Skip to main content

Advertisement

Log in

Exploring the Role of Glycolytic Enzymes PFKFB3 and GAPDH in the Modulation of Aβ and Neurodegeneration and Their Potential of Therapeutic Targets in Alzheimer’s Disease

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is presently the 6th major cause of mortality across the globe. However, it is expected to rise rapidly, following cancer and heart disease, as a leading cause of death among the elderly peoples. AD is largely characterized by metabolic changes linked to glucose metabolism and age-induced mitochondrial failure. Recent research suggests that the glycolytic pathway is required for a range of neuronal functions in the brain including synaptic transmission, energy production, and redox balance; however, alteration in glycolytic pathways may play a significant role in the development of AD. Moreover, it is hypothesized that targeting the key enzymes involved in glucose metabolism may help to prevent or reduce the risk of neurodegenerative disorders. One of the major pro-glycolytic enzyme is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3); it is normally absent in neurons but abundant in astrocytes. Similarly, another key of glycolysis is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which catalyzes the conversion of aldolase and glyceraldehyde 3 phosphates to 1,3 bisphosphoglycerate. GAPDH has been reported to interact with various neurodegenerative disease–associated proteins, including the amyloid-β protein precursor (AβPP). These findings indicate PFKFB3 and GAPDH as a promising therapeutic target to AD. Current review highlight the contributions of PFKFB3 and GAPDH in the modulation of Aβand AD pathogenesis and further explore the potential of PFKFB3 and GAPDH as therapeutic targets in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Allaman, I., Gavillet, M., Bélanger, M., Laroche, T., Viertl, D., Lashuel, H. A., & Magistretti, P. J. (2010). Amyloid-β aggregates cause alterations of astrocytic metabolic phenotype: Impact on neuronal viability. Journal of Neuroscience, 30, 3326–3338.

    Article  CAS  PubMed  Google Scholar 

  2. Allnutt, A. B., Waters, A. K., Kesari, S., & Yenugonda, V. M. (2020). Physiological and pathological roles of Cdk5: Potential directions for therapeutic targeting in neurodegenerative disease. ACS chemical Neuroscience, 11, 1218–1230.

    Article  CAS  PubMed  Google Scholar 

  3. Almeida, A. (2012). Regulation of APC/C-Cdh1 and its function in neuronal survival. Molecular Neurobiology, 46, 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashok, B. S., Ajith, T. A., & Sivanesan, S. (2017). Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease. Clinical and Experimental Pharmacology and Physiology, 44, 327–334.

    Article  CAS  PubMed  Google Scholar 

  5. Baik, S. H., Kang, S., Lee, W., Choi, H., Chung, S., Kim, J.-I., & Mook-Jung, I. (2019). A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell metabolism, 30(493–507), e496.

    Google Scholar 

  6. Bergau, N., Maul, S., Rujescu, D., Simm, A., & Navarrete Santos, A. (2019). Reduction of glycolysis intermediate concentrations in the cerebrospinal fluid of Alzheimer’s disease patients. Frontiers in neuroscience, 13, 871.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bergau, N., Maul, S., Rujescu, D., Simm, A., Navarrete Santos, A. J. F., & i. n. (2019). Reduction of glycolysis intermediate concentrations in the cerebrospinal fluid of Alzheimer’s disease patients. Frontiers in Neuroscience, 13, 871.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bode, D. C., Baker, M. D., & Viles, J. H. (2017). Ion channel formation by amyloid-β42 oligomers but not amyloid-β40 in cellular membranes. Journal of Biological Chemistry, 292, 1404–1413.

    Article  CAS  PubMed  Google Scholar 

  9. Bolaños, J. P. (2016). Bioenergetics and redox adaptations of astrocytes to neuronal activity. Journal of neurochemistry, 139, 115–125.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bonvento, G., & Bolaños, J. P. (2021). Astrocyte-neuron metabolic cooperation shapes brain activity. Cell metabolism, 33, 1546–1564.

    Article  CAS  PubMed  Google Scholar 

  11. Burmistrova, O., Olias-Arjona, A., Lapresa, R., Jimenez-Blasco, D., Eremeeva, T., Shishov, D., Romanov, S., Zakurdaeva, K., Almeida, A., & Fedichev, P. O. (2019). Targeting PFKFB3 alleviates cerebral ischemia-reperfusion injury in mice. Scientific reports, 9, 1–13.

    Article  CAS  Google Scholar 

  12. Butera, G., Mullappilly, N., Masetto, F., Palmieri, M., Scupoli, M. T., Pacchiana, R., & Donadelli, M. (2019). Regulation of autophagy by nuclear GAPDH and its aggregates in cancer and neurodegenerative disorders. International Journal of Molecular Sciences, 20, 2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Butera, G., Pacchiana, R., Mullappilly, N., Margiotta, M., Bruno, S., Conti, P., Riganti, C., & Donadelli, M. (2018). Mutant p53 prevents GAPDH nuclear translocation in pancreatic cancer cells favoring glycolysis and 2-deoxyglucose sensitivity. Biochimica et Biophysica Acta -Molecular Cell Research, 1865, 1914–1923.

    Article  CAS  PubMed  Google Scholar 

  14. Butterfield, D. A., Hardas, S. S., & Lange, M. L. B. (2010). Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: Many pathways to neurodegeneration. Journal of Alzheimer’s Disease, 20, 369–393.

    Article  CAS  PubMed  Google Scholar 

  15. Castelli, V., Benedetti, E., Antonosante, A., Catanesi, M., Pitari, G., Ippoliti, R., Cimini, A., & d’Angelo, M. (2019). Neuronal cells rearrangement during aging and neurodegenerative disease: Metabolism, oxidative stress and organelles dynamic. Frontiers in molecular neuroscience, 12, 132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaudhary, S., Dhiman, A., Patidar, A., Malhotra, H., Talukdar, S., Dilawari, R., Chaubey, G. K., Modanwal, R., Raje, C. L., & Raje, M. (2021). Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) modulates protein aggregation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1867(10), 166202.

  17. Chen, G.-F., Xu, T.-H., Yan, Y., Zhou, Y.-R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38, 1205–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung, Y., Kim, Y., Yun, N., & Oh, Y. J. (2021). Dysregulated autophagy is linked to BAX oligomerization and subsequent cytochrome c release in 6-hydroxydopmaine-treated neuronal cells. Biochemical and Biophysical Research Communications, 548, 20–26.

    Article  CAS  PubMed  Google Scholar 

  19. Dar, G. H., Mendes, C. C., Kuan, W. L., Speciale, A. A., Conceição, M., Görgens, A., ... & Wood, M. J. (2021). GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Nature Communications, 12(1), 1–15.

  20. DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Molecular neurodegeneration, 14, 1–18.

    Article  Google Scholar 

  21. Domínguez-Prieto, M., Velasco, A., Tabernero, A., & Medina, J. M. (2018). Endocytosis and transcytosis of amyloid-β peptides by astrocytes: A possible mechanism for amyloid-β clearance in Alzheimer’s disease. Journal of Alzheimer’s Disease, 65, 1109–1124.

    Article  PubMed  Google Scholar 

  22. Dubois, B., Villain, N., Frisoni, G. B., Rabinovici, G. D., Sabbagh, M., Cappa, S., Bejanin, A., Bombois, S., Epelbaum, S., & Teichmann, M. (2021). Clinical diagnosis of Alzheimer’s disease: Recommendations of the International Working Group. The Lancet Neurology, 20, 484–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu, W., Shi, D., Westaway, D., & Jhamandas, J. H. (2015). Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. Journal of Biological Chemistry, 290, 12504–12513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerszon, J., & Rodacka, A. (2018). Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase in neurodegenerative processes and the role of low molecular weight compounds in counteracting its aggregation and nuclear translocation. Ageing Research Reviews, 48, 21–31.

  25. Gonçalves, C.-A., Rodrigues, L., Bobermin, L. D., Zanotto, C., Vizuete, A., Quincozes-Santos, A., Souza, D. O., & Leite, M. C. (2019). Glycolysis-derived compounds from astrocytes that modulate synaptic communication. Frontiers in Neuroscience, 12, 1035.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gu, L., & Guo, Z. (2021). Alzheimer’s Aβ42 and Aβ40 form mixed oligomers with direct molecular interactions. Biochemical and Biophysical Research Communications, 534, 292–296.

    Article  CAS  PubMed  Google Scholar 

  27. Han, R., Liang, J., & Zhou, B. (2021). Glucose metabolic dysfunction in neurodegenerative diseases—new mechanistic insights and the potential of hypoxia as a prospective therapy targeting metabolic reprogramming. International Journal of Molecular Sciences, 22, 5887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hellgren, J., Godina, A., Nielsen, J., & Siewers, V. (2020). Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products. Metabolic Engineering, 62, 150–160.

    Article  CAS  PubMed  Google Scholar 

  29. Herrero-Mendez, A., Almeida, A., Fernandez, E., Maestre, C., Moncada, S., & Bolaños, J. P. (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nature Cell Biology, 11(6), 747–752.

    Article  CAS  PubMed  Google Scholar 

  30. Hodges, A. K., Piers, T. M., Collier, D., Cousins, O., & Pocock, J. M. (2021). Pathways linking Alzheimer’s disease risk genes expressed highly in microglia. Neuroimmunology and Neuroinflammation, 8, 245.

    CAS  Google Scholar 

  31. Huo, J., Zhu, X.-L., Ma, R., Dong, H.-L., & Su, B.-X. (2016). GAPDH/Siah1 cascade is involved in traumatic spinal cord injury and could be attenuated by sivelestat sodium. Neuroscience, 330, 171–180.

    Article  CAS  PubMed  Google Scholar 

  32. Ippati, S., Deng, Y., Van Der Hoven, J., Heu, C., Van Hummel, A., Chua, S. W., Paric, E., Chan, G., Feiten, A., & Fath, T. (2021). Rapid initiation of cell cycle reentry processes protects neurons from amyloid-β toxicity. Proceedings of the National Academy of Sciences, 118, e2011876118.

    Article  CAS  Google Scholar 

  33. Itakura, M., Nakajima, H., Kubo, T., Semi, Y., Kume, S., Higashida, S., Kaneshige, A., Kuwamura, M., Harada, N., & Kita, A. (2015). Glyceraldehyde-3-phosphate dehydrogenase aggregates accelerate amyloid-β amyloidogenesis in Alzheimer disease. Journal of Biological Chemistry, 290, 26072–26087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Itakura, M., Nakajima, H., Semi, Y., Higashida, S., Azuma, Y.-T., & Takeuchi, T. (2015). Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death. Biochemical and Biophysical Research Communications, 467, 373–376.

    Article  CAS  PubMed  Google Scholar 

  35. Karabiyik, C., Frake, R. A., Park, S. J., Pavel, M., & Rubinsztein, D. C. (2021). Autophagy in ageing and ageing-related neurodegenerative diseases. Ageing and Neurodegenerative Diseases, 1, 2.

    Google Scholar 

  36. Khanam, H., Ali, A., & Asif, M. (2016). Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. European journal of medicinal chemistry, 124, 1121–1141.

    Article  CAS  PubMed  Google Scholar 

  37. Klarer, A. C., O’Neal, J., Imbert-Fernandez, Y., Clem, A., Ellis, S. R., Clark, J., Clem, B., Chesney, J., & Telang, S. (2014). Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism. Cancer metabolism, 2, 1–14.

    Article  Google Scholar 

  38. Koepsell, H. (2020). Glucose transporters in brain in health and disease. Pflugers Archiv. European Journal of Physiology, 472, 1299–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kubo, T., Nakajima, H., Nakatsuji, M., Itakura, M., Kaneshige, A., Azuma, Y.-T., Inui, T., & Takeuchi, T. (2016). Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death. Nitric Oxide, 53, 13–21.

    Article  CAS  PubMed  Google Scholar 

  40. Lapresa, R., Agulla, J., Sánchez-Morán, I., Zamarreño, R., Prieto, E., Bolaños, J. P., & Almeida, A. (2019). Amyloid-ß promotes neurotoxicity by Cdk5-induced p53 stabilization. Neuropharmacology, 146, 19–27.

    Article  CAS  PubMed  Google Scholar 

  41. Lau, H. H., Ingelsson, M., & Watts, J. C. (2021). The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer’s disease. Acta Neuropathologica, 142, 17–39.

    Article  CAS  PubMed  Google Scholar 

  42. Lazarev, V. F., Nikotina, A. D., Semenyuk, P. I., Evstafyeva, D. B., Mikhaylova, E. R., Muronetz, V. I., Shevtsov, M. A., Tolkacheva, A. V., Dobrodumov, A. V., & Shavarda, A. L. (2016). Small molecules preventing GAPDH aggregation are therapeutically applicable in cell and rat models of oxidative stress. Free Radical Biology and Medicine, 92, 29–38.

    Article  CAS  PubMed  Google Scholar 

  43. Lazarev, V. F., Tsolaki, M., Mikhaylova, E. R., Benken, K. A., Shevtsov, M. A., Nikotina, A. D., Lechpammer, M., Mitkevich, V. A., Makarov, A. A., & Moskalev, A. A. (2021). Extracellular GAPDH promotes Alzheimer disease progression by enhancing amyloid-β aggregation and cytotoxicity. Aging and disease, 12, 1223.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee, K. H., Lee, S.-J., Lee, H. J., Choi, G. E., Jung, Y. H., Kim, D. I., Gabr, A. A., Ryu, J. M., & Han, H. J. (2017). Amyloid β1-42 (Aβ1-42) induces the CDK2-mediated phosphorylation of tau through the activation of the mTORC1 signaling pathway while promoting neuronal cell death. Frontiers in Molecular Neuroscience, 10, 229.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leong, Y. Q., Ng, K. Y., Chye, S. M., Ling, A. P. K., & Koh, R. Y. (2020). Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metabolic Brain Disease, 35, 11–30.

    Article  PubMed  Google Scholar 

  46. Liang, C.-S., Li, D.-J., Yang, F.-C., Tseng, P.-T., Carvalho, A. F., Stubbs, B., Thompson, T., Mueller, C., Shin, J. I., & Radua, J. (2021). Mortality rates in Alzheimer’s disease and non-Alzheimer’s dementias: A systematic review and meta-analysis. The Lancet Healthy Longevity, 2, e479–e488.

    Article  PubMed  Google Scholar 

  47. Lopez-Fabuel, I., Garcia-Macia, M., Buondelmonte, C., Burmistrova, O., Bonora, N., Alonso-Batan, P., ... & Bolaños, J. P. (2022). Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nature Communications, 13(1), 1–14.

  48. Lu, L., Chen, Y., & Zhu, Y. (2017). The molecular basis of targeting PFKFB3 as a therapeutic strategy against cancer. Oncotarget, 8, 62793.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lv, Y., Zhang, B., Zhai, C., Qiu, J., Zhang, Y., Yao, W., & Zhang, C. (2015). PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Neurochemistry International, 91, 26–33.

    Article  CAS  PubMed  Google Scholar 

  50. Macut, H., Hu, X., Tarantino, D., Gilardoni, E., Clerici, F., Regazzoni, L., Contini, A., Pellegrino, S., & Luisa Gelmi, M. (2019). Tuning PFKFB3 bisphosphatase activity through allosteric interference. Scientific Reports, 9(1), 1–10.

  51. Maestre, C., Delgado-Esteban, M., Gomez-Sanchez, J. C., Bolaños, J. P., & Almeida, A. (2008). Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. The EMBO journal, 27, 2736–2745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mehta, R. I., & Schneider, J. A. (2021). What is ‘Alzheimer’s disease’? The neuropathological heterogeneity of clinically defined Alzheimer’s dementia. Current opinion in neurology, 34, 237–245.

    Article  CAS  PubMed  Google Scholar 

  53. Mullarky, E., & Cantley, L. C. (2015). Diverting glycolysis to combat oxidative stress. Innovative medicine, 3–23.

  54. Muronetz, V. I., Barinova, K. V., Stroylova, Y. Y., Semenyuk, P. I., & Schmalhausen, E. V. (2017). Glyceraldehyde-3-phosphate dehydrogenase: Aggregation mechanisms and impact on amyloid neurodegenerative diseases. International Journal of Biological Macromolecules, 100, 55–66.

    Article  CAS  PubMed  Google Scholar 

  55. Nakajima, H., Amano, W., Fukuhara, A., Kubo, T., Misaki, S., Azuma, Y.-T., Inui, T., & Takeuchi, T. (2009). An aggregate-prone mutant of human glyceraldehyde-3-phosphate dehydrogenase augments oxidative stress-induced cell death in SH-SY5Y cells. Biochemical and Biophysical Research Communications, 390, 1066–1071.

    Article  CAS  PubMed  Google Scholar 

  56. Nakajima, H., Itakura, M., Kubo, T., Kaneshige, A., Harada, N., Izawa, T., Azuma, Y.-T., Kuwamura, M., Yamaji, R., & Takeuchi, T. (2017). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) aggregation causes mitochondrial dysfunction during oxidative stress-induced cell death. Journal of Biological Chemistry, 292, 4727–4742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nakajima, H., Kubo, T., Ihara, H., Hikida, T., Danjo, T., Nakatsuji, M., Shahani, N., Itakura, M., Ono, Y., & Azuma, Y.-T. (2015). Nuclear-translocated glyceraldehyde-3-phosphate dehydrogenase promotes poly (ADP-ribose) polymerase-1 activation during oxidative/nitrosative stress in stroke. Journal of Biological Chemistry, 290, 14493–14503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Naletova, I., Schmalhausen, E., Kharitonov, A., Katrukha, A., Saso, L., Caprioli, A., & Muronetz, V. (2008). Non-native glyceraldehyde-3-phosphate dehydrogenase can be an intrinsic component of amyloid structures. Biochimica et Biophysica Acta -Proteins Proteomics, 1784, 2052–2058.

    Article  CAS  Google Scholar 

  59. Owen, J. E., Benediktsdottir, B., Cook, E., Olafsson, I., Gislason, T., & Robinson, S. R. (2021). Alzheimer’s disease neuropathology in the hippocampus and brainstem of people with obstructive sleep apnea. Sleep, 44, zsaa195.

    Article  PubMed  Google Scholar 

  60. Perluigi, M., Di Domenico, F., Barone, E., Butterfield, D., Medicine. (2021). mTOR in Alzheimer disease and its earlier stages: links to oxidative damage in the progression of this dementing disorder. Free Radical Biology, 169, 382–396.

    Article  CAS  Google Scholar 

  61. Preeti, K., Sood, A., & Fernandes, V. (2022). Metabolic regulation of glia and their neuroinflammatory role in Alzheimer’s disease. Cellular and Molecular Neurobiology, 42(8), 2527–2551.

    Article  CAS  PubMed  Google Scholar 

  62. Rahman, M. M., & Lendel, C. (2021). Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Molecular Neurodegeneration, 16, 1–30.

    Article  Google Scholar 

  63. Rodriguez-Rodriguez, P., Almeida, A., & Bolaños, J. P. (2013). Brain energy metabolism in glutamate-receptor activation and excitotoxicity: Role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochemistry international, 62, 750–756.

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez-Rodriguez, P., Fernández, E., Almeida, A., & Bolanos, J. (2012). Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death & Differentiation, 19(10), 1582–1589.

    Article  CAS  Google Scholar 

  65. Rummel, N. G., & Butterfield, D. A. (2022). Altered metabolism in Alzheimer disease brain: Role of oxidative stress. Antioxidants & Redox Signaling, 36(16–18), 1289–1305.

    Article  CAS  Google Scholar 

  66. Schmalhausen, E., Zhlobek, E., Shalova, I., Firuzi, O., Saso, L., & Muronetz, V. (2007). Antioxidant and prooxidant effects of quercetin on glyceraldehyde-3-phosphate dehydrogenase. Food and Chemical Toxicology, 45, 1988–1993.

    Article  CAS  PubMed  Google Scholar 

  67. Schmalhausen, E. V., Medvedeva, M. V., Serebryakova, M. V., Chagovets, V. V., & Muronetz, V. I. (2022). Products of S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase: Relation between S-nitrosylation and oxidation. Biochimica et Biophysica Acta (BBA)-General Subjects, 1866(1), 130032.

  68. Sen, N., Hara, M. R., Ahmad, A. S., Cascio, M. B., Kamiya, A., Ehmsen, J. T., Aggrawal, N., Hester, L., Doré, S., & Snyder, S. H. (2009). GOSPEL: A neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron, 63, 81–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shahnur, A., Nakano, M., Ishihara, S., Kakuda, N., Miyasaka, T., Uchiyama, H., Shirai, Y., Moniruzzaman, M., Saito, T., & Saido, T. C. (2021). A potential defense mechanism against amyloid deposition in cerebellum. Biochemical and Biophysical Research Communications, 535, 25–32.

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, C., & Kim, S. R. (2021). Linking oxidative stress and proteinopathy in Alzheimer’s disease. Antioxidants, 10, 1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh, D. (2022). Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. Journal of Neuroinflammation, 19(1), 206.

  72. Söllvander, S., Nikitidou, E., Brolin, R., Söderberg, L., Sehlin, D., Lannfelt, L., & Erlandsson, A. (2016). Accumulation of amyloid-β by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons. Molecular Neurodegeneration, 11, 1–19.

    Article  Google Scholar 

  73. Soto, C., Saborio, G. P., & Anderes, L. (2002). Cyclic amplification of protein misfolding: Application to prion-related disorders and beyond. Trends in Neurosciences, 25, 390–394.

    Article  CAS  PubMed  Google Scholar 

  74. Spina, S., La Joie, R., Petersen, C., Nolan, A. L., Cuevas, D., Cosme, C., Hepker, M., Hwang, J.-H., Miller, Z. A., & Huang, E. J. (2021). Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain, 144, 2186–2198.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Takahashi, S. (2021). Neuroprotective function of high glycolytic activity in astrocytes: Common roles in stroke and neurodegenerative diseases. International Journal of Molecular Sciences, 22, 6568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tristan, C., Shahani, N., Sedlak, T. W., & Sawa, A. (2011). The diverse functions of GAPDH: Views from different subcellular compartments. Cellular Signalling, 23, 317–323.

    Article  CAS  PubMed  Google Scholar 

  77. Tu, D., Gao, Y., Yang, R., Guan, T., Hong, J.-S., & Gao, H.-M. (2019). The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. Journal of Neuroinflammation, 16, 1–17.

    Article  Google Scholar 

  78. Urban, A. S., Pavlov, K. V., Kamynina, A. V., Okhrimenko, I. S., Arseniev, A. S., & Bocharov, E. V. (2021). Structural studies providing insights into production and conformational behavior of amyloid-β peptide associated with Alzheimer’s disease development. Molecules, 26, 2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van Gijsel-Bonnello, M., Baranger, K., Benech, P., Rivera, S., Khrestchatisky, M., De Reggi, M., & Gharib, B. (2017). Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer’s disease: Alleviation by pantethine. PLoS ONE, 12, e0175369.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wang, D. B., Kinoshita, C., Kinoshita, Y., Sopher, B. L., Uo, T., Lee, R. J., ... & Morrison, R. S.. (2019). Neuronal susceptibility to beta-amyloid toxicity and ischemic injury involves histone deacetylase-2 regulation of endophilin-B1. Brain Pathology, 29(2), 164–175.

  81. Wang, S., Chen, H., Tang, X., Zhang, H., Hao, G., Chen, W., & Chen, Y. Q. (2020). The role of glyceraldehyde-3-phosphate dehydrogenases in NADPH supply in the oleaginous filamentous fungus Mortierella alpina. Frontiers in Microbiology, 11, 818.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yan, X., Hu, Y., Wang, B., Wang, S., & Zhang, X. (2020). Metabolic dysregulation contributes to the progression of Alzheimer’s disease. Frontiers in Neuroscience, 14, 530219.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yang, S., & Lian, G. (2020). ROS and diseases: Role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467, 1–12.

    Article  CAS  PubMed  Google Scholar 

  84. Ye, H., Wu, J., Liang, Z., Zhang, Y., & Huang, Z. (2022). Protein S-nitrosation: Biochemistry, identification, molecular mechanisms, and therapeutic applications. Journal of Medicinal Chemistry, 65, 5902–5925.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, J., Zhang, Y., Wang, J., Zhao, Y., Ren, H., Chu, Y., Feng, L., & Wang, C. (2019). Protein kinase D3 promotes gastric cancer development through p65/6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 activation of glycolysis. Experimental Cell Research, 380, 188–197.

    Article  CAS  PubMed  Google Scholar 

  86. Zhou, X., Zhong, Y., Molinar-Inglis, O., Kunkel, M. T., Chen, M., Sun, T., Zhang, J., Shyy, J.Y.-J., Trejo, J., & Newton, A. C. (2020). Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nature Communications, 11, 1–14.

    Article  CAS  Google Scholar 

  87. Zulfiqar, S., Garg, P., & Nieweg, K. (2019). Contribution of astrocytes to metabolic dysfunction in the Alzheimer’s disease brain. Biological Chemistry, 400(9), 1113–1127.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the fund from Department of Health Research, New Delhi, India (File No. R.12014/61/2020-HR) to IA.

Author information

Authors and Affiliations

Authors

Contributions

IA and RS conceived the idea and designed the review structure. IA, SP, YL, SP, and HH wrote the first draft of the manuscript. All authors discussed, critically reviewed the manuscript, and approved the final version for submission.

Corresponding authors

Correspondence to Imran Ahmad or Ranjana Singh.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

All authors provided their consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Singh, R., Pal, S. et al. Exploring the Role of Glycolytic Enzymes PFKFB3 and GAPDH in the Modulation of Aβ and Neurodegeneration and Their Potential of Therapeutic Targets in Alzheimer’s Disease. Appl Biochem Biotechnol 195, 4673–4688 (2023). https://doi.org/10.1007/s12010-023-04340-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04340-0

Keywords

Navigation