Skip to main content

Advertisement

Log in

Anti-Liver Fibrosis Role of miRNA-96-5p via Targeting FN1 and Inhibiting ECM-Receptor Interaction Pathway

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aberrant expression of mRNAs participates in the pathogenesis of hepatic fibrosis. However, the precise mechanisms regulated by microRNAs (miRNAs) remain unclear. This study aims to investigate the functions about differentially expressed mRNAs (DEMs) in liver fibrosis and their regulatory mechanisms. The DEMs datasets about hepatic stellate cells (HSCs) obtained from hepatic fibrosis mice versus HSCs obtained from normal mice were downloaded from the GEO database (GSE120281). According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the GSE120281 datasets, ECM-receptor interaction was the most significant enrichment pathway that was correlated with hepatic fibrosis, and the fibronectin 1 (FN1) gene was upregulated most significantly in the signaling pathway. Downregulation of the expression of the FN1 gene by transfecting with FN1-siRNA alleviated the activity of HSCs. Four different bioinformatics web-based tools were used to predict that microRNA-96-5p (miR-96-5p) would directly target FN1, and a luciferase assay further confirmed this. Moreover, miR-96-5p was declined in activated HSCs and FN1, whereas laminin γ1 (LAMC1), collagen 1α1 (COL1A1) in the ECM-receptor interaction pathway, and the fibrosis marker α-smooth muscle actin (α-SMA) could be reduced by upregulation of the miRNA. Additionally, miR-96-5p expression was low in CCl4-induced liver fibrosis mice. Increased miR-96-5p expression alleviated liver fibrosis, improved liver function, and inhibited the expression of α-SMA, FN1, COL1A1, and LAMC1. In conclusion, this study indicated that upregulation of miR-96-5p could reduce HSC activation and relieve hepatic fibrosis by restraining the FN1/ECM-receptor interaction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data and materials used during this study are available from the corresponding author.

Abbreviations

ALT:

alanine aminotransferase

AST:

aspartate aminotransferase

α-SMA:

α-smooth muscle actin

COL1A1:

collagen 1α1

DEMs:

differentially expressed mRNAs

ECM:

extracellular matrix

FN1:

fibronectin 1

GO:

geneontology

HSC:

hepatic stellate cell

IHC:

immunohistochemistry

KEGG:

kyoto encyclopedia of genes and genomes

LAMC1:

laminin γ1

miRNA:

microRNA

MUT:

mutant

NC:

negative control

qRT-PCR:

quantitative real-time PCR

TGF-β1:

transforming growth factor-β1

WT:

wild-type

References

  1. Parola, M., & Pinzani, M. (2019). Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects Of Medicine, 65, 37–55.

    Article  PubMed  CAS  Google Scholar 

  2. Kisseleva, T., & Brenner, D. (2021). Molecular and cellular mechanisms of liver fibrosis and its regression. Nature Reviews. Gastroenterology & Hepatology, 18(3), 151–166.

    Article  Google Scholar 

  3. Schuppan, D., Ashfaq-Khan, M., Yang, A. T., & Kim, Y. O. (2018). Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biology, 68-69, 435–451.

    Article  PubMed  CAS  Google Scholar 

  4. Roeb, E. (2018). Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biology, 68-69, 463–473.

    Article  PubMed  CAS  Google Scholar 

  5. Geervliet, E., & Bansal, R. (2020). Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells, 9(5), 1212

  6. Roderfeld, M. (2018). Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biology, 68-69, 452–462.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, J., Zhang, Q., Li, S., Chen, Z., Tan, J., Yao, J., et al. (2020). Low molecular weight fucoidan alleviates diabetic nephropathy by binding fibronectin and inhibiting ECM-receptor interaction in human renal mesangial cells. International Journal Of Biological Macromolecules, 150, 304–314.

    Article  PubMed  CAS  Google Scholar 

  8. Li, Y., Feng, C., Gao, M., Jin, M., Liu, T., Yuan, Y., et al. (2019). MicroRNA-92b-5p modulates melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells by targeting ICAM-1. Journal Of Cellular And Molecular Medicine, 23(9), 6140–6153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang, X., He, Y., Mackowiak, B., & Gao, B. (2021). MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 70(4), 784–795.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang, X. P., Ai, W. B., Wan, L. Y., Zhang, Y. Q., & Wu, J. F. (2017). The roles of microRNA families in hepatic fibrosis. Cell Bioscience, 7, 34.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu, L., Wang, P., Wang, Y. S., Zhang, Y. N., Li, C., Yang, Z. Y., et al. (2021). MiR-130a-3p alleviates liver fibrosis by suppressing HSCs activation and skewing macrophage to Ly6C(lo) phenotype. Frontiers Immunology, 12, 696069.

    Article  CAS  Google Scholar 

  12. Singh, A. K., Rooge, S. B., Varshney, A., Vasudevan, M., Bhardwaj, A., Venugopal, S. K., et al. (2018). Global microRNA expression profiling in the liver biopsies of hepatitis B virus-infected patients suggests specific microRNA signatures for viral persistence and hepatocellular injury. Hepatology, 67(5), 1695–1709.

    Article  PubMed  CAS  Google Scholar 

  13. Yu, K., Li, N., Cheng, Q., Zheng, J., Zhu, M., Bao, S., et al. (2018). miR-96-5p prevents hepatic stellate cell activation by inhibiting autophagy via ATG7. Journal Of Molecular Medicine (Berlin), 96(1), 65–74.

    Article  CAS  Google Scholar 

  14. Zheng, Y., Cui, B., Sun, W., Wang, S., Huang, X., Gao, H., et al. (2020). Potential crosstalk between liver and extra-liver organs in mouse models of acute liver injury. International Journal Of Biological Sciences, 16(7), 1166–1179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Duan, J. L., Ruan, B., Yan, X. C., Liang, L., Song, P., Yang, Z. Y., et al. (2018). Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology, 68(2), 677–690.

    Article  PubMed  CAS  Google Scholar 

  16. Caligiuri, A., Gentilini, A., Pastore, M., Gitto, S., & Marra, F. (2021). Cellular and molecular mechanisms underlying liver fibrosis regression. Cells, 10(10).

  17. Iwakiri, Y., & Trebicka, J. (2021). Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. Journal of High Energy Physics Reports, 3(4), 100316.

    Google Scholar 

  18. Bourebaba, N., & Marycz, K. (2021). Hepatic stellate cells role in the course of metabolic disorders development - a molecular overview. Pharmacology Research, 170, 105739.

    Article  CAS  Google Scholar 

  19. Mao, Y., & Schwarzbauer, J. E. (2005). Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biology, 24(6), 389–399.

    Article  PubMed  CAS  Google Scholar 

  20. Schwarzbauer, J. E., & DeSimone, D. W. (2011). Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harbor Perspectives In Biology, 3(7).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Glasner, A., Levi, A., Enk, J., Isaacson, B., Viukov, S., Orlanski, S., et al. (2018). NKp46 receptor-mediated interferon-gamma production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity, 48(1), 107–119 e104.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, Z., Guo, M., Li, Y., Shen, M., Kong, D., Shao, J., et al. (2020). RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells. Autophagy, 16(8), 1482–1505.

    Article  PubMed  CAS  Google Scholar 

  23. Su, H., Xie, J., Wen, L., Wang, S., Chen, S., Li, J., et al. (2021). LncRNA Gas5 regulates Fn1 deposition via Creb5 in renal fibrosis. Epigenomics, 13(9), 699–713.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, Y. W., Tu, L. L., Zhang, Y., Pan, J. C., Zheng, G. L., & Yin, L. N. (2021). Liver-targeted delivery of asiatic acid nanostructured lipid carrier for the treatment of liver fibrosis. Drug Delivery, 28(1), 2534–2547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Li, X., Chen, R., Kemper, S., & Brigstock, D. R. (2021). Structural and functional characterization of fibronectin in extracellular vesicles from hepatocytes. Frontiers in Cell and Developmental Biology, 9, 640667.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kwon, E. Y., Shin, S. K., & Choi, M. S. (2018). Ursolic acid attenuates hepatic steatosis, fibrosis, and insulin resistance by modulating the circadian rhythm pathway in diet-induced obese mice. Nutrients, 10(11).

  27. Zhao, Z., Lin, C. Y., & Cheng, K. (2019). siRNA- and miRNA-based therapeutics for liver fibrosis. Translational Research, 214, 17–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ghafouri-Fard, S., Abak, A., Talebi, S. F., Shoorei, H., Branicki, W., Taheri, M., et al. (2021). Role of miRNA and lncRNAs in organ fibrosis and aging. Biomedicine & Pharmacotherapy, 143, 112132.

    Article  CAS  Google Scholar 

  29. Piccolo, P., Ferriero, R., Barbato, A., Attanasio, S., Monti, M., Perna, C., et al. (2021). Up-regulation of miR-34b/c by JNK and FOXO3 protects from liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 118(10).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yang, X., Ma, L., Wei, R., Ye, T., Zhou, J., Wen, M., et al. (2020). Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway. Signal Transduction and Targeted Therapy, 5(1), 75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yi, L., Ai, K., Li, H., Qiu, S., Li, Y., Wang, Y., et al. (2021). CircRNA_30032 promotes renal fibrosis in UUO model mice via miRNA-96-5p/HBEGF/KRAS axis. Aging (Albany NY), 13(9), 12780–12799.

    Article  PubMed  CAS  Google Scholar 

  32. Wang, W., Jia, Y. J., Yang, Y. L., Xue, M., Zheng, Z. J., Wang, L., et al. (2020). LncRNA GAS5 exacerbates renal tubular epithelial fibrosis by acting as a competing endogenous RNA of miR-96-5p. Biomedicine & Pharmacotherapy, 121, 109411.

    Article  CAS  Google Scholar 

  33. Xu, T., Lu, Z., Xiao, Z., Liu, F., Chen, Y., Wang, Z., et al. (2020). Myofibroblast induces hepatocyte-to-ductal metaplasia via laminin-avbeta6 integrin in liver fibrosis. Cell Death & Disease, 11(3), 199.

    Article  Google Scholar 

  34. Cai, Q., Chen, F., Xu, F., Wang, K., Zhang, K., Li, G., et al. (2020). Epigenetic silencing of microRNA-125b-5p promotes liver fibrosis in nonalcoholic fatty liver disease via integrin alpha8-mediated activation of RhoA signaling pathway. Metabolism, 104, 154140.

    Article  PubMed  CAS  Google Scholar 

  35. Li, W., Zhou, C., Fu, Y., Chen, T., Liu, X., Zhang, Z., et al. (2020). Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharmaceutica Sinica B, 10(4), 693–710.

    Article  PubMed  Google Scholar 

Download references

Funding

The study was funded by the Social Development Fund of Zhenjiang (No. SH2020027).

Author information

Authors and Affiliations

Authors

Contributions

YZ and TG performed the experiment and drafted the manuscript. SX and JW analyzed and interpreted the data. XZ and JW designed the experiment. SX funded the experiment. XZ reviewed and edited the manuscript.

Corresponding authors

Correspondence to Jingzhi Wang or Xinguo Zhu.

Ethics declarations

Ethical Approval

Protocols for animal experiments were approved by the Institutional Animal Care and Use Committee of Jiangsu University (protocol code: UJS-IACUC-2021030269).

Consent to Participate

Not applicable

Consent for Publication

The authors approve of the publication of the manuscript.

Competing Interests

There authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Supplementary Table

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Gu, T., Xu, S. et al. Anti-Liver Fibrosis Role of miRNA-96-5p via Targeting FN1 and Inhibiting ECM-Receptor Interaction Pathway. Appl Biochem Biotechnol 195, 6840–6855 (2023). https://doi.org/10.1007/s12010-023-04385-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04385-1

Keywords

Navigation