C., Nieddu, M., Scano, P., Fais, A., Porcedda, S., Piras, A. (2019). Supercritical CO 2 extraction of waste citrus seeds : Chemical composition , nutritional and biological properties of edible fixed oils, 1800502: 15–18. https://doi.org/10.1002/ejlt.201800502

  176. Avato, P., Pesante, M. A., Fanizzi, F. P., & de Moraes Santos, C. A. (2003). Seed oil composition of Paullinia cupana var. sorbilis (Mart.) Ducke. Lipids, 38, 773–780. https://doi.org/10.1007/s11745-003-1126-5

    Article  CAS  PubMed  Google Scholar 

  177. Kapoor, S., Gandhi, N., Kaur, G., Khatkar, S. K., Bala, M., Nikhanj, P., Mahajan, B. V. C., & Sharma, D. (2023). Electrospray application of guava seed oil for shelf life extension of guava fruit. International Journal of Food Science & Technology, 58, 2669–2678.

    Article  CAS  Google Scholar 

  178. Redemtor, A. O., Steven, M. R., Mwanza, B., & Dorington, O. O. (2015). Lipid profile and levels of omega-3 polyunsaturated fatty acids present in jackfruit (Artocarpus heterophyllus) Lam. (Moraceae) seeds and variation in different treatments. African Journal of Biotechnology, 14, 1409–1417. https://doi.org/10.5897/ajb2014.14345

    Article  Google Scholar 

  179. Piombo, G., Barouh, N., Barea, B., Boulanger, R., Brat, P., Pina, M., & Villeneuve, P. (2006). Characterization of the seed oils from kiwi (Actinidia chinensis), passion fruit (Passiflora edulis) and guava (Psidium guajava). Oleagineux, Corps Gras, Lipides, 13, 195–199. https://doi.org/10.1684/ocl.2006.0026

    Article  CAS  Google Scholar 

  180. Górnaś, P., Rudzińska, M., Raczyk, M., Mišina, I., Soliven, A., & Seglina, D. (2016). Chemical composition of seed oils recovered from different pear (Pyrus communis L.) cultivars. JAOCS, Journal of the American Oil Chemists’ Society, 93, 267–274. https://doi.org/10.1007/s11746-015-2768-3

    Article  CAS  Google Scholar 

  181. Boyapati, T., Rana, S. S., & Ghosh, P. (2023). Microwave-assisted extraction of dragon fruit seed oil: Fatty acid profile and functional properties. Journal of the Saudi Society of Agricultural Sciences, 22, 149–157.

    Article  Google Scholar 

  182. Amri, Z., Lazreg-Aref, H., Mekni, M., El-Gharbi, S., Dabbaghi, O., Mechri, B., Hammami, M. (2017). Oil characterization and lipids class composition of pomegranate seeds, Biomed Research International, 2017. https://doi.org/10.1155/2017/2037341

  183. Li, X., Qi, B., Zhang, S., Li, Y. (2023). Foodomics revealed the effects of ultrasonic extraction on the composition and nutrition of Cactus fruit (Opuntia ficus-indica) seed oil, Ultrasonics Sonochemistry, 106459.

  184. Górnaś, P., Siger, A., Juhņeviča, K., Lacis, G., Šne, E., & Segliņa, D. (2014). Cold-pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of α-tocopherol, carotenoids and phenolics: A comparison of the composition and antioxidant activity with nine other plant oils. European Journal of Lipid Science and Technology, 116, 563–570. https://doi.org/10.1002/ejlt.201300425

    Article  CAS  Google Scholar 

  185. Gami, B., Pathak, S., & Parabia, M. (2012). Ethnobotanical, phytochemical and pharmacological review of Mimusops elengi Linn. Asian Pacific Journal of Tropical Biomedicine, 2, 743–748. https://doi.org/10.1016/S2221-1691(12)60221-4

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hotti, S. R., & Hebbal, O. D. (2015). Biodiesel production process optimization from sugar apple seed oil ( Annona squamosa ) and its characterization. Journal of Renewable Energy, 2015, 1–6. https://doi.org/10.1155/2015/148587

    Article  Google Scholar 

  187. Shaban, S. A. (2012). Biodiesel production from waste cooking oil. Egyptian Journal of Chemistry, 55, 437–452. https://doi.org/10.18510/ijsrtm.2015.383

    Article  Google Scholar 

  188. Lutpi, N., Leong, S., Ho, C., Wong, Y., & Kairulazam, C. (2014). Characterization of Garcinia Mangostana Linn. Seeds as potential feedstocks for biodiesel production. International Journal of Engineering and Technology, 6, 146–150. https://doi.org/10.7763/IJET.2014.V6.684

    Article  CAS  Google Scholar 

  189. Milovanović, M., & Pićurić-Jovanović, K. (2005). Characteristics and composition of melon seed oil. Journal of Agricultural Science, 50, 41–47.

    Google Scholar 

  190. Lakshminarayana, G., Chandrasekhara Rao, T., & Ramalingaswamy, P. A. (1983). Varietal variations in content, characteristics and composition of mango seeds and fat. Journal of the American Oil Chemists’ Society, 60, 88–89. https://doi.org/10.1007/BF02540898

    Article  CAS  Google Scholar 

  191. Lourith, N., Kanlayavattanakul, M., Mongkonpaibool, K., Butsaratrakool, T., & Chinmuang, T. (2016). Rambutan seed as a new promising unconventional source of specialty fat for cosmetics. Industrial Crops and Products, 83, 149–154. https://doi.org/10.1016/j.indcrop.2015.12.045

    Article  CAS  Google Scholar 

  192. Jadhav, H. B., Raina, I., Gogate, P. R., Annapure, U. S., Casanova, F. (2023). Sonication as a promising technology for the extraction of triacylglycerols from fruit seeds—a review, Food and Bioprocess Technology, 1–27.

  193. Freitas Filho, J. R., de Holanda, L. E. G., & Ramos, C. S. (2023). Fatty acid profiles and antimicrobial activity from tropical fruit seeds. Journal of the Mexican Chemical Society, 67, 163–171.

    Article  Google Scholar 

  194. Choulis, N. H. (2011). Chapter 49 - Miscellaneous drugs, materials, medical devices, and techniques, in: J.K.B.T.-S.E. of D.A. Aronson (Ed.), A Worldw. Yrly. Surv. New Data Advers. Drug React., Elsevier, pp. 1009–1029. https://doi.org/10.1016/B978-0-444-53741-6.00049-0

  195. Mori, T. A., Hodgson, J. M. (2013). Fatty acids: Health effects of omega-6 polyunsaturated fatty acids, in: B.B.T.-E. of H.N. (Third E. Caballero (Ed.), Academic Press, Waltham, pp. 209–214. https://doi.org/10.1016/B978-0-12-375083-9.00100-8

  196. Barnes, J. L., Tappenden, K. A. (2017). Chapter 39 - Nutritional management of inflammatory bowel disease and short bowel syndrome, in: A.M. Coulston, C.J. Boushey, M.G. Ferruzzi, L.M.B.T.-N. in the P. and T. of D. (Fourth E. Delahanty (Eds.), Academic Press, pp. 857–874. https://doi.org/10.1016/B978-0-12-802928-2.00039-4

  197. Pott, D. M., Osorio, S., & Vallarino, J. G. (2019). From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring Nutritional and organoleptic characteristics to Fruit. Frontiers in Plant Science, 10, 835. https://doi.org/10.3389/fpls.2019.00835

    Article  PubMed  PubMed Central  Google Scholar 

  198. Karasawa, M. M. G., & Mohan, C. (2018). Fruits as prospective reserves of bioactive compounds: A review. Natural Products and Bioprospecting, 8, 335–346. https://doi.org/10.1007/s13659-018-0186-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Fromm, M., Bayha, S., Carle, R., & Kammerer, D. R. (2012). Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds. Journal of Agriculture and Food Chemistry, 60, 1232–1242. https://doi.org/10.1021/jf204623d

    Article  CAS  Google Scholar 

  200. Ajayi, O. B., Oyetayo, F. L., & Akomolafe, S. F. (2020). Starch composition, glycemic indices, antioxidant properties and carbohydrate hydrolyzing enzymes activities of African star apple fruit parts. BMC Complementary Medicine and Therapies, 9, 1–10.

    CAS  Google Scholar 

  201. Siddiqui, S. A., Anwar, S., Yunusa, B. M., Nayik, G. A., & Mousavi Khaneghah, A. (2023). The potential of apricot seed and oil as functional food: Composition, biological properties, health benefits & safety. Food Bioscience, 51, 102336. https://doi.org/10.1016/j.fbio.2022.102336

    Article  CAS  Google Scholar 

  202. Wajs-Bonikowska, A. (2017). A comparative study on composition and antioxidant activities of supercritical carbon dioxide, hexane and ethanol extracts from blackberry (Rubus fruticosus) growing in Poland. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.8216

    Article  PubMed  Google Scholar 

  203. Lu, Y., Foo, L. Y., & Wong, H. (2002). Nigrumin-5- p -coumarate and nigrumin-5-ferulate, two unusual nitrile-containing metabolites from black currant ( Ribes nigrum ) seed. Phytochemistry, 59, 465–468.

    Article  CAS  PubMed  Google Scholar 

  204. Flores, G., & Luisa, M. (2016). Enhancement of nutritionally significant constituents of black currant seeds by chemical elicitor application. Food Chemistry, 194, 1260–1265. https://doi.org/10.1016/j.foodchem.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  205. Fidelis, M., Santos, J. S., Escher, G. B., Vieira do Carmo, M., Azevedo, L., Cristina da Silva, M., Putnik, P., & Granato, D. (2018). In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: A multivariate structure-activity study. Food and Chemical Toxicology, 120, 479–490. https://doi.org/10.1016/j.fct.2018.07.043

    Article  CAS  PubMed  Google Scholar 

  206. Albuquerque, B. R., Pereira, C., Corr, C. G., Lopes, C. B., Calhelha, R. C., Jos, M., Barros, L., Ferreira, I. C. F. R. (2020) By-products of Camu-Camu [Myrciaria dubia (Kunth) McVaugh ] as promising sources of bioactive high added-value food ingredients : Functionalization of yogurts, Molecules, 1–17.

  207. Kaneshima, T., Myoda, T., Nakata, M., Fujimori, T., Toeda, K., & Nishizawa, M. (2016). Antioxidant activity of C-Glycosidic ellagitannins from the seeds and peel of camu-camu (Myrciaria dubia). LWT - Food Science and Technology, 69, 76–81. https://doi.org/10.1016/j.lwt.2016.01.024

    Article  CAS  Google Scholar 

  208. Shanmugapriya, K., Saravana, P. S., Payal, H., Mohammed, S. P., Binnie, W. (2011). Heterophyllus and Manilkara Zapota Seeds and Its Reduction Potential, 3: 1–5.

  209. Mohanapriya, C., Uma, S., Modilal, R. D., & Nithyalakshmi, V. (2014). Phytochemical screening and in vitro antioxidant studies on acetone extract of Manilkara Zapota L Seeds. International Journal of Pharmaceutical Sciences and Research IJPSR., 5, 2354–61. https://doi.org/10.13040/IJPSR.0975-8232.5(6).2354-61

    Article  Google Scholar 

  210. Gualberto, T. A. C. A. C. (2020). Evaluation of bioactive compounds from Sapodilla (Manilkara zapota) peel and seeds obtained by ultrasound-assisted technique. Research, Society and Development, 4, 1–9.

    Google Scholar 

  211. Bijak, M., Bobrowski, M., Borowiecka, M., Podsȩdek, A., Golański, J., & Nowak, P. (2011). Anticoagulant effect of polyphenols-rich extracts from black chokeberry and grape seeds. Fitoterapia, 82, 811–817. https://doi.org/10.1016/j.fitote.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  212. Imam, T. S., Aliyu, F. G., & Umar, H. F. (2014). Preliminary Phytochemical screening, elemental and proximate composition of two varieties of Cyperus esculentus (Tiger Nut). Nigerian Journal of Basic and Applied Sciences, 21, 247. https://doi.org/10.4314/njbas.v21i4.1

    Article  Google Scholar 

  213. Kemboi, J. (2015). Utilization of cranberry seed meal in the development of a diabetic snack product, American Psychological Association, 1–81.

  214. Echegaray, N., Gullón, B., Pateiro, M., Amarowicz, R., Misihairabgwi, J. M., & Lorenzo, J. M. (2023). Date fruit and its by-products as promising source of bioactive components: A review. Food Review International, 39, 1411–1432.

    Article  CAS  Google Scholar 

  215. Srianta, I., Nugerahani, I., Kusumawati, N., Suryatanijaya, E., Subianto, C., Tewfik, S., & Tewfik, I. (2014). Therapeutic antioxidant activity of monascus-fermented durian seed: A potential functional food ingredient. International Journal of Food, Nutrition and Public Health, 7, 53–59. https://doi.org/10.47556/j.ijfnph.7.1.2014.5

    Article  Google Scholar 

  216. Sriwatcharakul, S. (2020). Evaluation of bioactivities of Phyllanthus emblica seed. Energy Reports, 6, 442–447. https://doi.org/10.1016/j.egyr.2019.08.088

    Article  Google Scholar 

  217. Memon, N. M., & Ali, Ayaz. (2012). Phenolic compounds and seed oil composition of Ziziphus mauritiana L. fruit. Polish Journal of Food and Nutrition Sciences, 62, 15–21. https://doi.org/10.2478/v10222-011-0035-3

    Article  CAS  Google Scholar 

  218. Moh, A., San, M., Thongpraditchote, S., Sithisarn, P., Gritsanapan, W. (2013). Total phenolics and total flavonoids contents and hypnotic effect in mice of Ziziphus mauritiana Lam . Seed Extract, Evidence-Based Complementary and Alternative Medicine, 2013.

  219. Gajera, H. P., Gevariya, S. N., Hirpara, D. G., Patel, S. V., & Golakiya, B. A. (2017). Antidiabetic and antioxidant functionality associated with phenolic constituents from fruit parts of indigenous black jamun (Syzygium cumini L.) landraces. Journal of Food Science and Technology, 54, 3180–3191. https://doi.org/10.1007/s13197-017-2756-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Yilmaz, E., & Güneşer, B. A. (2017). Cold pressed versus solvent extracted lemon (Citrus limon L.) seed oils: yield and properties. Journal of Food Science and Technology, 54, 1891–1900. https://doi.org/10.1007/s13197-017-2622-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zheng, G., Xu, L., Wu, P., Xie, H., Jiang, Y., Chen, F., & Wei, X. (2009). Polyphenols from longan seeds and their radical-scavenging activity. Food Chemistry, 116, 433–436. https://doi.org/10.1016/j.foodchem.2009.02.059

    Article  CAS  Google Scholar 

  222. Moulehi, I., Bourgou, S., Ourghemmi, I., & Tounsi, M. S. (2012). Variety and ripening impact on phenolic composition and antioxidant activity of mandarin ( Citrus reticulate Blanco ) and bitter orange ( Citrus aurantium L.) seeds extracts. Industrial Crops and Products, 39, 74–80. https://doi.org/10.1016/j.indcrop.2012.02.013

    Article  CAS  Google Scholar 

  223. Costanzo, G., Vitale, E., Iesce, M. R., Naviglio, D., Amoresano, A., Fontanarosa, C., Spinelli, M., Ciaravolo, M., Arena, C. (2022). Antioxidant Properties of pulp, peel and seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at different stages of fruit ripening, Antioxidants. 11. https://doi.org/10.3390/antiox11020187

  224. Choudhary, P., Devi, T. B., Tushir, S., Kasana, R. C., Popatrao, D. S., & K, N. (2023). Mango Seed Kernel: A bountiful source of nutritional and bioactive compounds. Food and Bioprocess Technology, 16, 289–312. https://doi.org/10.1007/s11947-022-02889-y

    Article  CAS  Google Scholar 

  225. Javeed, A., Ahmed, M., Sajid, A. R., Sikandar, A., Aslam, M., Ul Hassan, T., Samiullah, Nazir, Z., Ji, M., & Li, C. (2022). Comparative assessment of phytoconstituents, antioxidant activity and chemical analysis of different parts of milk thistle Silybum marianum L. Molecules, 27, 1–12. https://doi.org/10.3390/molecules27092641

    Article  CAS  Google Scholar 

  226. Jorge, N., da Silva, A. C., & Aranha, C. P. M. (2016). Antioxidant activity of oils extracted from orange (Citrus sinensis) seeds. Anais da Academia Brasileira de Ciências, 88, 951–958. https://doi.org/10.1590/0001-3765201620140562

    Article  CAS  PubMed  Google Scholar 

  227. Belmonte-herrera, B. H., Dom, J. A., Wall-medrano, A., Ayala-zavala, J. F., Preciado-saldaña, A. M., Salazar-l, N. J., Leticia, Yahia, E. M., Robles-s, R. M., Gonz, G. A. (2022). Anti-Inflammatory Potential, Nutrients, 14.

  228. Shukla, R. K., & Kant, R. (2020). Assessment of phytochemical screening by fourier transform infrared spectroscopic analysis of peach (Prunus persica) seed biomass from Uttarakhand region of India. Journal of Applied and Natural Science, 12, 519–524. https://doi.org/10.31018/jans.v12i4.2330

    Article  CAS  Google Scholar 

  229. Kolniak-Ostek, J. (2016). Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chemistry, 203, 491–497. https://doi.org/10.1016/j.foodchem.2016.02.103

    Article  CAS  PubMed  Google Scholar 

  230. Kolniak-Ostek, J., & Oszmiański, J. (2015). Characterization of phenolic compounds in different anatomical pear (Pyrus communis L.) parts by ultra-performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS). International Journal of Mass Spectrometry, 392, 154–163. https://doi.org/10.1016/j.ijms.2015.10.004

    Article  CAS  Google Scholar 

  231. Anahita, A., Asmah, R., & Fauziah, O. (2015). Evaluation of total phenolic content, total antioxidant activity, and antioxidant vitamin composition of pomegranate seed and juice. International Food Research Journal, 22, 1212–1217. https://doi.org/10.4172/2327-5146.1000164

    Article  CAS  Google Scholar 

  232. Chaalal, M., Louaileche, H., Touati, N., & Bachir Bey, M. (2013). Phytochemicals, in vitro antioxidant capacity and antiradical potential of whole and ground seeds of three prickly pear varieties: A comparative study. Industrial Crops and Products, 49, 386–391. https://doi.org/10.1016/j.indcrop.2013.05.010

    Article  CAS  Google Scholar 

  233. Eteng, O. E. (2012). Comparative anti-nutrients assessment of pulp, seed and rind of rambutan ( Nephelium Lappaceum ). Annals of Biological Research, 3, 5151–5156.

    Google Scholar 

  234. Technology, C., & Environmental, W. (2007). Seeds of selected fruits as a good source of flavan-3-ols. Polish Journal of Food and Nutrition Sciences, 57, 607–611.

    Google Scholar 

  235. Gopalkrishnan, B., & Shimpi, S. N. (2011). Seeds of Mimusops elengi Linn. Pharmacognosy and phytochemical studies. International Journal of Pharmacognosy and Phytochemical Research, 3, 13–17.

    Google Scholar 

  236. Shahwar, D., & Raza, M. A. (2012). Antioxidant potential of phenolic extracts of Mimusops elengi. Asian Pacific Journal of Tropical Biomedicine, 2, 547–550. https://doi.org/10.1016/S2221-1691(12)60094-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Mamun, A., Easmin, S., Ahmed, A., Ansary, M. R. H., Bary, W., Zaman, M. S., & Haq, H. (2022). Evaluation of α-amylase inhibitory, antioxidant and cytotoxic activities of Mimusops elengi seeds, Bangladesh. The Pharmaceutical Journal, 25, 16–25. https://doi.org/10.3329/bpj.v25i1.57836

    Article  Google Scholar 

  238. Leite, D. O., Camilo, C. J., Nonato, C. D., Carvalho, N. K., Salazar, G. J., de Morais, S. M., Costa J. G. (2021). Chemical profile and evaluation of the antioxidant and anti-acetylcholinesterase activities of Annona squamosa L. (Annonaceae) Extracts, Foods, 10. https://doi.org/10.3390/foods10102343

  239. Seidu, K. T., & Otutu, O. L. (2016). Phytochemical composition and radical scavenging activities of watermelon (Citrullus lanatus) seed constituents. Croatian Journal of Food Science and Technology, 8, 83–89. https://doi.org/10.17508/cjfst.2016.8.2.07

    Article  Google Scholar 

  240. D’Archivio, M., Filesi, C., Di Benedetto, R., Gargiulo, R., Giovannini, C., & Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Annali dell Istituto Superiore di Sanita, 43, 348–361.

    PubMed  Google Scholar 

  241. Zadernowski, R., Czaplicki, S., & Naczk, M. (2009). Phenolic acid profiles of mangosteen fruits (Garcinia mangostana). Food Chemistry, 112, 685–689. https://doi.org/10.1016/j.foodchem.2008.06.030

    Article  CAS  Google Scholar 

  242. Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56, 317–333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x

    Article  CAS  PubMed  Google Scholar 

  243. Tsao, R., & Yang, R. (2003). Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. Journal of Chromatography A, 1018, 29–40. https://doi.org/10.1016/j.chroma.2003.08.034

    Article  CAS  PubMed  Google Scholar 

  244. Merken, H. M., & Beecher, G. R. (2000). Measurement of food flavonoids by high-performance liquid chromatography: A review. Journal of Agriculture and Food Chemistry, 48, 577–599. https://doi.org/10.1021/jf990872o

    Article  CAS  Google Scholar 

  245. Ottaway, P. B. (1993). Stability of vitamins in food BT—The technology of vitamins in food, in: P.B. Ottaway (Ed.), Springer US, Boston, MA, pp. 90–113. https://doi.org/10.1007/978-1-4615-2131-0_5

  246. Shahidi, F. (2000). Antioxidants in food and food antioxidants, Food /. Nahrung, 44, 158–163. https://doi.org/10.1002/1521-3803(20000501)44:3%3c158::AID-FOOD158%3e3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  247. Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61, 1361779. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  Google Scholar 

  248. Tian, H. L., Zhan, P., & Li, K. X. (2010). Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds. International Journal of Food Sciences and Nutrition, 61, 395–403. https://doi.org/10.3109/09637480903535772

    Article  CAS  PubMed  Google Scholar 

  249. Mustafa, Y. F., Mohammed, E. T., & Khalil, R. R. (2020). Antioxidant and antitumor activities of methanolic extracts obtained from Red delicious and Granny Smith apples’ seeds. Systematic Reviews in Pharmacy, 11, 570–576. https://doi.org/10.31838/srp.2020.4.84

    Article  CAS  Google Scholar 

  250. Oputah, S. I., & Mordi, R. C. (2016). Phytochemical and antibacterial properties of ethanolic seed extracts of Chrysophyllum albidum (African Star Apple). Oriental Journal of Physical Sciences. https://doi.org/10.5897/ajmr11.213

    Article  Google Scholar 

  251. Tareen, A. K., Panezai, M. A., Sajjad, A., Achakzai, J. K., Kakar, A. M., & Khan, N. Y. (2021). Comparative analysis of antioxidant activity, toxicity, and mineral composition of kernel and pomace of apricot (Prunus armeniaca L.) grown in Balochistan, Pakistan. Saudi Journal of Biological Sciences, 28, 2830–2839. https://doi.org/10.1016/j.sjbs.2021.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Nafis, A., Kasrati, A., Jamali, C. A., Custódio, L., Vitalini, S., Iriti, M., Hassani, L. (2020). A comparative study of the in vitro antimicrobial and synergistic effect of essential oils from laurus nobilis l. And prunus armeniaca l. from Morocco with antimicrobial drugs: New approach for health promoting products, Antibiotics, 9. https://doi.org/10.3390/antibiotics9040140

  253. Bahru, T. B., Tadele, Z. H., & Ajebe, E. G. (2019). A review on avocado seed: Functionality, composition, antioxidant and antimicrobial properties. Chemical Science International Journal, 27, 1–10. https://doi.org/10.9734/csji/2019/v27i230112

    Article  CAS  Google Scholar 

  254. Kesari, A. N., Gupta, R. K., Singh, S. K., Diwakar, S., & Watal, G. (2006). Hypoglycemic and antihyperglycemic activity of Aegle marmelos seed extract in normal and diabetic rats. Journal of Ethnopharmacology, 107, 374–379. https://doi.org/10.1016/j.jep.2006.03.042

    Article  PubMed  Google Scholar 

  255. Li, Q. Y., Munawar, M., Saeed, M., Shen, J. Q., Khan, M. S., Noreen, S., Alagawany, M., Naveed, M., Madni, A., & Li, C. X. (2022). Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising traditional uses, pharmacological effects, aspects, and potential applications. Frontiers in Pharmacology, 12, 1–16. https://doi.org/10.3389/fphar.2021.791049

    Article  CAS  Google Scholar 

  256. Berwal, M. K., Ram, C., Gurjar, P. S., Gora, J. S., Kumar, R., Verma, A. K., Singh, D., Basile, B., Rouphael, Y., & Kumar, P. (2022). The bioactive compounds and fatty acid profile of bitter apple seed oil obtained in hot, arid environments. Horticulturae, 8, 1–10. https://doi.org/10.3390/horticulturae8030259

    Article  Google Scholar 

  257. Shafaei, H., Rad, J., Behjati, M., & Delazar, A. (2014). The effect of pulp and seed extract of Citrullus Colocynthis, as an antidaibetic medicinal herb, on hepatocytes glycogen stores in diabetic rabbits. Advanced Biomedical Research, 3, 258. https://doi.org/10.4103/2277-9175.148230

    Article  PubMed  PubMed Central  Google Scholar 

  258. Gopalan, A., Reuben, S. C., Ahmed, S., Darvesh, A. S., Hohmann, J., & Bishayee, A. (2012). The health benefits of blackcurrants. Food & Function, 3, 795–809. https://doi.org/10.1039/c2fo30058c

    Article  CAS  Google Scholar 

  259. Azawa, K. Y., Uga, K. S., Onma, A. H., Hirosaki, M. S., & Oyama, T. K. (2011). Anti-inflammatory effects of seeds of the tropical fruit Camu-Camu ( Myrciaria dubia ). Journal of Nutritional Science and Vitaminology, 7, 104–107.

    Article  Google Scholar 

  260. Kaneshima, T., Myoda, T., Toeda, K., Fujimori, T., & Nishizawa, M. (2017). Antimicrobial constituents of peel and seeds of camu-camu (Myrciaria dubia). Bioscience, Biotechnology, and Biochemistry, 81, 1461–1465. https://doi.org/10.1080/09168451.2017.1320517

    Article  CAS  PubMed  Google Scholar 

  261. do Carmo, M. A. V., Fidelis, M., Sanchez, C. A., Castro, A. P., Camps, I., Colombo, F. A., Marques, M. J., Myoda, T., Granato, D., & Azevedo, L. (2020). Camu-camu (Myrciaria dubia) seeds as a novel source of bioactive compounds with promising antimalarial and antischistosomicidal properties. Food Research International, 136, 109334. https://doi.org/10.1016/j.foodres.2020.109334

    Article  CAS  PubMed  Google Scholar 

  262. Do Carmo, M. A. V., Fidelis, M., Pressete, C. G., Marques, M. J., Castro-Gamero, A. M., Myoda, T., Granato, D., & Azevedo, L. (2019). Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Research International, 125, 108551. https://doi.org/10.1016/j.foodres.2019.108551

    Article  CAS  Google Scholar 

  263. Fidelis, M., do Carmo, M. A. V., da Cruz, T. M., Azevedo, L., Myoda, T., Miranda Furtado, M., Boscacci Marques, M., Sant’Ana, A. S., Inês Genovese, M., Young Oh, W., Wen, M., Shahidi, F., Zhang, L., Franchin, M., de Alencar, S. M., Luiz Rosalen, P., & Granato, D. (2020). Camu-camu seed (Myrciaria dubia)—From side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chemistry, 310, 125909. https://doi.org/10.1016/j.foodchem.2019.125909

    Article  CAS  PubMed  Google Scholar 

  264. Afonso, S., Oliveira, I. V., Meyer, A. S., Aires, A., Saavedra, M. J., & Gonçalves, B. (2020). Phenolic profile and bioactive potential of stems and seed kernels of sweet cherry fruit. Antioxidants, 9, 1–17. https://doi.org/10.3390/antiox9121295

    Article  CAS  Google Scholar 

  265. Shanmugapriya, K., Saravana, P. S., Payal, H., Mohammed, S. P., & Bennai, W. (2011). A comparative study of antimicrobial potential and phytochemical analysis of Artocarpus heterophyllus and Manilkara zapota seed extracts. Journal of Pharmacy Research, 4, 2587–2589.

    CAS  Google Scholar 

  266. Kothari, V., & Seshadri, S. (2010). In vitro antibacterial activity in seed extracts of Manilkara zapota, Anona squamosa, and Tamarindus indica. Biological Research, 43, 165–168. https://doi.org/10.4067/S0716-97602010000200003

    Article  PubMed  Google Scholar 

  267. Paul, S. R., Hakim, M. L. (2015). In vivo hypoglycemic study of Manilkara zapota leave and seed extracts, Bangladesh Journal of Pharmacology, 10. https://doi.org/10.3329/bjp.v10i1.21475

  268. Ramanibai, R. (2017). Entomotoxicity properties of eco-friendly crude protein extract from Manilkara zapota seed against Asian Tiger vector Aedes aegypti. SOJ Veterinary Sciences, 3, 1–6. https://doi.org/10.15226/2381-2907/3/1/00123

    Article  Google Scholar 

  269. Sathishkumar, T., Anitha, S., Sharon, R. E., Santhi, V., Sukanya, M., Kumaraesan, K., & Rapheal, V. S. (2015). Evaluation of in vitro invertase inhibitory activity of Manilkara zapota seeds—A novel strategy to manage diabetes mellitus. Journal of Food Biochemistry, 39, 517–527. https://doi.org/10.1111/jfbc.12157

    Article  CAS  Google Scholar 

  270. Hasan, H. F., Hamzah, A. M., Zghair, Z. R. (2013). Study the comparative effect between Cyperus esculentus seeds extract and Gentamicin on induced endometritis in mice, Jpcs, 7:40–47. www.arpapress.com/Volumes/JPCS/Vol7/JPCS_7_07.pdf

  271. Njoku-Oji, N. N., Ifegwu, N. O., Umahi, G. O., Sobanke, A. O., & Uchefuna, R. C. (2019). Beneficial effects of ethanolic seed extract of Cyperus esculentus on blood glucose and sperm quality in alloxan-induced diabetic rats. IOSR Journal of Pharmacy and Biological Sciences IOSR-JPBS, 14, 84–90. https://doi.org/10.9790/3008-1401018490

    Article  Google Scholar 

  272. Ahmad, N., Anwar, F., Abbas, A. (2019). Cranberry Seed Oil BT - Fruit Oils: Chemistry and Functionality, in: M.F. Ramadan (Ed.), Springer International Publishing, Cham, pp. 663–674. https://doi.org/10.1007/978-3-030-12473-1_35

  273. Majeed, M., Nagabhushanam, K., Arumugam, S., Natarajan, S., Majeed, S., Pande, A., Beede, K., & Ali, F. (2018). Cranberry seed fibre: A promising prebiotic fibre and its fermentation by the probiotic Bacillus coagulans MTCC 5856. International Journal of Food Science & Technology, 53, 1640–1647. https://doi.org/10.1111/ijfs.13747

    Article  CAS  Google Scholar 

  274. Brouk, M., Fishman, A. (2016). Antioxidant properties and health benefits of date seeds BT—Functional properties of traditional foods, in: K. Kristbergsson, S. Ötles (Eds.), Springer US, Boston, MA, 233–240. https://doi.org/10.1007/978-1-4899-7662-8_16

  275. Charoenphun, N., & Klangbud, W. K. (2022). Antioxidant and anti-inflammatory activities of durian (Durio zibethinus Murr.) pulp, seed and peel flour. PeerJ, 10, 1–15. https://doi.org/10.7717/peerj.12933

    Article  CAS  Google Scholar 

  276. Nadheesha, M., Bamunuarachchi, A., Edirisinghe, E., & Weerasinghe, W. (2011). Studies on antioxidant activity of Indian Gooseberry fruit and seed. Journal of Science of the University of Kelaniya Sri Lanka, 3, 83. https://doi.org/10.4038/josuk.v3i0.2741

    Article  Google Scholar 

  277. Oun, A. A., Shin, G. H., & Kim, J. T. (2022). Antimicrobial, antioxidant, and pH-sensitive polyvinyl alcohol/chitosan-based composite films with aronia extract, cellulose nanocrystals, and grapefruit seed extract. International Journal of Biological Macromolecules, 213, 381–393. https://doi.org/10.1016/j.ijbiomac.2022.05.180

    Article  CAS  PubMed  Google Scholar 

  278. Armando, C., Maythe, S., & Beatriz, N. P. (1998). Antioxidant activity of grapefruit seed extract on vegetable oils. Journal of the Science of Food and Agriculture, 77, 463–467. https://doi.org/10.1002/(SICI)1097-0010(199808)77:4%3c463::AID-JSFA62%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  279. Roy, S., & Rhim, J.-W. (2021). Antioxidant and antimicrobial poly(vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. Journal of Environmental Chemical Engineering, 9, 104694. https://doi.org/10.1016/j.jece.2020.104694

    Article  CAS  Google Scholar 

  280. Majhenič, L., Škerget, M., & Knez, Ž. (2007). Antioxidant and antimicrobial activity of guarana seed extracts. Food Chemistry, 104, 1258–1268. https://doi.org/10.1016/j.foodchem.2007.01.074

    Article  CAS  Google Scholar 

  281. El Anany, A. M. (2015). Nutritional composition, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds (Psidium Myrtaceae) as affected by roasting processes. Journal of Food Science and Technology, 52, 2175–2183. https://doi.org/10.1007/s13197-013-1242-1

    Article  CAS  PubMed  Google Scholar 

  282. Bhatia, A., Mishra, T., Bhatia, A., Mishra, T. (2010). Hypoglycemic activity of Ziziphus mauritiana aqueous ethanol seed extract in alloxan-induced diabetic mice, 0209. https://doi.org/10.3109/13880200903218935

  283. Mishra, T., Paice, A. G., Bhatia, A. (n.d.). Use of Seeds of Malay Apple ( Ziziphus mauritiana ) and related species in health and disease, Elsevier Inc, https://doi.org/10.1016/B978-0-12-375688-6.10087-8

  284. Peng, W. H., Hsieh, M. T., Lee, Y. S., Lin, Y. C., & Liao, J. (2000). Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxiety. Journal of Ethnopharmacology, 72, 435–441. https://doi.org/10.1016/s0378-8741(00)00255-5

    Article  CAS  PubMed  Google Scholar 

  285. Mishra, T., Khullar, M., Bhatia, A. (2011). Anticancer potential of aqueous ethanol seed extract of Ziziphus mauritiana against cancer cell lines and ehrlich ascites carcinoma, evidence-based complement. Alternative Medicine, 2011. https://doi.org/10.1155/2011/765029

  286. Bhatia, A. (2009). Free radical scavenging activity and inhibitory response of Ziziphus mauritiana ( Lamk .) seed extract on alcohol-induced oxidative stress, Journal of Complementary and Integrative Medicine, 6. https://doi.org/10.2202/1553-3840.1214

  287. Fidelis, M., Vieira do Carmo, M. A., Azevedo, L., Cruz, T. M., Marques, M. B., Myoda, T., Sant’Ana, A. S., Furtado, M. M., Wen, M., Zhang, L., Rosso, N. D., Genovese, M. I., Oh, W. Y., Shahidi, F., Pap, N., & Granato, D. (2020). Response surface optimization of phenolic compounds from jabuticaba (Myrciaria cauliflora [Mart.] O.Berg) seeds: Antioxidant, antimicrobial, antihyperglycemic, antihypertensive and cytotoxic assessments. Food and Chemical Toxicology, 142, 111439. https://doi.org/10.1016/j.fct.2020.111439

    Article  CAS  PubMed  Google Scholar 

  288. Hacke, A. C. M., Granato, D., Maciel, L. G., Weinert, P. L., do Prado-Silva, L., Alvarenga, V. O., de Souza Sant’Ana, A., Bataglion, G. A., Eberlin, M. N., & Rosso, N. D. (2016). Jabuticaba (Myrciaria cauliflora) Seeds: Chemical characterization and extraction of antioxidant and antimicrobial compounds. Journal of Food Science, 81, C2206–C2217. https://doi.org/10.1111/1750-3841.13405

    Article  CAS  PubMed  Google Scholar 

  289. Yadav, N., Pal, A., Sihag, S., & CR, N. (2020). Antioxidant activity profiling of acetonic extract of Jamun (Syzygium cumini L.) seeds in different in-vitro models. The Open Food Science Journal, 12, 3–8. https://doi.org/10.2174/1874256402012010003

    Article  Google Scholar 

  290. Kumar, M., Hasan, M., Lorenzo, J. M., Dhumal, S., Nishad, J., Rais, N., Verma, A., Changan, S., Barbhai, M. D., Radha, Chandran, D., Pandiselvam, R., Senapathy, M., Dey, A., Pradhan, P. C., Mohankumar, P., Deshmukh, V. P., Amarowicz, R., Mekhemar, M., & Zhang, B. (2022). Jamun (Syzygium cumini (L.) Skeels) seed bioactives and its biological activities: A review. Food Bioscience, 50, 102109. https://doi.org/10.1016/j.fbio.2022.102109

    Article  CAS  Google Scholar 

  291. Yadav, M., Lavania, A., Tomar, R., Prasad, G. B. K. S., Jain, S., & Yadav, H. (2010). Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Applied Biochemistry and Biotechnology, 160, 2388–2400. https://doi.org/10.1007/s12010-009-8799-1

    Article  CAS  PubMed  Google Scholar 

  292. Qu, L., Liu, Q., Zhang, Q., Liu, D., Zhang, C., Fan, D., Deng, J., & Yang, H. (2019). Kiwifruit seed oil ameliorates inflammation and hepatic fat metabolism in high-fat diet-induced obese mice. Journal of Functional Foods, 52, 715–723. https://doi.org/10.1016/j.jff.2018.12.003

    Article  CAS  Google Scholar 

  293. Park, Y. S., Kim, I. D., Dhungana, S. K., Park, E. J., Park, J. J., Kim, J. H., & Shin, D. H. (2021). Quality characteristics and antioxidant potential of lemon (Citrus limon Burm. f.) seed oil extracted by different methods. Frontiers in Nutrition, 8, 1–10. https://doi.org/10.3389/fnut.2021.644406

    Article  CAS  Google Scholar 

  294. Zhang, Y., Li, A., & Yang, X. (2021). Effect of lemon seed flavonoids on the anti-fatigue and antioxidant effects of exhausted running exercise mice. Journal of Food Biochemistry, 45, e13620. https://doi.org/10.1111/jfbc.13620

    Article  CAS  PubMed  Google Scholar 

  295. Atolani, O., Omere, J., Otuechere, C. A., & Adewuyi, A. (2012). Antioxidant and cytotoxicity effects of seed oils from edible fruits. Journal of Acute Disease, 1, 130–134. https://doi.org/10.1016/s2221-6189(13)60030-x

    Article  Google Scholar 

  296. Jiang, G., Wen, L., Chen, F., Wu, F., Lin, S., Yang, B., & Jiang, Y. (2013). Structural characteristics and antioxidant activities of polysaccharides from longan seed. Carbohydrate Polymers, 92, 758–764. https://doi.org/10.1016/j.carbpol.2012.09.079

    Article  CAS  PubMed  Google Scholar 

  297. Chen, Jy., Xu, Yj., Ge, Zz., Zhu, W., Xu, Z., & Li, Cm. (2015). Structural elucidation and antioxidant activity evaluation of key phenolic compounds isolated from longan (Dimocarpus longan Lour.) seeds. Journal of Functional Foods, 17, 872–880. https://doi.org/10.1016/j.jff.2015.06.028

    Article  CAS  Google Scholar 

  298. Panyathep, A., Chewonarin, T., Taneyhill, K., & Vinitketkumnuen, U. (2013). Antioxidant and anti-matrix metalloproteinases activities of dried longan (Euphoria longana) seed extract. ScienceAsia, 39, 12–18. https://doi.org/10.2306/scienceasia1513-1874.2013.39.012

    Article  CAS  Google Scholar 

  299. Thilakarathna, R. C. N., Siow, L. F., Tang, T. K., Chan, E. S., & Lee, Y. Y. (2023). Physicochemical and antioxidative properties of ultrasound-assisted extraction of mahua (Madhuca longifolia) seed oil in comparison with conventional Soxhlet and mechanical extractions. Ultrasonics Sonochemistry, 92, 106280. https://doi.org/10.1016/j.ultsonch.2022.106280

    Article  CAS  PubMed  Google Scholar 

  300. Khammuang, S., & Sarnthima, R. (2011). Antioxidant and antibacterial activities of selected varieties of Thai mango seed extract. Pakistan Journal of Pharmaceutical Sciences, 24, 37–42.

    CAS  PubMed  Google Scholar 

  301. Mutua, J. K., Imathiu, S., & Owino, W. (2017). Evaluation of the proximate composition, antioxidant potential, and antimicrobial activity of mango seed kernel extracts. Food Science & Nutrition, 5, 349–357. https://doi.org/10.1002/fsn3.399

    Article  CAS  Google Scholar 

  302. Sze Lim, Y., Sze Hui Lee, S., & Chin Tan, B. (2013). Capacit antioxydante et activit antibact rienne extraits de diffrentes parties du mangoustan (Garcinia mangostana Linn. Fruits, 68, 483–489. https://doi.org/10.1051/fruits/2013088

    Article  Google Scholar 

  303. Ihsanpuro, S. I., Gunawan, S., Ibrahim, R., & Aparamarta, H. W. (2022). Extract with high 1,1-diphenyl-2-picrylhydrazyl (DPPH) inhibitory capability from pericarp and seed of mangosteen (Garcinia mangostana L.) using microwave-assisted extraction (MAE) two-phase solvent technique. Arabian Journal of Chemistry, 15, 104310. https://doi.org/10.1016/j.arabjc.2022.104310

    Article  CAS  Google Scholar 

  304. Bhattacharya, S. (2011). Phytotherapeutic properties of milk thistle seeds: An overview. Journal of Advanced Pharmacy Education and Research, 1, 69–79.

    Google Scholar 

  305. Hermenean, A., Stan, M., Ardelean, A., Pilat, L., Mihali, C. V., Popescu, C., Nagy, L., Deák, G., Zsuga, M., Kéki, S., Bácskay, I., Fenyvesi, F., Costache, M., Dinischiotu, A., & Vecsernyés, M. (2015). Antioxidant and hepatoprotective activity of milk thistle (Silybum marianum L. Gaertn.) seed oil. Open Life Sciences, 10, 147–158. https://doi.org/10.1515/biol-2015-0017

    Article  CAS  Google Scholar 

  306. Denev, P. N., Ognyanov, M. H., Georgiev, Y. N., Teneva, D. G., Klisurova, D. I., & Yanakieva, I. Z. (2020). Chemical composition and antioxidant activity of partially defatted milk thistle (Silybum marianum L.) seeds. Bulgarian Chemical Communications, 52, 182–187.

    Google Scholar 

  307. Zeb, A. (2016). Phenolic profile and antioxidant activity of melon (Cucumis melo l.) seeds from pakistan. Foods, 5, 1–7. https://doi.org/10.3390/foods5040067

    Article  CAS  Google Scholar 

  308. Khalid, W., Ikram, A., Rehan, M., Afzal, F. A., Ambreen, S., Ahmad, M., Aziz, A., & Sadiq, A. (2021). Chemical composition and health benefits of melon seed: A review. Pakistan Journal of Agricultural Research, 34, 309–317. https://doi.org/10.17582/journal.pjar/2021/34.2.309.317

    Article  Google Scholar 

  309. West, B. J., Jarakae Jensen, C., PaIu, A. K., & Deng, S. (2011). Toxicity and antioxidant tests of Morinda citrifolia (noni) seed extract. Advance Journal of Food Science and Technology, 3, 303–307.

    Google Scholar 

  310. Alu’datt, M. H., Alli, I., Ereifej, K., Alhamad, M. N., Alsaad, A., & Rababeh, T. (2011). Optimisation and characterisation of various extraction conditions of phenolic compounds and antioxidant activity in olive seeds. Natural Product Research, 25, 876–889. https://doi.org/10.1080/14786419.2010.489048

    Article  CAS  PubMed  Google Scholar 

  311. Banu, S. M., Vigasini, N., & Surenderan, S. (2022). In vitro antibacterial, anticancer and antidiabetic potential of freeze-dried aqueous Borassus flabellifer L . Seed Powder Extract. Indian Journal of Pharmaceutical Sciences, 84, 586–592.

    CAS  Google Scholar 

  312. Banu, S. M., Vigasini, N., & Surenderan, S. (2021). Phytochemical screening, in vitro antioxidant and anti-inflammatory activity of freeze-dried Borassus flabellifer L. seed powder. Asian Journal of Biological and Life Sciences, 10, 202–209. https://doi.org/10.5530/ajbls.2021.10.29

    Article  CAS  Google Scholar 

  313. Zhou, K., Wang, H., Mei, W., Li, X., Luo, Y., & Dai, H. (2011). Antioxidant activity of papaya seed extracts. Molecules, 16, 6179–6192. https://doi.org/10.3390/molecules16086179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Saba, S., Pattan, N. (2016). The potential health benefits of papaya seeds, International Journal for Research in Applied Science and Engineering Technology, 1–23.

  315. L, P. M., & K, N. (2022). The surprising health benefits of papaya seed. International Journal of Multidisciplinary Research, 4, 424–429. https://doi.org/10.36948/ijfmr.2022.v04i06.1146

    Article  Google Scholar 

  316. Kawakami, S., Morinaga, M., Tsukamoto-Sen, S., Mori, S., Matsui, Y., Kawama, T. (2022) Constituent characteristics and functional properties of passion fruit seed extract, Life, 12. https://doi.org/10.3390/life12010038

  317. Loizzo, M. R., Pacetti, D., Lucci, P., Núñez, O., Menichini, F., Frega, N. G., & Tundis, R. (2015). Prunus persica var. platycarpa (Tabacchiera Peach): Bioactive Compounds and Antioxidant Activity of Pulp, Peel and Seed Ethanolic Extracts. Plant Foods for Human Nutrition, 70, 331–337. https://doi.org/10.1007/s11130-015-0498-1

    Article  CAS  PubMed  Google Scholar 

  318. Ajilore, B., Falolu, I., & Olaniyan, O. (2016). Effect of Pyrus communis (Common Pear) seeds on selected parameters of liver function in rats treated with cadmium. American Scientific Research Journal for Engineering, Technology, and Sciences ASRJETS, 23, 41–53.

    Google Scholar 

  319. Adnan, L., Osman, A., & Abdul Hamid, A. (2011). Antioxidant activity of different extracts of red pitaya (Hylocereus polyrhizus) seed. International Journal of Food Properties, 14, 1171–1181. https://doi.org/10.1080/10942911003592787

    Article  CAS  Google Scholar 

  320. Paul, A., & Radhakrishnan, M. (2020). Pomegranate seed oil in food industry: Extraction, characterization, and applications. Trends in Food Science & Technology, 105, 273–283. https://doi.org/10.1016/j.tifs.2020.09.014

    Article  CAS  Google Scholar 

  321. Tamri, P., Hemmati, A., & Boroujerdnia, M. G. (2014). Wound healing properties of quince seed mucilage: In vivo evaluation in rabbit full-thickness wound model. International Journal of Surgery, 12, 843–847. https://doi.org/10.1016/j.ijsu.2014.06.016

    Article  PubMed  Google Scholar 

  322. Jahurul, M. H. A., Azzatul, F. S., Sharifudin, M. S., Norliza, M. J., Hasmadi, M., Lee, J. S., Patricia, M., Jinap, S., Ramlah George, M. R., Firoz Khan, M., & Zaidul, I. S. M. (2020). Functional and nutritional properties of rambutan (Nephelium lappaceum L.) seed and its industrial application: A review. Trends in Food Science & Technology, 99, 367–374. https://doi.org/10.1016/j.tifs.2020.03.016

    Article  CAS  Google Scholar 

  323. Juranic, Z., Zizak, Z., Tasic, S., & Petrovic, S. (2005). Antiproliferative action of water extracts of seeds or pulp of five different raspberry cultivars. Food Chemistry, 93, 39–45. https://doi.org/10.1016/j.foodchem.2004.08.041

    Article  CAS  Google Scholar 

  324. Nugraheni, M. A., Indarto, D., & Pamungkasari, E. P. (2019). Snake fruit seeds flour-fortified jelly for supplementary feeding in adolescent girls with anemia. Journal of Physics: Conference Series, 1374, 6–12. https://doi.org/10.1088/1742-6596/1374/1/012013

    Article  Google Scholar 

  325. Sherliana, F., Girsang, E., Napiah, A., & Ehrice, I. N. (2020). Comparison of burn wound healing ability between ethyl acetate extract gel of betel nut ( Areca catechu ) and snake fruit seed ( Salacca zalacca ) in rats. American Scientific Research Journal for Engineering, Technology, and Sciences, 68, 210–215.

    Google Scholar 

  326. Husen, A. L. I., Arif, M., Rizvi, A., Srivastava, M., Shafi, S., Rani, M., Beth, M., Sayed, A. M. L., & Abdelrahem, A. L. I. (2022). Medicinal importance of Spanish cherry : An ornamental tree in human welfare from Dibrugarh District ( Assam ) India. Journal of Pharmaceutical Negative Results, 13, 984–995. https://doi.org/10.47750/pnr.2022.13.S10.112

    Article  CAS  Google Scholar 

  327. Roqaiya, M., Begum, W., & Jahan, D. (2015). A review on pharmacological property of Mimusops elengi Linn, ~ 24 ~. International Journal of Herbal Medicine, 2, 24–30.

    Google Scholar 

  328. Gopalkrishnan, B., Ringmichon, C. L., & Shimpi, L. S. N. (2013). Seeds of mimusops Elengi Linn—An antifertility drug. International Journal of Applied Biology and Pharmaceutical Technology, 4, 111–116.

    Google Scholar 

  329. Pieszka, M., Tombarkiewicz, B., Roman, A., Migdał, W., & Niedziółka, J. (2013). Effect of bioactive substances found in rapeseed, raspberry and strawberry seed oils on blood lipid profile and selected parameters of oxidative status in rats. Environmental Toxicology and Pharmacology, 36, 1055–1062. https://doi.org/10.1016/j.etap.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  330. Chen, J., Chen, Y., & Li, X. (2011). Beneficial aspects of custard apple (annona squamosa l) seeds. Elsevier Inc. https://doi.org/10.1016/B978-0-12-375688-6.10052-0

    Article  Google Scholar 

  331. Alka, G., Anamika, S., & Ranu, P. (2012). Compositional Studies of Citrullus lanatus (Egusi melon) Seed. The Internet Journal of Nutrition and Wellness, 6, 2222–2225. https://doi.org/10.5580/e6f

    Article  Google Scholar 

  332. Opyd, P. M., Jurgoński, A., Juśkiewicz, J., Milala, J., Zduńczyk, Z., Król, B. (2017). Nutritional and health-related effects of a diet containing apple seed meal in rats: The case of amygdalin, Nutrients, 9. https://doi.org/10.3390/nu9101091

  333. Au, R., Kamel, G., Awad, N. E., & Shokry, A. A. (2018). Phytochemical Screening, Acute Toxicity , Analgesic and anti-inflammatory effects of apricot seeds ethanolic extracts. Journal of Applied Veterinary Sciences, 3, 26–33. https://doi.org/10.21608/javs.2018.62723

    Article  Google Scholar 

  334. Padilla-Camberos, E., Martínez-Velázquez, M., Flores-Fernández, J. M., & Villanueva-Rodríguez, S. (2013). Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill., c.v. Hass). The Scientific World Journal, 2013, 245828. https://doi.org/10.1155/2013/245828

    Article  PubMed  PubMed Central  Google Scholar 

  335. Chen, Q., Yin, Y., Zhu, C., & Yu, G. (2014). Toxicological assessment of Chinese cherry (Cerasus Pseudocerasus L.) Seed Oil. Food Science and Technology Research, 20, 101–108. https://doi.org/10.3136/fstr.20.101

    Article  CAS  Google Scholar 

  336. Ekeanyanwu, C., Njoku, O., & Christopher, O. (2010). The phytochemical composition and some biochemical effects of Nigerian tigernut (Cyperus esculentus L.) Tuber. Pakistan Journal of Nutrition, 9, 709–715. https://doi.org/10.3923/pjn.2010.709.715

    Article  Google Scholar 

  337. Fakhri, S., Shokoohinia, P., Marami, M., Ghiasvand, N., Hosseinzadeh, L., & Shokoohinia, Y. (2018). Acute and sub-chronic toxicity evaluation of aqueous extract of Phoenix dactylifera seeds in Wistar rats. Journal of Reports in Pharmaceutical Sciences, 7, 319–330.

    Google Scholar 

  338. Hartati, F. K., Djauhari, A. B., & Sucahyo, B. S. (2023). Proximate and toxicity analysis and the utilization of durian seed flour (Durio Zibethinus Merr). Letters in Applied NanoBioScience, 12, 1–8. https://doi.org/10.33263/LIANBS124.151

    Article  Google Scholar 

  339. Wren, A. F., Cleary, M., Frantz, C., Melton, S., & Norris, L. (2002). 90-day oral toxicity study of a grape seed extract (IH636) in rats. Journal of Agriculture and Food Chemistry, 50, 2180–2192. https://doi.org/10.1021/jf011066w

    Article  CAS  Google Scholar 

  340. Antonelli-Ushirobira, T. M., Kaneshima, E. N., Gabriel, M., Audi, E. A., Marques, L. C., & Mello, J. C. P. (2010). Acute and subchronic toxicological evaluation of the semipurified extract of seeds of guaraná (Paullinia cupana) in rodents. Food and Chemical Toxicology, 48, 1817–1820. https://doi.org/10.1016/j.fct.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  341. Abiodun, O. O., Nnoruka, M. E., & Tijani, R. O. (2020). Phytochemical constituents, antioxidant activity, and toxicity assessment of the seed of Spondias mombin L. (Anacardiaceae). Turkish Journal of Pharmaceutical Sciences, 17, 343–348. https://doi.org/10.4274/tjps.galenos.2020.38801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Ajayi, I. A., Ajayi, I. A., Adewale, R. A. (2013). Amino acid composition and short-term toxicological evaluation of Artocarpus heterophyllus seed cake in rat diet, New York Science Journal, 6.

  343. Burci, L. M., da Silva, C. B., Rondon, J. N., da Silva, L. M., de Andrade, S. F., Miguel, O. G., de Fátima Gaspari Dias, J., & Miguel, M. D. (2019). Acute and subacute (28 days) toxicity, hemolytic and cytotoxic effect of Artocarpus heterophyllus seed extracts. Toxicology Reports, 6, 1304–1308. https://doi.org/10.1016/j.toxrep.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  344. Cosden, M., Ellens, J., Schnell, J., & Yamini-diouf, Y. (2004). Evaluation of anti-diabetic potential of the Syzygium cumini (Linn) Skeels by reverse pharmacological approaches Article. Bulletin of Pharmaceutical Research, 49, 413–422.

    Google Scholar 

  345. Chukwuma, C. I., Izu, G. O., Chukwuma, M. S., Samson, M. S., Makhafola, T. J., & Erukainure, O. L. (2021). A review on the medicinal potential, toxicology, and phytochemistry of litchi fruit peel and seed. Journal of Food Biochemistry, 45, e13997. https://doi.org/10.1111/jfbc.13997

    Article  CAS  PubMed  Google Scholar 

  346. Worasuttayangkurn, L., Watcharasit, P., Rangkadilok, N., Suntararuks, S., Khamkong, P., & Satayavivad, J. (2012). Safety evaluation of longan seed extract: Acute and repeated oral administration. Food and Chemical Toxicology, 50, 3949–3955. https://doi.org/10.1016/j.fct.2012.07.068

    Article  CAS  PubMed  Google Scholar 

  347. Tajiri, H., Tanaka, W., Takashima, M., Matsuyama, H., Sugita, T., Hidaka, K., & Sakakibara, H. (2021). Subchronic safety evaluation of hot-water extract from thinned immature mangos (Mangifera indica ‘Irwin’): 90-days oral toxicity study in rats. Toxicology Reports, 8, 1046–1053. https://doi.org/10.1016/j.toxrep.2021.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Ajayi, I. A., Oderinde, R. A., Ogunkoya, B. O., Egunyomi, A., & Taiwo, V. O. (2007). Chemical analysis and preliminary toxicological evaluation of Garcinia mangostana seeds and seed oil. Food Chemistry, 101, 999–1004. https://doi.org/10.1016/j.foodchem.2006.02.053

    Article  CAS  Google Scholar 

  349. Desplaces, A., Choppin, J., Vogel, G., & Trost, W. (1975). The effects of silymarin on experimental phalloidine poisoning. Arzneimittelforschung, 25, 89–96.

    CAS  PubMed  Google Scholar 

  350. Chung, W.-Y., Jadhav, S., Hsu, P.-K., & Kuan, C.-M. (2022). Evaluation of acute and sub-chronic toxicity of bitter melon seed extract in Wistar rats. Toxicology Reports, 9, 1024–1034. https://doi.org/10.1016/j.toxrep.2022.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Shin, S., Kim, J. S., Park, M. K., Bang, O.-S. (2022). Genotoxicity comparison between Morinda citrifolia fruit and seed substances, Foods, 11. https://doi.org/10.3390/foods11121773

  352. Verma, R. J., Nambiar, D., & Chinoy, N. J. (2006). Toxicological effects of Carica papaya seed extract on spermatozoa of mice. Journal of Applied Toxicology, 26, 533–535. https://doi.org/10.1002/jat.1173

    Article  CAS  PubMed  Google Scholar 

  353. Lohiya, N. K., Pathak, N., Mishra, P. K., & Manivannan, B. (2000). Contraceptive evaluation and toxicological study of aqueous extract of the seeds of Carica papaya in male rabbits. Journal of Ethnopharmacology, 70, 17–27. https://doi.org/10.1016/S0378-8741(99)00139-7

    Article  CAS  PubMed  Google Scholar 

  354. Meerts, I. A. T. M., Verspeek-Rip, C. M., Buskens, C. A. F., Keizer, H. G., Bassaganya-Riera, J., Jouni, Z. E., van Huygevoort, A. H. B. M., van Otterdijk, F. M., & van de Waart, E. J. (2009). Toxicological evaluation of pomegranate seed oil. Food and Chemical Toxicology, 47, 1085–1092. https://doi.org/10.1016/j.fct.2009.01.031

    Article  CAS  PubMed  Google Scholar 

  355. Boukeloua, A., Belkhiri, A., Djerrou, Z., Bahri, L., Boulebda, N., & Hamdi Pacha, Y. (2012). Acute toxicity of Opuntia ficus indica and Pistacia lentiscus seed oils in mice. African Journal of Traditional, Complementary and Alternative Medicines, 9, 607–611. https://doi.org/10.4314/ajtcam.v9i4.19

    Article  CAS  Google Scholar 

  356. Ashraf, M. U., Hussain, M. A., Haseeb, M. T., Erum, A., & Mushtaq, M. N. (2019). Acute toxicity studies of glucuronoxylan polysaccharides from seeds of quince (Cydonia oblonga). Cellulose Chemistry and Technology, 53, 721–729. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.70

    Article  CAS  Google Scholar 

  357. Chai, K. F., Chang, L. S., Adzahan, N. M., Karim, R., Rukayadi, Y., & Ghazali, H. M. (2019). Physicochemical properties and toxicity of cocoa powder-like product from roasted seeds of fermented rambutan (Nephelium lappaceum L.) fruit. Food Chemistry, 271, 298–308. https://doi.org/10.1016/j.foodchem.2018.07.155

    Article  CAS  PubMed  Google Scholar 

  358. Fahmy, I. F. (2015). Fatty acid composition and acute oral toxicity of rambutan (Nephelium lappaceum) seed fat and oil extracted with SC-CO2, in: 5th Int. Conf. Nat. Prod. Heal. Beauty.

  359. Jurgoński, A., Fotschki, B., & Juśkiewicz, J. (2015). Dietary strawberry seed oil affects metabolite formation in the distal intestine and ameliorates lipid metabolism in rats fed an obesogenic diet. Food & Nutrition Research, 59, 26104. https://doi.org/10.3402/fnr.v59.26104

    Article  Google Scholar 

  360. Grover, P., Singh, S. P., Prabhakar, P. V., Reddy, U. A., Balasubramanyam, A., Mahboob, M., Rahman, M. F., & Misra, S. (2009). In vivo assessment of genotoxic effects of Annona squamosa seed extract in rats. Food and Chemical Toxicology, 47, 1964–1971. https://doi.org/10.1016/j.fct.2009.05.013

    Article  CAS  PubMed  Google Scholar 

  361. Oyenihi, O. R., Afolabi, B. A., Oyenihi, A. B., & Ojo, G. B. (2022). Toxicity assessment of watermelon seed supplemented diet in rats. Drug and Chemical Toxicology, 45, 1891–1898. https://doi.org/10.1080/01480545.2021.1894699

    Article  CAS  PubMed  Google Scholar 

  362. Purić, M., Rabrenović, B., Rac, V., Pezo, L., Tomašević, I., & Demin, M. (2020). Application of defatted apple seed cakes as a by-product for the enrichment of wheat bread. LWT, 130, 109391. https://doi.org/10.1016/j.lwt.2020.109391

    Article  CAS  Google Scholar 

  363. Manzoor, M., Singh, J., & Gani, A. (2021). Assessment of physical, microstructural, thermal, techno-functional and rheological characteristics of apple (Malus domestica) seeds of Northern Himalayas. Science and Reports, 11, 1–10. https://doi.org/10.1038/s41598-021-02143-z

    Article  CAS  Google Scholar 

  364. Makinde, O. J., Aremu, A., Alabi, O. J., Jiya, E. Z., Tamburawa, M. S., & Omotugba, S. K. (2020). Evaluation of differently processed African star apple (Chrysophyllum cainito ) kernel meal as feed for growing rabbits. Nigerian Journal of Animal Production, 44, 150–159. https://doi.org/10.51791/njap.v44i4.572

    Article  Google Scholar 

  365. el D Yossef, H. (2014). Extraction, purification and characterization of apricot seed β-galactosidase for producing free lactose cheese, Journal of Nutrition & Food Sciences, 04. https://doi.org/10.4172/2155-9600.1000270

  366. Gunel, Z., Parlak, A., Adsoy, M., Topuz, A. (2022). Physicochemical properties and storage stability of Turkish coffee fortified with apricot kernel powder, Journal of Food Processing and Preservation, 46. https://doi.org/10.1111/jfpp.16453

  367. Tuna Ağirbaş, H. E., Yavuz-Düzgün, M., & Özçelik, B. (2022). Valorization of fruit seed flours: Rheological characteristics of composite dough and cake quality. Journal of Food Measurement and Characterization, 16, 3117–3129. https://doi.org/10.1007/s11694-022-01423-0

    Article  Google Scholar 

  368. Borah, A., Lata Mahanta, C., & Kalita, D. (2016). Optimization of process parameters for extrusion cooking of low amylose rice flour blended with seeded banana and carambola pomace for development of minerals and fiber rich breakfast cereal. Journal of Food Science and Technology, 53, 221–232. https://doi.org/10.1007/s13197-015-1772-9

    Article  CAS  PubMed  Google Scholar 

  369. Zbikowska, A., Kozlowska, M., Poltorak, A., Kowalska, M., Rutkowska, J., & Kupiec, M. (2018). Effect of addition of plant extracts on the durability and sensory properties of oat flake cookies. Journal of Thermal Analysis and Calorimetry, 134, 1101–1111. https://doi.org/10.1007/s10973-018-7301-0

    Article  CAS  Google Scholar 

  370. Fidelis, M., de Oliveira, S. M., Sousa Santos, J., Bragueto Escher, G., Silva Rocha, R., Gomes Cruz, A., Araújo Vieira do Carmo, M., Azevedo, L., Kaneshima, T., Oh, W. Y., Shahidi, F., & Granato, D. (2020). From byproduct to a functional ingredient: Camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. Journal of Dairy Science, 103, 1131–1140. https://doi.org/10.3168/jds.2019-17173

    Article  CAS  PubMed  Google Scholar 

  371. das Chagas, E. G. L., Vanin, F. M., dos Santos Garcia, V. A., Yoshida, C. M. P., de Carvalho, R. A. (2021). Enrichment of antioxidants compounds in cookies produced with camu-camu (Myrciaria dubia) coproducts powders, Lwt, 137. https://doi.org/10.1016/j.lwt.2020.110472

  372. Abdel-Aal, E. S. M., Rabalski, I., Carey, C., Gamel, T. H. (2023). Bioaccessibility and cellular uptake of lutein, zeaxanthin and ferulic acid from muffins and breads made from hairless canary seed, Wheat and Corn Blends, Foods, 12. https://doi.org/10.3390/foods12061307

  373. Eyidemir, E., & Hayta, M. (2009). The effect of apricot kernel flour incorporation on the physicochemical and sensory properties of noodle, African. Journal of Biotechnology, 8, 085–090.

    CAS  Google Scholar 

  374. Sanful, R. E. (2009). Production and sensory evaluation of tigernut beverages, Pakistan. Journal of Nutrition, 8, 688–690. https://doi.org/10.3923/pjn.2009.688.690

    Article  Google Scholar 

  375. Corrales, M., Mendes de Souza, P., Stahl, M., Fernandez, A. (2012). Effects of the decontamination of a fresh tiger nuts’ milk beverage (horchata) with short wave ultraviolet treatments (UV-C) on quality attributes, Innovative Food Science & Emerging Technologies, 13. https://doi.org/10.1016/j.ifset.2011.07.015

  376. Najjar, Z., Kizhakkayil, J., Shakoor, H., Platat, C., Stathopoulos, C., Ranasinghe, M. (2022) Antioxidant potential of cookies formulated with date seed powder, Foods, 11. https://doi.org/10.3390/foods11030448

  377. Fang, X., Li, Y., Kua, Y. L., Chew, Z. L., Gan, S., Tan, K. W., Lee, T. Z. E., Cheng, W. K., & Lau, H. L. N. (2022). Insights on the potential of natural deep eutectic solvents (NADES) to fine-tune durian seed gum for use as edible food coating. Food Hydrocolloids, 132, 107861. https://doi.org/10.1016/j.foodhyd.2022.107861

    Article  CAS  Google Scholar 

  378. Srianta, I., Kuswardani, I., Ristiarini, S., Kusumawati, N., Godelive, L., & Nugerahani, I. (2022). Utilization of durian seed for Monascus fermentation and its application as a functional ingredient in yogurt. Bioresources and Bioprocessing, 9, 128. https://doi.org/10.1186/s40643-022-00619-y

    Article  Google Scholar 

  379. Mayank, G. (2020). Effect of gooseberry pulp and seed coat powder as natural preservatives on the storage quality of chicken nuggets. Journal of Animal Research, 10, 601–607. https://doi.org/10.30954/2277-940x.04.2020.19

    Article  Google Scholar 

  380. Tami, S. H., Aly, E., Darwish, A. A., & Mohamed, E. S. (2022). Buffalo stirred yoghurt fortified with grape seed extract: New insights into its functional properties. Food Bioscience, 47, 101752. https://doi.org/10.1016/j.fbio.2022.101752

    Article  CAS  Google Scholar 

  381. Tan, Y. M., Lim, S. H., Tay, B. Y., Lee, M. W., & Thian, E. S. (2015). Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Materials Research Bulletin, 69, 142–146. https://doi.org/10.1016/j.materresbull.2014.11.041

    Article  CAS  Google Scholar 

  382. Wang, K., Lim, P. N., Tong, S. Y., & Thian, E. S. (2019). Development of grapefruit seed extract-loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packaging and Shelf Life, 22, 100396. https://doi.org/10.1016/j.fpsl.2019.100396

    Article  Google Scholar 

  383. Silva, M. P., da S Mesquita, M., Rubio, F. T. V., Thomazini, M., & Favaro-Trindade, C. S. (2022). Fortification of yoghurt drink with microcapsules loaded with Lacticaseibacillus paracasei BGP-1 and guaraná seed extract. International Dairy Journal, 125, 105230. https://doi.org/10.1016/j.idairyj.2021.105230

    Article  CAS  Google Scholar 

  384. El-Din, M. H. A. S., & Yassen, A. A. E. (1997). Evaluation and utilization of guava seed meal (Psidium guajava L.) in cookies preparation as wheat flour substitute. Food / Nahrung, 41, 344–348. https://doi.org/10.1002/food.19970410605

    Article  Google Scholar 

  385. Kamil, M. M., Mohamed, G. F. (2011). Physicochemical and sensorial quality of semolina-defatted guava seeds flour composite pasta, The Journal of American Science, 7.

  386. Fidelis, M., Santos, J. S., Escher, G. B., Rocha, R. S., Cruz, A. G., Cruz, T. M., Marques, M. B., Nunes, J. B., do Carmo, M. A. V., de Almeida, L. A., Kaneshima, T., Azevedo, L., & Granato, D. (2021). Polyphenols of jabuticaba [Myrciaria jaboticaba (Vell.) O.Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1,2-dimethylhydrazine-induced colon cancer in rats. Food Chemistry, 334, 127565. https://doi.org/10.1016/j.foodchem.2020.127565

    Article  CAS  PubMed  Google Scholar 

  387. Roy Chowdhury, A., Bhattacharyya, A. K., & Chattopadhyay, P. (2012). Study on functional properties of raw and blended jackfruit seed flour (a non-conventional source) for food application. Indian Journal of Natural Products and Resources, 3, 347–353.

    Google Scholar 

  388. Rengsutthi, K., & Charoenrein, S. (2011). Physico-chemical properties of jackfruit seed starch (Artocarpus heterophyllus) and its application as a thickener and stabilizer in chilli sauce. LWT - Food Science and Technology, 44, 1309–1313. https://doi.org/10.1016/j.lwt.2010.12.019

    Article  CAS  Google Scholar 

  389. Butool, S., & Butool, M. (2013). Nutritional quality on value addition to jack fruit seed flour. International Journal of Science and Research, 4, 2406–2411.

    Google Scholar 

  390. Kumari, V. S., & Divakar, S. (2017). Quality analysis of raw jackfruit based noodles. Asian Journal of Dairy and Food Research, 36, 45–51. https://doi.org/10.18805/ajdfr.v36i01.7458

    Article  Google Scholar 

  391. Singh, A., & Kocher, G. S. (2020). Standardization of seed and peel infused Syzygium cumini -wine fermentation using response surface methodology. LWT, 134, 109994. https://doi.org/10.1016/j.lwt.2020.109994

    Article  CAS  Google Scholar 

  392. Kasthuri, S., Mandal, P. K., & Pal, U. K. (2017). Effect of incorporation of drumstick leaf and jamun seed powder on sensory quality of functional chicken chips. Journal of Meat Science, 12, 14–18.

    Google Scholar 

  393. Sood, M., Bandral, J. D., & Kaur, M. (2018). Development and quality evaluation of jamun seed powder supplemented noodles. Journal of Pharmacognosy and Phytochemistry, 7, 1411–1416.

    CAS  Google Scholar 

  394. Xin, K., Ji, X., Guo, Z., Han, L., Yu, Q., & Hu, B. (2022). Pitaya peel extract and lemon seed essential oil as effective sodium nitrite replacement in cured mutton. LWT, 160, 113283. https://doi.org/10.1016/j.lwt.2022.113283

    Article  CAS  Google Scholar 

  395. Sriwattana, S., Phimolsiripol, Y., Pongsirikul, I., Utama-ang, N., Surawang, S., Decharatanangkoon, S., Chindaluang, Y., Senapa, J., Wattanatchariya, W., Angeli, S., & Thakeow, P. (2015). Development of a concentrated strawberry beverage fortified with longan seed extract. Chiang Mai University Journal of Natural Sciences, 14, 175–188. https://doi.org/10.12982/CMUJNS.2015.0080

    Article  Google Scholar 

  396. Jeyarani, T., & Reddy, S. Y. (2010). Effect of enzymatic interesterification on physicochemical properties of mahua oil and kokum fat blend. Food Chemistry, 123, 249–253. https://doi.org/10.1016/j.foodchem.2010.04.019

    Article  CAS  Google Scholar 

  397. Khatoon, S., & Reddy, S. R. Y. (2005). Plastic fats with zero trans fatty acids by interesterification of mango, mahua and palm oils. European Journal of Lipid Science and Technology, 107, 786–791. https://doi.org/10.1002/ejlt.200501210

    Article  CAS  Google Scholar 

  398. Solı́s-Fuentes, J. A., & Durán-de-Bazúa, M. C. (2004). Mango seed uses: Thermal behaviour of mango seed almond fat and its mixtures with cocoa butter. Bioresource Technology, 92, 71–78. https://doi.org/10.1016/j.biortech.2003.07.003

    Article  CAS  PubMed  Google Scholar 

  399. Olubunmi, I. P., Olajumoke, A. A., Bamidele, J. A., Omolara, O. F. (2019). Phytochemical composition and in vitro antioxidant activity of golden melon (Cucumis melo L.) seeds for functional food application, International Journal of Biochemistry Research & Review, 1–13. https://doi.org/10.9734/ijbcrr/2019/v25i230070

  400. Jahanbakhshi, R., Ansari, S. (2020). Physicochemical properties of sponge cake fortified by olive stone powder, Journal of Food Quality, 2020. https://doi.org/10.1155/2020/1493638

  401. Emojorho, E. E., & Okonkwo, T. M. (2022). Effect of debittering methods on the chemical and physiochemical properties of defatted and undefatted sweet orange seed flours. Fruits, 77, 1–10. https://doi.org/10.17660/th2022/025

    Article  CAS  Google Scholar 

  402. Sofi, F. R., Raju, C. V., Lakshmisha, I. P., Singh, R. R., A.I.C.R.P. on P.H. Technology. (2016). Antioxidant and antimicrobial properties of grape and papaya seed extracts and their application on the preservation of Indian mackerel (Rastrelliger kanagurta) during ice storage. Journal of Food Science and Technology, 53, 104–117. https://doi.org/10.1007/s13197-015-1983-0

    Article  CAS  PubMed  Google Scholar 

  403. Yang, J., Zhang, W., Tan, H., Zhang, L., Ma, L. (2013). Papaya seed food and its preparation method, CN103315122A.

  404. Mahmood, K., Fazilah, A., Yang, T. A., Sulaiman, S., & Kamilah, H. (2018). Valorization of rambutan (Nephelium lappaceum) by-products: Food and non-food perspectives. International Food Research Journal, 25, 890–902.

    CAS  Google Scholar 

  405. Perović, J., Marić, B., Teslić, N., Kojić, J., Krulj, J., Filipčev, B., Ilić, N., & Solarov-Bodroža, M. (2019). Physico-chemical properties of corn-based snack fortified with raspberry seeds. Food and Feed Research, 46, 61–71. https://doi.org/10.5937/ffr1901061p

    Article  CAS  Google Scholar 

  406. Nugraheni, M. A., Indarto, D., & Pamungkasari, E. P. (2019). Snake fruit seeds flour-fortified jelly for supplementary feeding in adolescent girls with anemia. Journal of Physics: Conference Series, 1374, 12013. https://doi.org/10.1088/1742-6596/1374/1/012013

    Article  Google Scholar 

  407. W, V. S., Kadam, B. R., Ambadkar, R. K., Somkuwar, A. P., Kurkure, N. V., Bonde, S. W., Chaudhari, S. P. (2020). The results showed that as the amount of watermelon seed flour grew, moisture, viscosity, meltdown, and overrun greatly decreased while the quantities of fat, protein, total solids, solid-not-fat, and ash significantly increased. Acidity levels dropped fr, Asian Journal of Dairy and Food Research, 39.

  408. Qayyum, A., Huma, N., Sameen, A., Siddiq, A., & Munir, M. (2017). Impact of watermelon seed flour on the physico-chemical and sensory characteristics of ice cream. Journal of Food Processing and Preservation, 41, e13297. https://doi.org/10.1111/jfpp.13297

    Article  CAS  Google Scholar 

  409. Koukabi, N., Kolvari, E. (2019). Magnetic apple seed starch functionalized with 2 , 2 ′‐ furil as a green host for cobalt nanoparticles : Highly active and reusable catalyst for Mizoroki – Heck and the Suzuki – Miyaura reactions, Applied Organometallic Chemistry, 1–16. https://doi.org/10.1002/aoc.5075

  410. Avwioroko, O. J., Anigbor, A. A., Atanu, F. O., Otuechere, C. A., Alfred, M. O., Abugo, J. N., & Omorogie, M. O. (2020). Investigation of the binding interaction of α -amylase with Chrysophyllum albidum seed extract and its silver nanoparticles : A multi-spectroscopic approach. Chemical Data Collections, 29, 100517. https://doi.org/10.1016/j.cdc.2020.100517

    Article  CAS  Google Scholar 

  411. Vasyliev, G., Vorobyova, V., Skiba, M., Khrokalo, L. (2020). Green synthesis of silver nanoparticles using waste products ( Apricot and Black Currant Pomace ) aqueous extracts and their characterization, Advances in Materials Science and Engineering, 2020.

  412. Girón-vázquez, N. G., Gómez-gutiérrez, C. M., Soto-robles, C. A., Nava, O., & Lugo-medina, E. (2019). Results in Physics Study of the e ff ect of Persea americana seed in the green synthesis of silver nanoparticles and their antimicrobial properties. Results in Physics, 13, 102142. https://doi.org/10.1016/j.rinp.2019.02.078

    Article  Google Scholar 

  413. Rajeshkumar, S., & Rinitha, G. (2018). Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OpenNano, 3, 18–27. https://doi.org/10.1016/j.onano.2018.03.001

    Article  Google Scholar 

  414. Banu, R., Ramakrishna, D., Reddy, G. B., Veerabhadram, G., & Mangatayaru, K. G. (2021). Facile one-pot microwave-assisted green synthesis of silver nanoparticles using Bael gum : Potential application as catalyst in the reduction of organic dyes. Materials Today: Proceedings, 43, 2265–2273. https://doi.org/10.1016/j.matpr.2020.12.861

    Article  CAS  Google Scholar 

  415. Seku, K., Reddy, G. B., Sulaiman, S., Pejjai, B., Hussain, M., Reddy, D. M., Khazaleh, M. A. K., & Mangatayaru, G. (2022). An efficient biosynthesis of palladium nanoparticles using Bael gum and evaluation of their catalytic and antibacterial activity. International Journal of Biological Macromolecules, 209, 912–922. https://doi.org/10.1016/j.ijbiomac.2022.04.070

    Article  CAS  PubMed  Google Scholar 

  416. Zuorro, A., Iannone, A., Natali, S., Lavecchia, R. (2019). Green synthesis of silver nanoparticles using bilberry and red currant waste extracts, Processes, 7. https://doi.org/10.3390/pr7040193

  417. Farouk, F., Abdelmageed, M., Azam, M., & Azzazy, H. M. E. (2020). Synthesis of magnetic iron oxide nanoparticles using pulp and seed aqueous extract of Citrullus colocynth and evaluation of their antimicrobial activity. Biotechnology Letters, 42, 231–240. https://doi.org/10.1007/s10529-019-02762-7

    Article  CAS  PubMed  Google Scholar 

  418. Oxide, Z., Azizi, S., Mohamad, R., & Shahri, M. M. (2017). Green microwave-assisted combustion synthesis of Schrad : Characterization and biomedical applications. Molecules, 22, 1–13. https://doi.org/10.3390/molecules22020301

    Article  CAS  Google Scholar 

  419. Vifta, R. L., Luhurningtyas, F. P., & Fajarwati, F. I. (2018). Characterization of nano chitosan-cucumber Suri ( Cucumis melo L .) seeds with sodium tripolyphosphate as crosslinker. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing. https://doi.org/10.1088/1757-899X/599/1/012024

    Article  Google Scholar 

  420. Otari, S. V., Patil, R. M., Ghosh, S. J., & Pawar, S. H. (2014). Green phytosynthesis of silver nanoparticles using aqueous extract of Manilkara zapota ( L.) seeds and its inhibitory action against Candida species. Materials Letters, 116, 367–369. https://doi.org/10.1016/j.matlet.2013.11.066

    Article  CAS  Google Scholar 

  421. Karmakar, M., Kumar, K., Sharanagat, V. S., & Dixit, A. (2015). Green synthesis and characterization of silver nanoparticle using Momordica charantia and Manilkara zapota seeds. Ecology, Environment and Conservation, 21, AS251–AS257.

    Google Scholar 

  422. Ajayi, I. A., Raji, A. A., & Ogunkunle, E. O. (2016). Green synthesis of silver nanoparticles from seed extracts of Cyperus esculentus and Butyrospermum paradoxum. IOSR Journal of Pharmacy and Biological Sciences, 10, 76–90. https://doi.org/10.9790/3008-10417690

    Article  Google Scholar 

  423. Bhattacharjee, S., Habib, F., Darwish, N., & Shanableh, A. (2021). Iron sul fi de nanoparticles prepared using date seed extract : Green synthesis, characterization and potential application for removal of cipro fl oxacin and chromium. Powder Technology, 380, 219–228. https://doi.org/10.1016/j.powtec.2020.11.055

    Article  CAS  Google Scholar 

  424. Aldayel, F. M., Alsobeg, M. S., & Khalifa, A. (2022). In vitro antibacterial activities of silver nanoparticles synthesised using the seed extracts of three varieties of Phoenix dactylifera, Brazilian. Journal of Biology, 82, 1–8.

    Google Scholar 

  425. Ansari, M. A. (2018). One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA, evidence-based complement. Alternative Medicine, 2018.

  426. Ozlem, K., & Usta, C. (2021). Rosa canina waste seed extract-mediated synthesis of silver nanoparticles and the evaluation of its antimutagenic action in Salmonella typhimurium. Materials Chemistry and Physics, 266, 124537. https://doi.org/10.1016/j.matchemphys.2021.124537

    Article  CAS  Google Scholar 

  427. Nanoparticles, S., Durio, U., Seed, Z., Sumitha, S., Vasanthi, S., Shalini, S., Chinni, S. V., Kathiresan, S., Ravichandran, V. (2018). Phyto-mediated photo catalysed green synthesis of extract : antimicrobial and cytotoxic activity and cytotoxic activity and photocatalytic applications, Molecules, 23. https://doi.org/10.3390/molecules23123311

  428. Nirmala, J. G., & Narendhirakannan, R. T. (2017). Vitis vinifera peel and seed gold nanoparticles exhibit chemopreventive potential, antioxidant activity and induce apoptosis through mutant p53, Bcl-2 and pan cytokeratin down-regulation in experimental animals. Biomedicine & Pharmacotherapy, 89, 902–917. https://doi.org/10.1016/j.biopha.2017.02.049

    Article  CAS  Google Scholar 

  429. Khalil, M. (2014). Biosynthesis of gold nanoparticles using extract of grape ( Vitis Vinifera ) Leaves and Seeds. Progress in Nanotechnology and Nanomaterials, 3, 1–12.

    Google Scholar 

  430. Al-otibi, F., Alkhudhair, S. K., Alharbi, R. I., Al-askar, A. A., Aljowaie, R. M., Al-shehri, S. (2021). The antimicrobial activities of silver nanoparticles from aqueous extract of grape seeds against pathogenic bacteria and fungi, Molecules, 26.

  431. P, R., & Padma, P. R. (2016). Biosynthesis and bioactivity of silver nanobioconjugates from grape (Vitis Vinifera) seeds and its active component resveratrol. International Journal of Pharmaceutical Sciences and Research, 7, 4253–4262. https://doi.org/10.13040/IJPSR.0975-8232.7(10).4253-62

    Article  Google Scholar 

  432. Vardhana, J. (2022). Biogenic synthesis of copper nanoparticles using Vitis vinifera L . seed extract , and its in-vitro biological applications, Journal of Plant Biochemistry and Biotechnology, 5. https://doi.org/10.1007/s13562-022-00766-5

  433. Riahi, Z., Priyadarshi, R., Rhim, J., & Bagheri, R. (2021). Food hydrocolloids gelatin-based functional films integrated with grapefruit seed extract and TiO 2 for active food packaging applications. Food Hydrocolloids, 112, 106314. https://doi.org/10.1016/j.foodhyd.2020.106314

    Article  CAS  Google Scholar 

  434. Dharmalingam, K., & Anandalakshmi, R. (2020). Functionalization of cellulose-based nanocomposite hydrogel films with zinc oxide complex and grapefruit seed extract for potential applications in treating chronic wounds. Polymer (Guildf), 202, 122620. https://doi.org/10.1016/j.polymer.2020.122620

    Article  CAS  Google Scholar 

  435. Roy, S. (2021). Cellulose nanofiber-based nanocomposite films reinforced with zinc oxide nanorods and grapefruit seed extract related papers. Nanomaterials, 11, 877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Roy, S., & Rhim, J. (2021). Fabrication of carboxymethyl cellulose / agar-based functional films hybridized with Alizarin and grapefruit seed extract. ACS Applied Bio Materials, 4, 4470–4478. https://doi.org/10.1021/acsabm.1c00214

    Article  CAS  PubMed  Google Scholar 

  437. Roy, S., & Rhim, J. (2021). Food Hydrocolloids Fabrication of pectin / agar blended functional film : Effect of reinforcement of melanin nanoparticles and grapefruit seed extract. Food Hydrocolloids, 118, 106823. https://doi.org/10.1016/j.foodhyd.2021.106823

    Article  CAS  Google Scholar 

  438. Jaiswal, L., Shankar, S., & Rhim, J. (2019). Carrageenan-based functional hydrogel fi lm reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydrate Polymers, 224, 115191. https://doi.org/10.1016/j.carbpol.2019.115191

    Article  CAS  PubMed  Google Scholar 

  439. Silva, M. P., Thomazini, M., Holkem, A. T., Pinho, L. S., Genovese, M. I., & Fávaro-trindade, C. S. (2019). Production and characterization of solid lipid microparticles loaded with guaraná ( Paullinia cupana ) seed extract. Food Research International, 123, 144–152. https://doi.org/10.1016/j.foodres.2019.04.055

    Article  CAS  PubMed  Google Scholar 

  440. Valencia-Leal, S. A. (2012). Evaluation of guava seeds ( Psidium Guajava ) as a low- cost biosorbent for the removal of fluoride from aqueous solutions. Engineering, 5, 69–76.

    Google Scholar 

  441. A, A., Asomie, J. (2021). Biogenic synthesis and characterization of Silver nanoparticles from seed extract of Spondia mombins and screening of its antibacterial activity, 12: 175–185.

  442. Selvi, S., & Jayamani, N. (2021). Stannic oxide nanoparticles : Sono-synthesis using seed extract of Ziziphus zizyphus and its photocatalytic activity. Journal of Materials Science: Materials in Electronics, 32, 25433–25443. https://doi.org/10.1007/s10854-021-07003-0

    Article  CAS  Google Scholar 

  443. Chandhru, M., Logesh, R., Rani, S. K., Ahmed, N., & Vasimalai, N. (2019). Biocatalysis and Agricultural Biotechnology One-pot green route synthesis of silver nanoparticles from jack fruit seeds and their antibacterial activities with escherichia coli and salmonella bacteria. Biocatalysis and Agricultural Biotechnology, 20, 101241. https://doi.org/10.1016/j.bcab.2019.101241

    Article  Google Scholar 

  444. Jagtap, U. B., & Bapat, V. A. (2013). Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops and Products, 46, 132–137. https://doi.org/10.1016/j.indcrop.2013.01.019

    Article  CAS  Google Scholar 

  445. Kanth, N., Kumar, B., Ranjan, S., & Dasgupta, N. (2018). Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract : Evaluation of its biological applications. Materials Science and Engineering C, 93, 191–205. https://doi.org/10.1016/j.msec.2018.07.075

    Article  CAS  Google Scholar 

  446. Venkateswarlu, S., Kumar, B. N., Prasad, C. H., Venkateswarlu, P., Jyothi, N. V. V. (2014). Bio-inspired green synthesis of Fe 3 O 4 spherical magnetic nanoparticles using Syzygium cumini seed extract, Physica B: Condensed Matter, 1–5. https://doi.org/10.1016/j.physb.2014.04.031

  447. Banerjee, J. (2015). Biosynthesis of silver nanoparticles from Syzygium cumini ( L.) seed extract and evaluation of their in vitro antioxidant activities ( L.) seed extract and evaluation of their in vitro antioxidant. Digest Journal of Nanomaterials and Biostructures, 6, 961–968.

    Google Scholar 

  448. Khan, F. U., Chen, Y., Khan, N. U., & Haq, Z. U. (2016). Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. Journal of Photochemistry and Photobiology B: Biology, 164, 344–351. https://doi.org/10.1016/j.jphotobiol.2016.09.042

    Article  CAS  PubMed  Google Scholar 

  449. Chankaew, C., Tapala, W., Grudpan, K., & Rujiwatra, A. (2019). Microwave synthesis of ZnO nanoparticles using longan seeds biowaste and their efficiencies in photocatalytic decolorization of organic dyes. Environmental Science and Pollution Research International, 26, 17548–17554.

    Article  CAS  PubMed  Google Scholar 

  450. Sharma, M., Yadav, S., Ganesh, N., Mohan, M., & Shalini, S. (2019). Biofabrication and characterization of flavonoid - loaded Ag, Au, Au – Ag bimetallic nanoparticles using seed extract of the plant Madhuca longifolia for the enhancement in wound healing bio - efficacy. Progress in Biomaterials, 8, 51–63. https://doi.org/10.1007/s40204-019-0110-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Journal, A. I., Donga, S., & Chanda, S. (2021). Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system ). Artificial Cells, Nanomedicine, and Biotechnology, 49, 292–302. https://doi.org/10.1080/21691401.2021.1899193

    Article  CAS  Google Scholar 

  452. Journal, A. I., Donga, S., Bhadu, G. R., & Chanda, S. (2020). Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract. Artificial Cells, Nanomedicine, and Biotechnology, 48, 1315–1325. https://doi.org/10.1080/21691401.2020.1843470

    Article  CAS  Google Scholar 

  453. Mohammadi, F., Bayrami, A., Habibi-yangjeh, A., & Rahim, S. (2019). A comprehensive study on antidiabetic and antibacterial activities of ZnO nanoparticles biosynthesized using Silybum marianum L seed extract. Materials Science and Engineering C, 97, 397–405. https://doi.org/10.1016/j.msec.2018.12.058

    Article  CAS  Google Scholar 

  454. Morales-lozoya, V., Espinoza-gómez, H., Flores-lópez, L. Z., Sotelo-barrera, E. L., Núñez-rivera, A., Cadena-nava, R. D., Alonso-nuñez, G., & Rivero, I. A. (2021). Applied surface science study of the effect of the different parts of Morinda citrifolia L . ( noni ) on the green synthesis of silver nanoparticles and their antibacterial activity. Applied Surface Science, 537, 147855. https://doi.org/10.1016/j.apsusc.2020.147855

    Article  CAS  Google Scholar 

  455. Khadri, H., Alzohairy, M., Janardhan, A., Kumar, A. P., & Narasimha, G. (2013). Green synthesis of silver nanoparticles with high fungicidal activity from olive seed extract. Advances in Nanoparticles, 2, 241–246.

    Article  Google Scholar 

  456. Dimens, N., Issue, S. (2014). Green synthesis of silver nanoparticles using seed aqueous extract of Olea europaea, 5: 575–581.

  457. Ahmad, M., & Zafar, M. (2021). Conversion of waste seed oil of Citrus aurantium into methyl ester via green and recyclable nanoparticles of zirconium oxide in the context of circular bioeconomy approach. Waste Management, 136, 310–320. https://doi.org/10.1016/j.wasman.2021.10.001

    Article  CAS  PubMed  Google Scholar 

  458. Sandhya, J., Kalaiselvam, S. (2020). Biogenic synthesis of magnetic iron oxide nanoparticles using inedible borassus flabellifer seed coat : characterization , antimicrobial , antioxidant activity and in vitro cytotoxicity analysis, Materials Research Expres, 7.

  459. Mohammad, I. (2019). Gold nanoparticle : An efficient carrier for MCP I of Carica papaya seeds extract as an innovative male contraceptive in albino rats. Journal of Drug Delivery Science and Technology, 52, 942–956. https://doi.org/10.1016/j.jddst.2019.06.010

    Article  CAS  Google Scholar 

  460. Subbaiah, V., Wen, H., Gollakota, A. R. K., Wen, J., Shu, C., Lin, K. A., Tian, Z., Wen, J., Mallikarjuna, G., & Zyryanov, G. V. (2022). Magnetic Fe 3 O 4 nanoparticles loaded papaya ( Carica papaya L .) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye ( Congo Red ) from liquid phase : Evaluation of adsorption properties. Journal of Molecular Liquids, 345, 118255. https://doi.org/10.1016/j.molliq.2021.118255

    Article  CAS  Google Scholar 

  461. Mala, S., Latha, H. K. E., Udayakumar, A., Lalithamba, H. S., Latha, H. K. E., Udayakumar, A., & Green, H. S. L. (2021). Green synthesis of ITO nanoparticles using Carica papaya seed extract : Impact of annealing temperature on microstructural and electrical properties of ITO thin films for sensor applications. Materials Technology, 00, 1–7. https://doi.org/10.1080/10667857.2021.1954278

    Article  CAS  Google Scholar 

  462. Surura, R. I. (2021). Green synthesis of silver nanoparticles from papaya seed extracts with alkaloid content for antibacterial application. Jurnal Teknologi Laboratorium, 10, 75–86. https://doi.org/10.29238/teknolabjournal.v10i2.315

    Article  CAS  Google Scholar 

  463. Shantini, K., Nurhanan, A. R., & Tham, L. (2020). Ecofriendly production of silver nanoparticles from the seeds of Carica papaya and its larvicidal and antibacterial efficacy against some selected bacterial pathogens. In: IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/805/1/012038

    Article  Google Scholar 

  464. Krambeck, K., Silva, V., Silva, R., Fernandes, C., Cagide, F., Borges, F., Santos, D., Otero-espinar, F., Lobo, S., Amaral, H. (2021). Design and characterization of Nanostructured lipid carriers ( NLC ) and Nanostructured lipid carrier-based hydrogels containing Passiflora edulis seeds oil, International Journal of Pharmaceutics, 600. https://doi.org/10.1016/j.ijpharm.2021.120444

  465. Krambeck, K., Santos, D., Otero-espinar, F., Lobo, J. M. S., & Amaral, M. H. (2020). lipid nanocarriers containing Passi fl ora edulis seeds oil intended for skin application. Colloids Surfaces B: Biointerfaces, 193, 111057. https://doi.org/10.1016/j.colsurfb.2020.111057

    Article  CAS  PubMed  Google Scholar 

  466. Sadat, M., Khalilzadeh, M. A., & Mohseni, M. (2020). Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-Starch nanocomposite and characterization of mechanical properties of the films. Biocatalysis and Agricultural Biotechnology, 25, 101569. https://doi.org/10.1016/j.bcab.2020.101569

    Article  Google Scholar 

  467. Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., & Abbas, A. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Integrative Medicine Research, 8, 6115–6124. https://doi.org/10.1016/j.jmrt.2019.10.006

    Article  CAS  Google Scholar 

  468. Muthu, K., Rajeswari, S., Akilandaeaswari, B., & Nagasundari, S. M. (2020). Synthesis, characterisation and photocatalytic activity of silver nanoparticles stabilised by Punica granatum seeds extract. Materials Technology, 00, 1–10. https://doi.org/10.1080/10667857.2020.1786786

    Article  CAS  Google Scholar 

  469. Rishi, N. (2011). Phytofabrication of silver nanoparticles using pomegranate fruit seeds. International Journal of Nanomaterials and Biostructures, 1, 17–21.

    Google Scholar 

  470. Elahi, B., Mirzaee, M., Darroudi, M., & Kazemi, R. (2020). Role of oxygen vacancies on photo-catalytic activities of green synthesized ceria nanoparticles in Cydonia oblonga miller seeds extract and evaluation of its cytotoxicity effects. Journal of Alloys and Compounds, 816, 152553. https://doi.org/10.1016/j.jallcom.2019.152553

    Article  CAS  Google Scholar 

  471. Zia, F., Ghafoor, N., Iqbal, M., & Mehboob, S. (2016). Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Applied Nanoscience, 6, 1023–1029. https://doi.org/10.1007/s13204-016-0517-z

    Article  CAS  Google Scholar 

  472. Rahmani, R., Gharanfoli, M., Gholamin, M., & Darroudi, M. (2019). Green synthesis of 99m Tc-labeled-Fe 3 O 4 nanoparticles using Quince seeds extract and evaluation of their cytotoxicity and biodistribution in rats. Journal of Molecular Structure, 1196, 394–402. https://doi.org/10.1016/j.molstruc.2019.06.076

    Article  CAS  Google Scholar 

  473. Witayaudom, P., & Klinkesorn, U. (2017). Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier ( NLC ) prepared from rambutan ( Nephelium lappaceum L.) kernel fat. Journal of Colloid and Interface Science, 505, 1082–1092. https://doi.org/10.1016/j.jcis.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  474. Niculae, G., Lacatusu, I., Badea, N., Stan, R., Vasile, B. S., & Meghea, A. (2014). Rice bran and raspberry seed oil-based nanocarriers with self-antioxidative properties as safe photoprotective formulations. Photochemical & Photobiological Sciences, 13, 703–716. https://doi.org/10.1039/c3pp50290b

    Article  CAS  Google Scholar 

  475. Ginting, M. H. S., & Hasibuan, R. (2021). Development and characterization of bioplastic film from salacca zalacca seed starch. In: OP Conference Series: Materials Science and Engineering, IOP Publishing. https://doi.org/10.1088/1757-899X/1117/1/012020

    Article  Google Scholar 

  476. Anand, H., Kumar, K., Kumar, B., Mohan, K., Sai, T., Madhiyazhagan, P., & Ranjan, A. (2014). Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 13–18. https://doi.org/10.1016/j.saa.2014.03.024

    Article  CAS  Google Scholar 

  477. Vimala, G., Thilaga, M., Veni, T., Devi, K., Gopalarathinam, K. (2020). Larvicidal activity of aqueous Mimusops elengi seeds-synthesized silver nanoparticles against Aedes aegypti and Qulex quinquefasciatus, 30 ~ International Journal of Mosquito Research, 7: 30–36. www.dipterajournal.com

  478. Kiran Kumar, H. A., Mandal, B. K., Mohan Kumar, K., babu Maddinedi, S., Sai Kumar, T., Madhiyazhagan, P., & Ghosh, A. R. (2014). Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 13–18. https://doi.org/10.1016/j.saa.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  479. Singh, P., Singh, R. B., Singh, J. (2021). Tunable electrochemistry and efficient antibacterial activity of plant-mediated copper oxide nanoparticles synthesized by Annona squamosa seed extract for agricultural utility †, RSC Advances, 18050–18060. https://doi.org/10.1039/d1ra02382a

  480. Jose, V., Raphel, L., & Paulson, K. S. A. (2021). Green synthesis of silver nanoparticles using Annona squamosa L. seed extract : characterization, photocatalytic and biological activity assay. Bioprocess and Biosystems Engineering, 44, 1819–1829. https://doi.org/10.1007/s00449-021-02562-2

    Article  CAS  PubMed  Google Scholar 

  481. Ware, P. S. (2020). Biosynthesis and characterization of zno nanoparticals by annona reticulata seeds, European Journal of Pharmaceutical and Medical Research, 7.

  482. Maciel, G. S., Trindade, R. C. P., Basílio, I. D., Euzébio, A., Santana, G., Pedro, J., Adriel, L., Santos, T., Silva, E. S., De Freitas, J. D., & Ticiano, G. (2019). Industrial crops & products microencapsulation of annona squamosa L. ( Annonaceae ) seed extract and lethal toxicity to Tetranychus urticae ( Koch , 1836) ( Acari : Tetranychidae ). Industrial Crops and Products, 127, 251–259. https://doi.org/10.1016/j.indcrop.2018.10.084

    Article  Google Scholar 

  483. Bartkowiak, A., Roy, S. (2022). Alginate biofunctional films modified with melanin from watermelon seeds and zinc oxide / silver nanoparticles.

  484. Yu, H.-L., Xu, J.-H., Lu, W.-Y., & Lin, G.-Q. (2007). Identification, purification and characterization of β-glucosidase from apple seed as a novel catalyst for synthesis of O-glucosides. Enyzme and Microbial Technology, 40, 354–361. https://doi.org/10.1016/j.enzmictec.2006.05.004

    Article  CAS  Google Scholar 

  485. Zia, M. A., Kousar, M., Ahmed, I., Iqbal, H. M. N., & Abbas, R. Z. (2011). Comparative study of peroxidase purification from apple and orange seeds, African. Journal of Biotechnology, 10, 6300–6303. https://doi.org/10.5897/AJB10.2675

    Article  CAS  Google Scholar 

  486. Wang, X.-L., Hu, Z.-Y., You, C.-X., Kong, X.-Z., & Shi, X.-P. (2013). Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed. Plant Science, 210, 36–45. https://doi.org/10.1016/j.plantsci.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  487. Mirza, U. S., Zia, M. A., Rasul, S., & Iftikhar, T. (2013). Comparative study on the novel amylases purified from apple and orange seeds. Pakistan Journal of Botany, 45, 2075–2078.

    Google Scholar 

  488. Ryan, S. N., McManus, M. T., & Laing, W. A. (2003). Identification and characterisation of proteinase inhibitors and their genes from seeds of apple (Malus domestica). Journal of Biochemistry, 134, 31–42. https://doi.org/10.1093/jb/mvg110

    Article  CAS  PubMed  Google Scholar 

  489. Podstolski, A., & Lewak, S. (1970). Specific phloridzin glucosidases from seeds and leaves of apple tree. Phytochemistry, 9, 289–296. https://doi.org/10.1016/S0031-9422(00)85137-7

    Article  CAS  Google Scholar 

  490. Ninomiya, K., Kawatani, K., Tanaka, S., Kawata, S., & Makisumi, S. (1982). Purification and properties of a proline iminopeptidase from apricot seeds. Journal of Biochemistry, 92, 413–421. https://doi.org/10.1093/oxfordjournals.jbchem.a133948

    Article  CAS  PubMed  Google Scholar 

  491. Ninomiya, K., Tanaka, S., Kawata, S., & Makisumi, S. (1981). Purification and properties of an aminopeptidase from seeds of Japanese apricot. Journal of Biochemistry, 89, 193–201.

    Article  CAS  PubMed  Google Scholar 

  492. Zhang, H., Xue, J., Zhao, H., Zhao, X., Xue, H., Sun, Y., & Xue, W. (2018). Isolation and structural characterization of antioxidant peptides from degreased apricot seed kernels. Journal of AOAC International, 101, 1661–1663. https://doi.org/10.5740/jaoacint.17-0465

    Article  CAS  PubMed  Google Scholar 

  493. Mutlu, M., & Hayaloglu, A. A. (2022). Determination of bioactivity of seed protein hydrolysates and amygdalin content for some apricot (Prunus armeniaca L) varieties grown in Malatya, Turkey. Food Analytica Group, 3, 10–19. https://doi.org/10.57252/10.57252.2022.2

    Article  Google Scholar 

  494. Banerjee, P. N., & Bhatt, S. (2007). Structural studies of a new acidic polysaccharide of apricot seeds. Natural Product Research, 21, 507–521. https://doi.org/10.1080/14786410601130455

    Article  CAS  PubMed  Google Scholar 

  495. Villarreal-Lara, R., Rodríguez-Sánchez, D. G., Díaz De La Garza, R. I., García-Cruz, M. I., Castillo, A., Pacheco, A., & Hernández-Brenes, C. (2019). Purified avocado seed acetogenins: Antimicrobial spectrum and complete inhibition of Listeria monocytogenes in a refrigerated food matrix. CyTA - Journal of Food, 17, 228–239. https://doi.org/10.1080/19476337.2019.1575908

    Article  CAS  Google Scholar 

  496. Khan, M. B., Khan, H., Shah, M. U., & Khan, S. (2016). Purification and biochemical properties of SDS-stable low molecular weight alkaline serine protease from Citrullus colocynthis. Natural Product Research, 30, 935–940. https://doi.org/10.1080/14786419.2015.1079909

    Article  CAS  PubMed  Google Scholar 

  497. Ramzi, S., & Sahragard, A. (2013). A lectin extracted from Citrullus colocynthis L. (Cucurbitaceae) inhibits digestive α-amylase of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae). Journal of Entomological and Acarological Research, 45, e20. https://doi.org/10.4081/jear.2013.e20

    Article  Google Scholar 

  498. Guo, P., Qi, Y., Zhu, C., & Wang, Q. (2015). Purification and identification of antioxidant peptides from Chinese cherry (Prunus pseudocerasus Lindl.) seeds. Journal of Functional Foods, 19, 394–403. https://doi.org/10.1016/j.jff.2015.09.003

    Article  CAS  Google Scholar 

  499. Poulton, J. E., Thomas, M. A., Ottwell, K. K., & McCormick, S. J. (1985). Partial purification and characterization of a β-N-acetylhexosaminidase from black cherry (prunus serotina EHRH.) seeds. Plant Science, 42, 107–114. https://doi.org/10.1016/0168-9452(85)90150-5

    Article  CAS  Google Scholar 

  500. Wu, H.-C., & Poulton, J. E. (1991). Immunocytochemical localization of mandelonitrile lyase in mature black cherry (Prunus serotina Ehrh.) Seeds 1. Plant Physiology, 96, 1329–1337. https://doi.org/10.1104/pp.96.4.1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  501. Kuroki, G. W., & Poulton, J. E. (1987). Isolation and characterization of multiple forms of prunasin hydrolase from black cherry (Prunus serotina Ehrh.) seeds. Archives of Biochemistry and Biophysics, 255, 19–26. https://doi.org/10.1016/0003-9861(87)90290-6

    Article  CAS  PubMed  Google Scholar 

  502. Zheng, L., & Poulton, J. E. (1995). Temporal and spatial expression of amygdalin hydrolase and (R)-(+)-mandelonitrile lyase in black cherry seeds. Plant Physiology, 109, 31–39. https://doi.org/10.1104/pp.109.1.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  503. Li, C. P., Swain, E., & Poulton, J. E. (1992). Prunus serotina amygdalin hydrolase and prunasin hydrolase 1: Purification, N-terminal sequencing, and antibody production. Plant Physiology, 100, 282–290. https://doi.org/10.1104/pp.100.1.282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. Cooper, J. I., Edwards, M. L., Bradley, J. (1986). Protein A - alkaline phosphate in elisa detection of cherry leaf roll and prune dwarf viruses in cherry seeds, In: Acta Horticulturae, International Society for Horticultural Science (ISHS), Leuven, Belgium, pp. 305–306. https://doi.org/10.17660/ActaHortic.1986.193.50

  505. Chen, L., Li, N., & Zong, M.-H. (2012). A glucose-tolerant β-glucosidase from Prunus domestica seeds: Purification and characterization. Process Biochemistry, 47, 127–132. https://doi.org/10.1016/j.procbio.2011.10.023

    Article  CAS  Google Scholar 

  506. Waln, K. T., & Poulton, J. E. (1987). Partial purification and characterization of an α-d-mannosidase from mature seeds of Prunus serotina Ehrh. Plant Science, 53, 1–10. https://doi.org/10.1016/0168-9452(87)90171-3

    Article  CAS  Google Scholar 

  507. Andrews, P. K., & Li, S. (1994). Partial purification and characterization of.beta.-D-Galactosidase from sweet cherry, a Nonclimacteric Fruit. Journal of Agricultural and Food Chemistry, 42, 2177–2182. https://doi.org/10.1021/jf00046a019

    Article  CAS  Google Scholar 

  508. Bi, Y., Zhu, C., Wang, Z., Luo, H., Fu, R., Zhao, X., Zhao, X., & Jiang, L. (2019). Purification and characterization of a glucose-tolerant β-glucosidase from black plum seed and its structural changes in ionic liquids. Food Chemistry, 274, 422–428. https://doi.org/10.1016/j.foodchem.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  509. Poulton, J. E., & Li, C. P. (1994). Tissue level compartmentation of (R)-amygdalin and amygdalin hydrolase prevents large-scale cyanogenesis in undamaged prunus seeds. Plant Physiology, 104, 29–35. https://doi.org/10.1104/pp.104.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  510. Ambigaipalan, P., Al-Khalifa, A. S., & Shahidi, F. (2015). Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. Journal of Functional Foods, 18, 1125–1137. https://doi.org/10.1016/j.jff.2015.01.021

    Article  CAS  Google Scholar 

  511. Ishrud, O., Zahid, M., Ahmad, V. U., & Pan, Y. (2001). Isolation and structure analysis of a glucomannan from the seeds of libyan dates. Journal of Agriculture and Food Chemistry, 49, 3772–3774. https://doi.org/10.1021/jf0103976

    Article  CAS  Google Scholar 

  512. Amid, B. T., & Mirhosseini, H. (2012). Effect of different purification techniques on the characteristics of heteropolysaccharide-protein biopolymer from durian (Durio zibethinus) Seed. Molecules, 17, 10875–10892. https://doi.org/10.3390/molecules170910875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Amid, B. T., & Mirhosseini, H. (2012). Emulsifying activity, particle uniformity and rheological properties of a natural polysaccharide-protein biopolymer from durian seed. Food Biophysics, 7, 317–328. https://doi.org/10.1007/s11483-012-9270-3

    Article  Google Scholar 

  514. Kami, M., Kampus, K., Lumpur, K. (2013). Universiti Putra Malaysia Universiti Putra Malaysia, Factors Influ. Contin. Intent. Towar. on- Demand Ridesharing Serv. 2–3.

  515. Citores, L., Iglesias, R., Muñoz, R., Ferreras, J. M., Jimenez, P., & Girbes, T. (1994). Elderberry (Sambucus nigra L.) seed proteins inhibit protein synthesis and display strong immunoreactivity with rabbit polyclonal antibodies raised against the type 2 ribosome-inactivating protein nigrin b. Journal of Experimental Botany, 45, 513–516. https://doi.org/10.1093/jxb/45.4.513

    Article  CAS  Google Scholar 

  516. Peumans, W. J., Kellens, J. T. C., Allen, A. K., & Van Damme, E. J. M. (1991). Isolation and characterization of a seed lectin from elderberry (Sambucus nigra L.) and its relationship to the bark lectins. Carbohydrate Research, 213, 7–17. https://doi.org/10.1016/S0008-6215(00)90593-7

    Article  CAS  PubMed  Google Scholar 

  517. Wu, L., & Lu, Y. (2004). Electrophoretic method for the identification of a haze-active protein in grape seeds. Journal of Agriculture and Food Chemistry, 52, 3130–3135. https://doi.org/10.1021/jf0352982

    Article  CAS  Google Scholar 

  518. Zhou, T., Li, Q., Zhang, J., Bai, Y., & Zhao, G. (2010). Purification and characterization of a new 11S globulin-like protein from grape (Vitis vinifera L.) seeds. European Food Research and Technology, 230, 693–699. https://doi.org/10.1007/s00217-009-1211-0

    Article  CAS  Google Scholar 

  519. Gazzola, D., Vincenzi, S., Gastaldon, L., Tolin, S., Pasini, G., & Curioni, A. (2014). The proteins of the grape (Vitis vinifera L.) seed endosperm: Fractionation and identification of the major components. Food Chemistry, 155, 132–139. https://doi.org/10.1016/j.foodchem.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  520. Tavares, L. S., Rettore, J. V., Freitas, R. M., Porto, W. F., do N Duque, A. P., de L Singulani, J., Silva, O. N., de L Detoni, M., Vasconcelos, E. G., Dias, S. C., Franco, O. L., & de O Santos, M. (2012). Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides, 37, 294–300. https://doi.org/10.1016/j.peptides.2012.07.017

    Article  CAS  PubMed  Google Scholar 

  521. Pelegrini, P. B., Murad, A. M., Silva, L. P., dos Santos, R. C. P., Costa, F. T., Tagliari, P. D., Bloch, C., Jr., Noronha, E. F., Miller, R. N. G., & Franco, O. L. (2008). Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides, 29, 1271–1279. https://doi.org/10.1016/j.peptides.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  522. Gupta, N., & Srivastava, P. S. (1998). Purification and characterization of a lectin from seeds and cotyledonary callus of Zizyphus mauritiana. Plant Cell Reports, 17, 552–556. https://doi.org/10.1007/s002990050440

    Article  CAS  PubMed  Google Scholar 

  523. Chai, T.-T., Xiao, J., Mohana Dass, S., Teoh, J.-Y., Ee, K.-Y., Ng, W.-J., & Wong, F.-C. (2021). Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chemistry, 340, 127876. https://doi.org/10.1016/j.foodchem.2020.127876

    Article  CAS  PubMed  Google Scholar 

  524. Bhat, A. V., & Pattabiraman, T. N. (1989). Protease inhibitors from jackfruit seed (Artocarpus integrifolia). Journal of Biosciences, 14, 351–365. https://doi.org/10.1007/BF02703421

    Article  CAS  Google Scholar 

  525. Kabir, S. (1998). Jacalin: a jackfruit (Artocarpus heterophyllus) seed-derived lectin of versatile applications in immunobiological research1Dedicated to the late Professor G.G.S. Dutton, Department of Chemistry, The University of British Columbia, Vancouver, Canada1. Journal of Immunological Methods, 212, 193–211. https://doi.org/10.1016/S0022-1759(98)00021-0

    Article  CAS  PubMed  Google Scholar 

  526. Binita, K., Kumar, S., Sharma, V. K., Sharma, V., & Yadav, S. (2014). Proteomic Identification of Syzygium cumini Seed Extracts by MALDI-TOF/MS. Applied Biochemistry and Biotechnology, 172, 2091–2105. https://doi.org/10.1007/s12010-013-0660-x

    Article  CAS  PubMed  Google Scholar 

  527. Alagesan, K., Thennarasu, P., Kumar, V., Sankarnarayanan, S., Balsamy, T. (2012). Identification of α-glucosidase inhibitors from psidium guajava leaves and Syzygium cumini Linn. Seeds, International Journal of Pharmaceutical Sciences and Research, 3: 316–322. http://www.ijpsr.info/docs/IJPSR12-03-02-009.pdf

  528. Narayanan, M., Baskaran, D., & Sampath, V. (2022). Experimental design of hydrotropic extraction for recovery of bioactive limonin from lemon (Citrus limon L.) seeds. Separation Science and Technology, 57, 707–718. https://doi.org/10.1080/01496395.2021.1943683

    Article  CAS  Google Scholar 

  529. Bose, P. P., Bhattacharjee, S., Singha, S., Mandal, S., Mondal, G., Gupta, P., & Chatterjee, B. P. (2016). A glucose/mannose binding lectin from litchi (Litchi chinensis) seeds: Biochemical and biophysical characterizations. Biochemistry and Biophysics Reports, 6, 242–252. https://doi.org/10.1016/j.bbrep.2016.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  530. Saisavoey, T., Sangtanoo, P., Reamtong, O., & Karnchanatat, A. (2018). Anti-inflammatory effects of lychee (Litchi chinensis Sonn.) seed peptide hydrolysate on RAW 264.7 macrophage cells. Food Biotechnology, 32, 79–94. https://doi.org/10.1080/08905436.2018.1443821

    Article  CAS  Google Scholar 

  531. Mhatre, S. V., Bhagit, A. A., & Yadav, R. P. (2019). Proteinaceous pancreatic lipase inhibitor from the seed of Litchi chinensis. Food Technology and Biotechnology, 57, 113–118. https://doi.org/10.17113/ftb.57.01.19.5909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  532. Tian, W.-M., Peng, S.-Q., Wang, X.-C., Shi, M.-J., Chen, Y.-Y., & Hu, Z.-H. (2007). Vegetative storage protein in Litchi chinensis, a subtropical evergreen fruit tree, possesses trypsin inhibitor activity. Annals of Botany, 100, 1199–1208. https://doi.org/10.1093/aob/mcm216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  533. Li, N., Lin, Z., Chen, W., Zheng, Y., Ming, Y., Zheng, Z., Huang, W., Chen, L., Xiao, J., & Lin, H. (2018). Corilagin from longan seed: Identification, quantification, and synergistic cytotoxicity on SKOv3ip and hey cells with ginsenoside Rh2 and 5-fluorouracil. Food and Chemical Toxicology, 119, 133–140. https://doi.org/10.1016/j.fct.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  534. Lasquite, L. M. J., Enopia, C. B., Senangote, F. E. R., Sabarre, J., Danilo, C., & Yagonia-Lobarbio, F. J. C. (2021). Partial purification of polyphenol oxidase (PPO) from mango seed kernel (MSK) using alcohol/salt-based aqueous two-phase system (ATPS). Current Biotechnology, 10, 88–100. https://doi.org/10.2174/2211550110666210603105630

    Article  CAS  Google Scholar 

  535. Hawkins, D. J., & Kridl, J. C. (1998). Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. The Plant Journal, 13, 743–752. https://doi.org/10.1046/j.1365-313X.1998.00073.x

    Article  CAS  PubMed  Google Scholar 

  536. Pferschy-Wenzig, E.-M., Atanasov, A. G., Malainer, C., Noha, S. M., Kunert, O., Schuster, D., Heiss, E. H., Oberlies, N. H., Wagner, H., Bauer, R., & Dirsch, V. M. (2014). Identification of isosilybin A from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. Journal of Natural Products, 77, 842–847. https://doi.org/10.1021/np400943b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  537. Ng, T. B., & Parkash, A. (2002). Hispin, a novel ribosome inactivating protein with antifungal activity from hairy melon seeds. Protein Expression and Purification, 26, 211–217. https://doi.org/10.1016/S1046-5928(02)00511-9

    Article  CAS  PubMed  Google Scholar 

  538. Mohamed, T. M., Mohamed, M. A., Mohamed, S. A., & Fahmy, A. S. (1999). Purification of urease from water melon seeds for clinical diagnostic kits. Bioresource Technology, 68, 215–223. https://doi.org/10.1016/S0960-8524(99)00157-1

    Article  CAS  Google Scholar 

  539. Chen, L., Li, D., Zhu, C., Rong, Y., & Zeng, W. (2021). Characterisation of antioxidant peptides from enzymatic hydrolysate of golden melon seeds protein. International Journal of Food Science & Technology, 56, 5904–5912. https://doi.org/10.1111/ijfs.15250

    Article  CAS  Google Scholar 

  540. Adeseko, C. J., & Fatoki, T. H. (2021). Isolation and partial purification of polyphenol oxidase from seed of melon (Cucumeropsis edulis). Biointerface Research in Applied Chemistry, 11, 9085–9096. https://doi.org/10.33263/BRIAC112.90859096

    Article  CAS  Google Scholar 

  541. Campos, D. C. O., Costa, A. S., Lima, A. D. R., Silva, F. D. A., Lobo, M. D. P., Monteiro-Moreira, A. C. O., Moreira, R. A., Leal, L. K. A. M., Miron, D., Vasconcelos, I. M., & Oliveira, H. D. (2016). First isolation and antinociceptive activity of a lipid transfer protein from noni (Morinda citrifolia) seeds. International Journal of Biological Macromolecules, 86, 71–79. https://doi.org/10.1016/j.ijbiomac.2016.01.029

    Article  CAS  PubMed  Google Scholar 

  542. Nogueira, F. C., Costa, A. S., de Carvalho Oliveira Campos, D., Silva, R. G. G., Franco, Á. X., Soares, P. M. G., de Oliveira-Rocha, R., Damasceno, R. O. S., de Alencar, N. M. N., de Souza, M. H. L. P., & de Oliveira, H. D. (2022). Peptide isolated from noni seeds confers gastroprotective effect by improving inflammation and oxidative stress in mice. International Journal of Peptide Research and Therapeutics, 28, 131. https://doi.org/10.1007/s10989-022-10440-y

    Article  Google Scholar 

  543. de Oliveira, J. D., Siqueira Junior, C. L. (2022). A new milk-clotting enzyme from noni seeds (Morinda citrifolia L) , Hoehnea, 49.

  544. Ross, J. H. E., Sanchez, J., Millan, F., & Murphy, D. J. (1993). Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea americana). Plant Science, 93, 203–210. https://doi.org/10.1016/0168-9452(93)90050-A

    Article  CAS  Google Scholar 

  545. de Dios Alché, J., Jiménez-López, J. C., Wang, W., Castro-López, A. J., & Rodríguez-García, M. I. (2006). Biochemical characterization and cellular localization of 11S type storage proteins in olive (Olea europaea L.) Seeds. Journal of Agricultural and Food Chemistry, 54, 5562–5570. https://doi.org/10.1021/jf060203s

    Article  CAS  PubMed  Google Scholar 

  546. Vásquez-Villanueva, R., Muñoz-Moreno, L., José Carmena, M., Luisa Marina, M., & Concepción García, M. (2018). In vitro antitumor and hypotensive activity of peptides from olive seeds. Journal of Functional Foods, 42, 177–184. https://doi.org/10.1016/j.jff.2017.12.062

    Article  CAS  Google Scholar 

  547. Mazloomi, S. N., Mora, L., Aristoy, M. C., Mahoonak, A. S., Ghorbani, M., Houshmand, G., Toldrá, F. (2020). Impact of simulated gastrointestinal digestion on the biological activity of an alcalase hydrolysate of orange seed (Siavaraze, Citrus sinensis) by-Products. https://doi.org/10.3390/foods9091217

  548. Ohtani, K., & Misaki, A. (1983). Purification and characterization of β-D-galactosidase and α-D-mannosidase from papaya (Carica papaya) seeds. Agricultural and Biological Chemistry, 47, 2441–2451. https://doi.org/10.1271/bbb1961.47.2441

    Article  CAS  Google Scholar 

  549. Farias, L. R., Costa, F. T., Souza, L. A., Pelegrini, P. B., Grossi-de-Sá, M. F., Neto, S. M., Bloch, C., Laumann, R. A., Noronha, E. F., & Franco, O. L. (2007). Isolation of a novel Carica papaya α-amylase inhibitor with deleterious activity toward Callosobruchus maculatus. Pesticide Biochemistry and Physiology, 87, 255–260. https://doi.org/10.1016/j.pestbp.2006.08.004

    Article  CAS  Google Scholar 

  550. Wang, T.-H., Kung, Y.-L., Lee, M.-H., & Su, N.-W. (2011). N-acetyl-d-galactosamine-specific lectin isolated from the seeds of carica papaya. Journal of Agriculture and Food Chemistry, 59, 4217–4224. https://doi.org/10.1021/jf104962g

    Article  CAS  Google Scholar 

  551. Mosolov, V. V., Zymatcheva, A. V., & Ievleva, E. V. (1991). Cysteine proteinase inhibitor from papaya (Carica papaya L.) Seeds. Biochemie und Physiologie der Pflanzen, 187, 237–242. https://doi.org/10.1016/S0015-3796(11)80103-4

    Article  CAS  Google Scholar 

  552. Lam, S. K., & Ng, T. B. (2009). Passiflin, a novel dimeric antifungal protein from seeds of the passion fruit. Phytomedicine, 16, 172–180. https://doi.org/10.1016/j.phymed.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  553. Agizzio, A. P., Carvalho, A. O., de F.F. Ribeiro, S., Machado, O. L. T., Alves, E. W., Okorokov, L. A., Samarão, S. S., Bloch, C., Prates, M. V., & Gomes, V. M. (2003). A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Archives of Biochemistry and Biophysics, 416, 188–195. https://doi.org/10.1016/S0003-9861(03)00313-8

    Article  CAS  PubMed  Google Scholar 

  554. Pelegrini, P. B., Noronha, E. F., Muniz, M. A. R., Vasconcelos, I. M., Chiarello, M. D., Oliveira, J. T. A., & Franco, O. L. (2006). An antifungal peptide from passion fruit (Passiflora edulis) seeds with similarities to 2S albumin proteins, Biochim. Biophys. Acta - Proteins. Proteomics, 1764, 1141–1146. https://doi.org/10.1016/j.bbapap.2006.04.010

    Article  CAS  Google Scholar 

  555. Maruki-Uchida, H., Kurita, I., Sugiyama, K., Sai, M., Maeda, K., & Ito, T. (2013). The protective effects of Piceatannol from passion fruit (Passiflora edulis) Seeds in UVB-irradiated keratinocytes. Biological and Pharmaceutical Bulletin, 36, 845–849. https://doi.org/10.1248/bpb.b12-00708

    Article  CAS  PubMed  Google Scholar 

  556. Quesada, M. A., Tigier, H. A., Bukovac, M. J., & Valpuesta, V. (1990). Purification of an anionic isoperoxidase from peach seeds and its immunological comparison with other anionic isoperoxidases. Physiologia Plantarum, 79, 623–628. https://doi.org/10.1111/j.1399-3054.1990.tb00035.x

    Article  CAS  PubMed  Google Scholar 

  557. Vásquez-Villanueva, R., Orellana, J. M., Marina, M. L., & García, M. C. (2019). Isolation and characterization of angiotensin converting enzyme inhibitory peptides from peach seed hydrolysates: In vivo assessment of antihypertensive activity. Journal of Agriculture and Food Chemistry, 67, 10313–10320. https://doi.org/10.1021/acs.jafc.9b02213

    Article  CAS  Google Scholar 

  558. Pastorello, E. A., Farioli, L., Pravettoni, V., Ortolani, C., Ispano, M., Monza, M., Baroglio, C., Scibola, E., Ansaloni, R., Incorvaia, C., & Conti, A. (1999). The major allergen of peach (Prunus persica) is a lipid transfer protein. The Journal of Allergy and Clinical Immunology, 103, 520–526. https://doi.org/10.1016/S0091-6749(99)70480-X

    Article  CAS  PubMed  Google Scholar 

  559. Sandate-Flores, L., Méndez-Zamora, G., Morales-Celaya, M. F., Lara-Reyes, J. A., Aguirre-Arzola, V. E., Gutiérrez-Diez, A., Torres-Castillo, J. A., & Sinagawa-García, S. R. (2022). Biofunctional properties of the bioactive peptide from protein isolates of jiotilla (Escontria chiotilla) and pitaya (Stenocereus pruinosus) seeds. Food Science and Technology, 42, 1–7. https://doi.org/10.1590/fst.57922

    Article  Google Scholar 

  560. Yang, H., Zhang, T., Masuda, T., Lv, C., Sun, L., Qu, G., & Zhao, G. (2011). Chitinase III in pomegranate seeds (Punica granatum Linn.): a high-capacity calcium-binding protein in amyloplasts. The Plant Journal, 68, 765–776. https://doi.org/10.1111/j.1365-313X.2011.04727.x

    Article  CAS  PubMed  Google Scholar 

  561. Tuppo, L., Giangrieco, I., Alessandri, C., Ricciardi, T., Rafaiani, C., Ciancamerla, M., Ferrara, R., Zennaro, D., Bernardi, M. L., Tamburrini, M., Mari, A., & Ciardiello, M. A. (2018). Pomegranate chitinase III: Identification of a new allergen and analysis of sensitization patterns to chitinases. Molecular Immunology, 103, 89–95. https://doi.org/10.1016/j.molimm.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  562. Borchani, M., Yaich, H., Abbès, F., Blecker, C., Besbes, S., Attia, H., & Masmoudi, M. (2021). Physicochemical, functional and antioxidant properties of the major protein fractions extracted from prickly pear (Opuntia ficus indica L.) seed cake. Waste and Biomass Valorization, 12, 1749–1760. https://doi.org/10.1007/s12649-020-01111-4

    Article  CAS  Google Scholar 

  563. Deng, Y., Huang, L., Zhang, C., Xie, P., Cheng, J., Wang, X., & Liu, L. (2020). Skin-care functions of peptides prepared from Chinese quince seed protein: Sequences analysis, tyrosinase inhibition and molecular docking study. Industrial Crops and Products, 148, 112331. https://doi.org/10.1016/j.indcrop.2020.112331

    Article  CAS  Google Scholar 

  564. Fang, E. F., & Ng, T. B. (2015). A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties. Applied Biochemistry and Biotechnology, 175, 3828–3839. https://doi.org/10.1007/s12010-015-1550-1

    Article  CAS  PubMed  Google Scholar 

  565. Cho, H., Jung, H., Lee, H., Yi, H. C., Kwak, H.-K., & Hwang, K. T. (2015). Correction: Chemopreventive activity of ellagitannins and their derivatives from black raspberry seeds on HT-29 colon cancer cells. Food & Function, 6, 2861. https://doi.org/10.1039/C5FO90027A

    Article  CAS  Google Scholar 

  566. Hazra, K. M., Roy, R. N., Sen, S. K., & Laskar, S. (2007). Isolation of antibacterial pentahydroxy flavones from the seeds of Mimusops elengi Linn, African. Journal of Biotechnology, 6, 1446–1449.

    CAS  Google Scholar 

  567. Yamashita, I., Iino, K., & Yoshikawa, S. (1978). Alcohol dehydrogenases from strawberry seeds. Agricultural and Biological Chemistry, 42, 1125–1132. https://doi.org/10.1080/00021369.1978.10863123

    Article  CAS  Google Scholar 

  568. Sakharayapatna Ranganatha, K., Sahoo, L., Venugopal, A., & Nadimpalli, S. K. (2019). Purification, biochemical and biophysical characterization of a zinc dependent α-mannosidase isoform III from Custard Apple (Annona squamosa) seeds. International Journal of Biological Macromolecules, 138, 1044–1055. https://doi.org/10.1016/j.ijbiomac.2019.07.135

    Article  CAS  PubMed  Google Scholar 

  569. Sakharayapatna Ranganatha, K., Venugopal, A., Chinthapalli, D. K., Subramanyam, R., & Nadimpalli, S. K. (2021). Purification, biochemical and biophysical characterization of an acidic α-galactosidase from the seeds of Annona squamosa (custard apple). International Journal of Biological Macromolecules, 175, 558–571. https://doi.org/10.1016/j.ijbiomac.2021.01.179

    Article  CAS  PubMed  Google Scholar 

  570. Dhanraj, S. R., Vennila, J. J., & Dhanraj, M. (2020). Pharmacological investigation of ribosome inactivating protein (RIP) – like protein extracted from Annona squamosa L. seeds. Journal of King Saud University - Science, 32, 2982–2988. https://doi.org/10.1016/j.jksus.2020.08.002

    Article  Google Scholar 

  571. Lijith, K. P., Merin Rinky, K., & Gayathri Devi, D. (2023). Purification, characterization and antioxidant efficacy testing of trypsin inhibitor protein from Anonna squamosa seeds. Journal of Plant Biochemistry and Biotechnology, 32, 145–152. https://doi.org/10.1007/s13562-022-00789-y

    Article  CAS  Google Scholar 

  572. Prakash, O., & Bhushan, G. (1997). Isolation, purification and partial characterisation of urease from seeds of water melon (Citrullus vulgaris). Journal of Plant Biochemistry and Biotechnology, 6, 45–47. https://doi.org/10.1007/BF03263009

    Article  CAS  Google Scholar 

  573. Olusegun, E. (2019). Extraction, Purification And Characterization Of Beta-Galactosidase (Ec 3.2.1.23) From Water Melon Seed (Citrullus Vulgaris), Mountain Top University.

  574. Wen, C., Zhang, J., Feng, Y., Duan, Y., Ma, H., & Zhang, H. (2020). Purification and identification of novel antioxidant peptides from watermelon seed protein hydrolysates and their cytoprotective effects on H(2)O(2)-induced oxidative stress. Food Chemistry, 327, 127059. https://doi.org/10.1016/j.foodchem.2020.127059

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

S.R, T.S., R.C: conceptualization; S.R, T.S, V.U., R.C: writing, reviewing, and editing; R.C: resources. All the authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Tanmay Sarkar or Runu Chakraborty.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors have agreed to participate in the publication of the paper.

Consent for Publication

All authors have agreed to publish the paper.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Sarkar, T., Upadhye, V.J. et al. Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04674-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04674-9

Keywords

Navigation