Skip to main content

Advertisement

Log in

Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bio-composite scaffolds mimicking the natural microenvironment of bone tissue offer striking advantages in material-guided bone regeneration. The combination of biodegradable natural polymers and bioactive ceramics that leverage potent bio-mimicking cues has been an active strategy to achieve success in bone tissue engineering. Herein, a competitive approach was followed to point out an optimized bio-composite scaffold in terms of scaffold properties and stimulation of osteoblast differentiation. The scaffolds, composed of chitosan/collagen type I/nanohydroxyapatite (Chi/Coll/nHA) as the most attractive components in bone tissue engineering, were analyzed. The scaffolds were prepared by freeze-drying method and cross-linked using different types of cross-linkers. Based on the physicochemical and mechanical characterization, the scaffolds were eliminated comparatively. All types of scaffolds displayed highly porous structures. The cross-linker type and collagen content had prominent effects on mechanical strength. Glyoxal cross-linked structures displayed optimum mechanical and structural properties. The MC3T3‐E1 proliferation, osteogenic‐related gene expression, and matrix mineralization were better pronounced in collagen presence and triggered as collagen type I amount was increased. The results highlighted that glyoxal cross-linked scaffolds containing equal amounts of Chi and Coll by mass and 1% (w/v) nHA are the best candidates for osteoblast differentiation and matrix mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Donnaloja, F., Jacchetti, E., Soncini, M., & Raimondi, M. T. (2020). Natural and synthetic polymers for bone scaffolds optimization. Polymers, 12(4), 1–27. https://doi.org/10.3390/POLYM12040905

    Article  Google Scholar 

  2. Nga, N. K., Thanh Tam, L. T., Ha, N. T., Hung Viet, P., & Huy, T. Q. (2020). Enhanced biomineralization and protein adsorption capacity of 3D chitosan/hydroxyapatite biomimetic scaffolds applied for bone-tissue engineering. RSC Advances, 10(70), 43045–43057. https://doi.org/10.1039/d0ra09432c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lowe, B., Hardy, J. G., & Walsh, L. J. (2020). Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega, 5(1), 1–9. https://doi.org/10.1021/acsomega.9b02917

    Article  CAS  PubMed  Google Scholar 

  4. Tao, L., Zhonglong, L., Ming, X., Zezheng, Y., Zhiyuan, L., Xiaojun, Z., & Jinwu, W. (2017). In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Advances, 7(85), 54100–54110. https://doi.org/10.1039/c7ra06913h

    Article  CAS  Google Scholar 

  5. Salgado, A. J., Coutinho, O. P., & Reis, R. L. (2004). Bone tissue engineering: State of the art and future trends. Macromolecular Bioscience, 4(8), 743–765. https://doi.org/10.1002/mabi.200400026

    Article  CAS  PubMed  Google Scholar 

  6. Becerra, J., Rodriguez, M., Leal, D., Noris-Suarez, K., & Gonzalez, G. (2022). Chitosan-collagen-hydroxyapatite membranes for tissue engineering. Journal of Materials Science: Materials in Medicine, 33(2), 1–16. https://doi.org/10.1007/s10856-022-06643-w

    Article  CAS  Google Scholar 

  7. Demirtaş, T. T., Göz, E., Karakeçili, A., & Gümüşderelioğlu, M. (2016). Combined delivery of PDGF-BB and BMP-6 for enhanced osteoblastic differentiation. Journal of Materials Science: Materials in Medicine, 27(1), 1–11. https://doi.org/10.1007/s10856-015-5626-9

    Article  CAS  Google Scholar 

  8. Yang, Q., Dou, F., Liang, B., & Shen, Q. (2005). Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydrate Polymers, 59(2), 205–210. https://doi.org/10.1016/j.carbpol.2004.09.013

    Article  CAS  Google Scholar 

  9. Apte, G., Repanas, A., Willems, C., Mujtaba, A., Schmelzer, C. E. H., Raichur, A., Groth, T. (2019). Effect of different crosslinking strategies on physical properties and biocompatibility of freestanding multilayer films made of alginate and chitosan. Macromolecular Bioscience, 19(11). https://doi.org/10.1002/mabi.201900181

  10. Pinto, R. V., Gomes, P. S., Fernandes, M. H., Costa, M. E. V., & Almeida, M. M. (2020). Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. Materials Science and Engineering C, 109(September 2019), 110557. https://doi.org/10.1016/j.msec.2019.110557

  11. Silvestro, I., Francolini, I., Di Lisio, V., Martinelli, A., Pietrelli, L., D’Abusco, A. S., & Piozzi, A. (2020). Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials, 13(16), 1–15. https://doi.org/10.3390/MA13163577

    Article  Google Scholar 

  12. Filippi, M., Born, G., Chaaban, M., & Scherberich, A. (2020). Natural polymeric scaffolds in bone regeneration. Frontiers in Bioengineering and Biotechnology, 8(May), 1–28. https://doi.org/10.3389/fbioe.2020.00474

    Article  Google Scholar 

  13. Wang, L., & Stegemann, J. P. (2011). Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomaterialia, 7(6), 2410–2417. https://doi.org/10.1016/j.actbio.2011.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wahl, D. A., & Czernuszka, J. T. (2006). Collagen-hydroxyapatite composites for hard tissue repair. European Cells and Materials, 11, 43–56. https://doi.org/10.22203/eCM.v011a06

  15. Kołodziejska, B., Kaflak, A., & Kolmas, J. (2020). Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration-A review. Materials, 13(7), 1–17. https://doi.org/10.3390/ma13071748

    Article  CAS  Google Scholar 

  16. Huang, J., Ratnayake, J., Ramesh, N., & Dias, G. J. (2020). Development and characterization of a biocomposite material from chitosan and New Zealand-sourced bovine-derived hydroxyapatite for bone regeneration. ACS Omega, 5(27), 16537–16546. https://doi.org/10.1021/acsomega.0c01168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gritsch, L., Maqbool, M., Mouriño, V., Ciraldo, F. E., Cresswell, M., Jackson, P. R., & Boccaccini, A. R. (2019). Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: Copper and strontium. Journal of Materials Chemistry B, 7(40), 6109–6124. https://doi.org/10.1039/c9tb00897g

    Article  CAS  PubMed  Google Scholar 

  18. Martínez, A., Blanco, M. D., Davidenko, N., & Cameron, R. E. (2015). Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohydrate Polymers, 132, 606–619. https://doi.org/10.1016/j.carbpol.2015.06.084

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X., Wang, G., Liu, L., & Zhang, D. (2016). The mechanism of a chitosan-collagen composite film used as biomaterial support for MC3T3-E1 cell differentiation. Scientific Reports, 6(39322), 1–7. https://doi.org/10.1038/srep39322

    Article  CAS  Google Scholar 

  20. Seda Tiǧli, R., Karakeçili, A., & Gumusderelioglu, M. (2007). In vitro characterization of chitosan scaffolds: Influence of composition and deacetylation degree. Journal of Materials Science: Materials in Medicine, 18(9), 1665–1674. https://doi.org/10.1007/s10856-007-3066-x

    Article  CAS  PubMed  Google Scholar 

  21. Davidenko, N., Schuster, C. F., Bax, D. V., Raynal, N., Farndale, R. W., Best, S. M., & Cameron, R. E. (2015). Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomaterialia, 25, 131–142. https://doi.org/10.1016/j.actbio.2015.07.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ragetly, G., Griffon, D. J., & Chung, Y. S. (2010). The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomaterialia, 6(10), 3988–3997. https://doi.org/10.1016/j.actbio.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  23. López, J., Imperial, S., Valderrama, R., & Navarro, S. (1993). An improved bradford protein assay for collagen proteins. Clinica Chimica Acta, 220(1), 91–100. https://doi.org/10.1016/0009-8981(93)90009-S

    Article  Google Scholar 

  24. Korpayev, S., Toprak, Ö., Kaygusuz, G., Şen, M., Orhan, K., & Karakeçili, A. (2020). Regulation of chondrocyte hypertrophy in an osteochondral interface mimicking gel matrix. Colloids and Surfaces B: Biointerfaces, 193(January), 111111. https://doi.org/10.1016/j.colsurfb.2020.111111

    Article  CAS  PubMed  Google Scholar 

  25. Lee, H., Yang, G. H., Kim, M., Lee, J. Y., Huh, J. T., & Kim, G. H. (2017). Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Materials Science and Engineering C, 84, 140–147. https://doi.org/10.1016/j.msec.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  26. Wang, L., & Stegemann, J. P. (2010). Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials, 31(14), 3976–3985. https://doi.org/10.1016/j.biomaterials.2010.01.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beşkardeş, I. G., Demirtaş, T. T., Durukan, M. D., & Gümüşderelioğlu, M. (2015). Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 9(11), 1233–1246. https://doi.org/10.1002/term.1677

    Article  CAS  PubMed  Google Scholar 

  28. Chen, L., Wu, Z., Zhou, Y., Li, L., Wang, Y., Wang, Z., & Zhang, P. (2017). Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. Journal of Applied Polymer Science, 134(37), 1–8. https://doi.org/10.1002/app.45271

    Article  CAS  Google Scholar 

  29. Korpayev, S., Karakeçili, A., Dumanoğlu, H., Osman, I. A., & S. (2021). Chitosan and silver nanoparticles are attractive auxin carriers: A comparative study on the adventitious rooting of microcuttings in apple rootstocks. Biotechnology Journal, 16(8), 1–10. https://doi.org/10.1002/biot.202100046

    Article  CAS  Google Scholar 

  30. Sionkowska, A., Wisniewski, M., Skopinska, J., Kennedy, C. J., & Wess, T. J. (2004). Molecular interactions in collagen and chitosan blends. Biomaterials, 25(5), 795–801. https://doi.org/10.1016/S0142-9612(03)00595-7

    Article  CAS  PubMed  Google Scholar 

  31. Park, S. A., Lee, S. J., Seok, J. M., Lee, J. H., Kim, W. D., & Kwon, I. K. (2018). Fabrication of 3D printed PCL/PEG polyblend scaffold using rapid prototyping system for bone tissue engineering Application. Journal of Bionic Engineering, 15(3), 435–442. https://doi.org/10.1007/s42235-018-0034-8

    Article  Google Scholar 

  32. Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293–8300. https://doi.org/10.1016/j.ceramint.2014.01.031

    Article  CAS  Google Scholar 

  33. Kim, T. R., Kim, M. S., Goh, T. S., Lee, J. S., Kim, Y. H., Yoon, S. Y., & Lee, C. S. (2019). Evaluation of structural and mechanical properties of porous artificial bone scaffolds fabricated via advanced TBA-based freeze-gel casting technique. Applied Sciences (Switzerland), 9(9), 1–17. https://doi.org/10.3390/app9091965

    Article  CAS  Google Scholar 

  34. Smith, B. T., Santoro, M., Grosfeld, E. C., Shah, S. R., van den Beucken, J. J. J. P., Jansen, J. A., & Mikos., A. G. (2017). Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Acta Biomaterialia, 50, 68–77. https://doi.org/10.1016/j.actbio.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  35. Marques, C. F., Perera, F. H., Marote, A., Ferreira, S., Vieira, S. I., Olhero, S., & Ferreira, J. M. F. (2017). Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties. Journal of the European Ceramic Society, 37(1), 359–368. https://doi.org/10.1016/j.jeurceramsoc.2016.08.018

    Article  CAS  Google Scholar 

  36. Gromolak, S., Krawczenko, A., Antończyk, A., Buczak, K., Kiełbowicz, Z., & Klimczak, A. (2020). Biological characteristics and osteogenic differentiation of ovine bone marrow derived mesenchymal stem cells stimulated with FGF-2 and BMP-2. International Journal of Molecular Sciences, 21(24), 1–22. https://doi.org/10.3390/ijms21249726

    Article  CAS  Google Scholar 

  37. Chen, Y., Huang, Z., Li, X., Li, S., Zhou, Z., Zhang, Y., & Yu, B. (2012). In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold. Journal of Nanomaterials, 2012, 1–7. https://doi.org/10.1155/2012/401084

    Article  CAS  Google Scholar 

  38. Xu, J. H., Li, Z. H., Hou, Y. D., & Fang, W. J. (2015). Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. American Journal of Translational Research, 7(12), 2527–2535.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) with grant no. 116M437.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Ayşe Karakeçili, Serdar Korpayev; methodology: Ayşe Karakeçili, Serdar Korpayev; formal analysis and investigation: Ayşe Karakeçili, Serdar Korpayev; writing–original draft preparation: Ayşe Karakeçili; writing–review and editing: Serdar Korpayev; funding acquisition: Ayşe Karakeçili; resources: Ayşe Karakeçili, Kaan Orhan; supervision: Ayşe Karakeçili.

Corresponding authors

Correspondence to Ayşe Karakeçili or Serdar Korpayev.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Yes. All authors agreed to participate in this research.

Consent for Publication

Yes. All authors have approved the last version of the manuscript for its submission.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakeçili, A., Korpayev, S. & Orhan, K. Optimizing Chitosan/Collagen Type I/Nanohydroxyapatite Cross-linked Porous Scaffolds for Bone Tissue Engineering. Appl Biochem Biotechnol 194, 3843–3859 (2022). https://doi.org/10.1007/s12010-022-03962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03962-0

Keywords

Navigation