Skip to main content

Advertisement

Log in

A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production

  • Review Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

Abbreviations

MBR:

Membrane bioreactor

GHGs:

Greenhouse gases

LPG:

Liquefied petroleum gas

HF:

Hollow fiber

FS:

Flat sheet

MF:

Micro filtration

UF:

Ultra filtration

NF:

Nano filtration

PV:

Pervaporation

MD:

Membrane distillation

RO:

Reverse osmosis

HMF:

Hydroxyl methyl furfural

VMD:

Vacuum membrane distillation

PA:

Polyamide

PES:

Poly ether sulphonate

NF:

Nanofiltration

Da:

Dalton

BMRSP :

Superparamagnetic biocatalytic membrane

PVDF:

Polyvinylidene fluoride

PP:

Polypropylene

NPSP :

Super paramagnetic nanoparticles

kDa:

Kilodalton

N2 :

Nitrogen

CO2 :

Carbon dioxide

MD:

Membrane distillation

PVA:

Polyvinylalcohol

PDMS:

Poly dimethyl siloxane

RO:

Reverse osmosis

COD:

Chemical oxygen demand

ABE:

Acetone-butanol-ethanol

SDS:

Polystyrene-b-polydimethylsiloxane-b-polystyrene

CNT-PDMS:

Carbon nanotube filled PDMS

PAN:

Polyacrylonitrile

ILs:

Ionic liquids

Μm:

Micrometer

PTFE:

Polytetrafluoroethylene

STR:

Stirred tank reactor

CSTR:

Continuous stirred tank reactor

PAAc:

Polyacrylic acid

CaO:

Calcium oxide

TiO2/Al2O3 :

Titanium oxide/aluminum oxide

PAAc-BDSA:

Polyacrylic acid crosslinked with 4,4′-diamino-2,2′-biphenyl14 sulfonic acid

FAME:

Fatty acid methyl ester

PVA:

Poly (vinyl) alcohol

PTFE:

Polytetrafluoroethylene

MPa:

Megapascal

GO/CS:

Graphene oxide/chitosan

PV:

Poly vinyl

BOD:

Biological oxygen demand

H2 :

Hydrogen

AnMBR:

Anaerobic membrane bioreactor

CNG:

Compressed natural gas

UASB:

Upflow anaerobic sludge blanket

EGSB:

Expanded granular sludge bed reactor

AFBR:

Anaerobic fluidized-bed membrane reactor

JFAB:

Jet flow anaerobic bioreactor

SRT:

Solids retention time

HRT:

Hydraulic retention time

BTFs:

Biofilters and biotrickle filters

PSA:

Pressure swing adsorption

H2S:

Hydrogen sulfide

CH4 :

Methane

OLR:

Organic loading rate

References

  1. Vanhala, P., Bergström, I., Haaspuro, T., Kortelainen, P., Holmberg, M., & Forsius, M. (2016). Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level. Science of the Total Environment, 557–558, 51–57. https://doi.org/10.1016/j.scitotenv.2016.03.040

    Article  CAS  PubMed  Google Scholar 

  2. Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71(October 2015), 475–501. https://doi.org/10.1016/j.rser.2016.12.076

    Article  CAS  Google Scholar 

  3. Saha, K., Maheswari, R. U., Sikder, J., Chakraborty, S., da Silva, S. S., & dos Santos, J. C. (2017). Membranes as a tool to support biorefineries: Applications in enzymatic hydrolysis, fermentation and dehydration for bioethanol production. Renewable and Sustainable Energy Reviews, 74(November 016), 873–890. https://doi.org/10.1016/j.rser.2017.03.015

    Article  CAS  Google Scholar 

  4. Kumar, P., Chandrasekhar, K., Kumari, A., Sathiyamoorthi, E., & Kim, B. S. (2018). Electro-fermentation in aid of bioenergy and biopolymers. Energies, 11(2). https://doi.org/10.3390/en11020343

  5. Quraishi, M., Bhatia, S. K., Pandit, S., Gupta, P. K., Rangarajan, V., Lahiri, D., …, Yang, Y.-H. (2021). Exploiting microbes in the petroleum field: Analyzing the credibility of microbial enhanced oil recovery (MEOR). Energies, 14(4684). https://doi.org/10.3390/en14154684

  6. Rastogi, M., & Shrivastava, S. (2017). Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews, 80(January), 330–340. https://doi.org/10.1016/j.rser.2017.05.225

    Article  Google Scholar 

  7. Stephen, J. L., & Periyasamy, B. (2018). Innovative developments in biofuels production from organic waste materials: A review. Fuel, 214(November 2017), 623–633. https://doi.org/10.1016/j.fuel.2017.11.042

    Article  CAS  Google Scholar 

  8. Gabhane, J., & Vaidya, A. N. (2019). Efficiency of nutrient based compost activator on composting of green biomass: Effect on physico-chemical, biological parameter and maturity of compost. International Journal of Current Engineering and Scientific Research, 6(January 2019), 2394–0697. Retrieved from http://troindia.in/journal/ijcesr/vol6iss1part3/321-331.pdf

  9. Bhatia, S. K., Kim, S. H., Yoon, J. J., & Yang, Y. H. (2017). Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 148, 1142–1156. https://doi.org/10.1016/j.enconman.2017.06.073

    Article  CAS  Google Scholar 

  10. Ahmed, W., & Sarkar, B. (2018). Impact of carbon emissions in a sustainable supply chain management for a second generation biofuel. Journal of Cleaner Production, 186, 807–820. https://doi.org/10.1016/j.jclepro.2018.02.289

    Article  Google Scholar 

  11. Chang, W. R., Hwang, J. J., & Wu, W. (2017). Environmental impact and sustainability study on biofuels for transportation applications. Renewable and Sustainable Energy Reviews, 67, 277–288. https://doi.org/10.1016/j.rser.2016.09.020

    Article  CAS  Google Scholar 

  12. Gaurav, N., Sivasankari, S., Kiran, G. S., Ninawe, A., & Selvin, J. (2017). Utilization of bioresources for sustainable biofuels: A review. Renewable and Sustainable Energy Reviews, 73(November 2016), 205–214. https://doi.org/10.1016/j.rser.2017.01.070

    Article  CAS  Google Scholar 

  13. Joshi, G., Pandey, J. K., Rana, S., & Rawat, D. S. (2017). Challenges and opportunities for the application of biofuel. Renewable and Sustainable Energy Reviews, 79(March), 850–866. https://doi.org/10.1016/j.rser.2017.05.185

    Article  Google Scholar 

  14. Toivanen, H., & Novotny, M. (2017). The emergence of patent races in lignocellulosic biofuels, 2002–2015. Renewable and Sustainable Energy Reviews, 77(March), 318–326. https://doi.org/10.1016/j.rser.2017.03.089

    Article  CAS  Google Scholar 

  15. Mendiara, T., García-Labiano, F., Abad, A., Gayán, P., de Diego, L. F., Izquierdo, M. T., & Adánez, J. (2018). Negative CO2 emissions through the use of biofuels in chemical looping technology: A review. Applied Energy, 232(September 2018), 657–684. https://doi.org/10.1016/j.apenergy.2018.09.201

    Article  CAS  Google Scholar 

  16. Darda, S., Papalas, T., & Zabaniotou, A. (2019). Biofuels journey in Europe: Currently the way to low carbon economy sustainability is still a challenge. Journal of Cleaner Production, 208, 575–588. https://doi.org/10.1016/j.jclepro.2018.10.147

    Article  Google Scholar 

  17. Rassoulinejad-Mousavi, S. M., Mao, Y., & Zhang, Y. (2018). Reducing greenhouse gas emissions in Sandia methane-air flame by using a biofuel. Renewable Energy, 128, 313–323. https://doi.org/10.1016/j.renene.2018.05.079

    Article  CAS  Google Scholar 

  18. Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106. https://doi.org/10.1016/j.rser.2014.04.047

    Article  CAS  Google Scholar 

  19. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing, 4(1). https://doi.org/10.1186/s40643-017-0137-9

  20. Ullah, K., Sharma, V. K., Ahmad, M., Lv, P., Krahl, J., Wang, Z., & Sofia. (2018). The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review. Renewable and Sustainable Energy Reviews, 82(August), 3992–4008. https://doi.org/10.1016/j.rser.2017.10.074

    Article  CAS  Google Scholar 

  21. De Guilherme, A. A., Dantas, P. V. F., Soares, J. C. J., Dos Santos, E. S., Fernandes, F. A. N., & De Macedo, G. R. (2017). Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose. Brazilian Journal of Chemical Engineering, 34(4), 937–947. https://doi.org/10.1590/0104-6632.20170344s20160225

    Article  CAS  Google Scholar 

  22. Guo, J., Wang, Y., Cheng, J., & Zhu, M. (2020). Enhancing enzymatic hydrolysis and fermentation efficiency of rice straw by pretreatment of sodium perborate. Biomass Conversion and Biorefinery, 12(April 2020), 361–370. https://doi.org/10.1007/s13399-020-00668-3

  23. Triwahyuni, E., Hariyanti, S., Dahnum, D., Nurdin, M., & Abimanyu, H. (2015). Optimization of saccharification and fermentation process in bioethanol production from oil palm fronds. Procedia Chemistry, 16, 141–148. https://doi.org/10.1016/j.proche.2015.12.002

    Article  CAS  Google Scholar 

  24. Choudhary, J., Singh, S., & Nain, L. (2016). Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic Journal of Biotechnology, 21, 82–92. https://doi.org/10.1016/j.ejbt.2016.02.007

    Article  Google Scholar 

  25. Qin, L., Li, X., Liu, L., Zhu, J. Q., Guan, Q. M., Zhang, M. T., …, Yuan, Y. J. (2017). Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production. Bioresource Technology, 224, 342–348.https://doi.org/10.1016/j.biortech.2016.11.106

  26. Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269(January), 16–34. https://doi.org/10.1016/j.jbiotec.2018.01.010

    Article  CAS  PubMed  Google Scholar 

  27. Szambelan, K., Nowak, J., Frankowski, J., Szwengiel, A., Jeleń, H., & Burczyk, H. (2018). The comprehensive analysis of sorghum cultivated in Poland for energy purposes: Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods and their impact on bioethanol effectiveness and volatile by-products from the grain and the energy potential of sorghum straw. Bioresource Technology, 250, 750–757. https://doi.org/10.1016/j.biortech.2017.11.096

    Article  CAS  PubMed  Google Scholar 

  28. Manan, M. A., & Webb, C. (2017). Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology & Bioengineering, 4(1), 511–532. https://doi.org/10.15406/jabb.2017.04.00094

    Article  Google Scholar 

  29. Behera, S., Sharma, N. K., & Kumar, S. (2018). Prospects of solvent tolerance in butanol fermenting bacteria. In S. Kumar & R. K. Sani (Eds.), Biorefining of biomass to biofuel (vol. 4, pp. 249–264). Springer. https://doi.org/10.1007/978-3-319-67678-4_11

  30. Badenes, S. M., Ferreira, F. C., & Cabral, J. M. S. (2013). Membrane bioreactors for biofuel production, Part VI hybrid / integrated reaction-separation systems-Process intensification. In S. Ramaswamy, H.-J. Huang, & B. V. Ramarao (Eds.), Separation and purification technologies in biorefineries (pp. 377–407). https://doi.org/10.1002/9781118493441.ch14

  31. Krzeminski, P., Leverette, L., Malamis, S., & Katsou, E. (2017). Membrane bioreactors – A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. Journal of Membrane Science, 527(December 2016), 207–227. https://doi.org/10.1016/j.memsci.2016.12.010

    Article  CAS  Google Scholar 

  32. Ong, Y. K., Shi, G. M., Le, N. L., Tang, Y. P., Zuo, J., Nunes, S. P., & Chung, T. S. (2016). Recent membrane development for pervaporation processes. Progress in Polymer Science, 57, 1–31. https://doi.org/10.1016/j.progpolymsci.2016.02.003

    Article  CAS  Google Scholar 

  33. Chakraborty, S., Rusli, H., Nath, A., Sikder, J., Bhattacharjee, C., Curcio, S., & Drioli, E. (2016). Immobilized biocatalytic process development and potential application in membrane separation: A review. Critical Reviews in Biotechnology, 36(1), 43–48. https://doi.org/10.3109/07388551.2014.923373

    Article  CAS  PubMed  Google Scholar 

  34. Pal, P., Kumar, R., & Ghosh, A. K. (2018). Analysis of process intensification and performance assessment for fermentative continuous production of bioethanol in a multi-staged membrane-integrated bioreactor system. Energy Conversion and Management, 171(March), 371–383. https://doi.org/10.1016/j.enconman.2018.05.099

    Article  CAS  Google Scholar 

  35. Quraishi, M., Wani, K., Pandit, S., Gupta, P. K., Rai, A. K., Lahiri, D., …, Prasad, R. (2021). Valorisation of CO 2 into value-added products via microbial electrosynthesis ( MES ) and electro-fermentation technology. Fermentation, 7(291). https://doi.org/10.3390/fermentation7040291

  36. Patwardhan, S. B., Savla, N., Pandit, S., Gupta, P. K., Mathuriya, A. S., Lahiri, D., …, Rai, A. K. (2021). Microbial fuel cell united with other existing technologies for enhanced power generation and efficient wastewater treatment. Applied Sciences (Switzerland), 11(10777). https://doi.org/10.3390/app112210777

  37. Iorhemen, O. T., Hamza, R. A., & Tay, J. H. (2016). Membrane bioreactor (Mbr) technology for wastewater treatment and reclamation: Membrane fouling. Membranes, 6(2), 13–16. https://doi.org/10.3390/membranes6020033

    Article  CAS  Google Scholar 

  38. Ishizaki, S., Fukushima, T., Ishii, S., & Okabe, S. (2016). Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater. Water Research, 100. Elsevier Ltd. https://doi.org/10.1016/j.watres.2016.05.027

  39. Meng, F., Zhang, S., Oh, Y., Zhou, Z., Shin, H. S., & Chae, S. R. (2017). Fouling in membrane bioreactors: An updated review. Water Research, 114, 151–180. https://doi.org/10.1016/j.watres.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  40. Bagheri, M., & Mirbagheri, S. A. (2018). Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater. Bioresource Technology, 258, 318–334. https://doi.org/10.1016/j.biortech.2018.03.026

    Article  CAS  PubMed  Google Scholar 

  41. Curcio, S., De Luca, G., Saha, K., & Chakraborty, S. (2016). Advance membrane separation processes for biorefineries. In Membrane Technologies for Biorefining, 3–28. https://doi.org/10.1016/B978-0-08-100451-7.00001-3

  42. Castel, C., & Favre, E. (2018). Membrane separations and energy efficiency. Journal of Membrane Science, 548(June 2017), 345–357. https://doi.org/10.1016/j.memsci.2017.11.035

    Article  CAS  Google Scholar 

  43. Oh, Y. K., Hwang, K. R., Kim, C., Kim, J. R., & Lee, J. S. (2018). Recent developments and key barriers to advanced biofuels: A short review. Bioresource Technology, 257(February), 320–333. https://doi.org/10.1016/j.biortech.2018.02.089

    Article  CAS  PubMed  Google Scholar 

  44. Buonomenna, M. G., & Bae, J. (2015). Membrane processes and renewable energies. Renewable and Sustainable Energy Reviews, 43, 1343–1398. https://doi.org/10.1016/j.rser.2014.11.091

    Article  CAS  Google Scholar 

  45. Huang, H. J., Ramaswamy, S., & Liu, Y. (2014). Separation and purification of biobutanol during bioconversion of biomass. Separation and Purification Technology, 132, 513–540. https://doi.org/10.1016/j.seppur.2014.06.013

    Article  CAS  Google Scholar 

  46. Wei, P., Cheng, L. H., Zhang, L., Xu, X. H., Chen, H. L., & Gao, C. J. (2014). A review of membrane technology for bioethanol production. Renewable and Sustainable Energy Reviews, 30, 388–400. https://doi.org/10.1016/j.rser.2013.10.017

    Article  CAS  Google Scholar 

  47. Le, N. L., & Nunes, S. P. (2016). Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 7, 1–28. https://doi.org/10.1016/j.susmat.2016.02.001

    Article  CAS  Google Scholar 

  48. Santos, E. L. I., Rostro-Alanís, M., Parra-Saldívar, R., & Alvarez, A. J. (2018). A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane. Bioresource Technology, 247(July 2017), 165–173. https://doi.org/10.1016/j.biortech.2017.09.091

    Article  CAS  PubMed  Google Scholar 

  49. Shao, L., Low, B. T., Chung, T. S., & Greenberg, A. R. (2009). Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 327(1–2), 18–31. https://doi.org/10.1016/j.memsci.2008.11.019

    Article  CAS  Google Scholar 

  50. Devendra Dohare, E., & Trivedi, E. R. (2014). A review on membrane bioreactors: an emerging technology for industrial wastewater treatment. International Journal of Emerging Technology and Advanced Engineering Website: www.ijetae.com ISO Certified Journal, 4(12), 226–236.

  51. Ersahin, M. E., Tao, Y., Ozgun, H., Gimenez, J. B., Spanjers, H., & van Lier, J. B. (2017). Impact of anaerobic dynamic membrane bioreactor configuration on treatment and filterability performance. Journal of Membrane Science, 526(October 2016), 387–394. https://doi.org/10.1016/j.memsci.2016.12.057

    Article  CAS  Google Scholar 

  52. Morrow, C. P., McGaughey, A. L., Hiibel, S. R., & Childress, A. E. (2018). Submerged or sidestream? The influence of module configuration on fouling and salinity in osmotic membrane bioreactors. Journal of Membrane Science, 548(June 2017), 583–592. https://doi.org/10.1016/j.memsci.2017.11.030

    Article  CAS  Google Scholar 

  53. Ahmad, F., Lau, K. K., Shariff, A. M., & Fong Yeong, Y. (2013). Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system. Journal of Membrane Science, 430, 44–55. https://doi.org/10.1016/j.memsci.2012.11.070

    Article  CAS  Google Scholar 

  54. Wang, P., & Chung, T. S. (2015). Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science, 474, 39–56. https://doi.org/10.1016/j.memsci.2014.09.016

    Article  CAS  Google Scholar 

  55. Vladisavljević, G. T. (2019). Biocatalytic membrane reactors (BMR). Physical Sciences Reviews, 1(1), 1–35. https://doi.org/10.1515/psr-2015-0015

    Article  Google Scholar 

  56. Zhang, W., Luo, J., Ding, L., & Jaffrin, M. Y. (2015). A review on flux decline control strategies in pressure-driven membrane processes. Industrial and Engineering Chemistry Research, 54(11), 2843–2861. https://doi.org/10.1021/ie504848m

    Article  CAS  Google Scholar 

  57. Gebreyohannes, A. Y., Dharmjeet, M., Swusten, T., Mertens, M., Verspreet, J., Verbiest, T., …, Vankelecom, I. F. J. (2018). Simultaneous glucose production from cellulose and fouling reduction using a magnetic responsive membrane reactor with superparamagnetic nanoparticles carrying cellulolytic enzymes. Bioresource Technology, 263, 532–540.https://doi.org/10.1016/j.biortech.2018.05.002

  58. Zhang, M., Su, R., Li, Q., Qi, W., & He, Z. (2011). Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. Bioenergy Research, 4(2), 134–140. https://doi.org/10.1007/s12155-010-9107-1

    Article  Google Scholar 

  59. Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2014). The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Separation and Purification Technology, 126, 30–38. https://doi.org/10.1016/j.seppur.2014.02.013

    Article  CAS  Google Scholar 

  60. Dereli, R. K., Heffernan, B., Grelot, A., Van Der Zee, F. P., & Van Lier, J. B. (2015). Influence of high lipid containing wastewater on filtration performance and fouling in AnMBRs operated at different solids retention times. Separation and Purification Technology, 139, 43–52. https://doi.org/10.1016/j.seppur.2014.10.029

    Article  CAS  Google Scholar 

  61. Kanai, M., Ferre, V., Wakahara, S., Yamamoto, T., & Moro, M. (2010). A novel combination of methane fermentation and MBR - Kubota submerged anaerobic membrane bioreactor process. Desalination, 250(3), 964–967. https://doi.org/10.1016/j.desal.2009.09.082

    Article  CAS  Google Scholar 

  62. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  63. Chen, C., Guo, W., Ngo, H. H., Lee, D. J., Tung, K. L., Jin, P., …, Wu, Y. (2016). Challenges in biogas production from anaerobic membrane bioreactors. Renewable Energy, 98, 120–134.https://doi.org/10.1016/j.renene.2016.03.095

  64. Jensen, P. D., Yap, S. D., Boyle-Gotla, A., Janoschka, J., Carney, C., Pidou, M., & Batstone, D. J. (2015). Anaerobic membrane bioreactors enable high rate treatment of slaughterhouse wastewater. Biochemical Engineering Journal, 97, 132–141. https://doi.org/10.1016/j.bej.2015.02.009

    Article  CAS  Google Scholar 

  65. Zhao, X., Qi, F., Yuan, C., Du, W., & Liu, D. (2015). Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renewable and Sustainable Energy Reviews, 44, 182–197. https://doi.org/10.1016/j.rser.2014.12.021

    Article  CAS  Google Scholar 

  66. Tian, X., Dai, L., Liu, D., & Du, W. (2018). Improved lipase-catalyzed methanolysis for biodiesel production by combining in-situ removal of by-product glycerol. Fuel, 232(April), 45–50. https://doi.org/10.1016/j.fuel.2018.05.151

    Article  CAS  Google Scholar 

  67. Kuo, C. H., Peng, L. T., Kan, S. C., Liu, Y. C., & Shieh, C. J. (2013). Lipase-immobilized biocatalytic membranes for biodiesel production. Bioresource Technology, 145, 229–232. https://doi.org/10.1016/j.biortech.2012.12.054

    Article  CAS  PubMed  Google Scholar 

  68. Kim, K. H., Lee, O. K., & Lee, E. Y. (2018). Nano-immobilized biocatalysts for biodiesel production from renewable and sustainable resources. Catalysts, 8(2). https://doi.org/10.3390/catal8020068

  69. Liu, D. M., Chen, J., & Shi, Y. P. (2018). Advances on methods and easy separated support materials for enzymes immobilization. TrAC - Trends in Analytical Chemistry, 102, 332–342. https://doi.org/10.1016/j.trac.2018.03.011

    Article  CAS  Google Scholar 

  70. He, Y., Bagley, D. M., Leung, K. T., Liss, S. N., & Liao, B. Q. (2012). Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnology Advances, 30(4), 817–858. https://doi.org/10.1016/j.biotechadv.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  71. Tian, S. Q., Wang, X. W., Zhao, R. Y., & Ma, S. (2015). Recycling cellulase from enzymatic hydrolyzate of laser-pretreated corn stover by UF membrane. BioResources, 10(4), 7315–7323. https://doi.org/10.15376/biores.10.4.7315-7323

    Article  CAS  Google Scholar 

  72. Al-Zuhair, S., Al-Hosany, M., Zooba, Y., Al-Hammadi, A., & Al-Kaabi, S. (2013). Development of a membrane bioreactor for enzymatic hydrolysis of cellulose. Renewable Energy, 56, 85–89. https://doi.org/10.1016/j.renene.2012.09.044

    Article  CAS  Google Scholar 

  73. Bandikari, R., Qian, J., Baskaran, R., Liu, Z., & Wu, G. (2018). Bio-affinity mediated immobilization of lipase onto magnetic cellulose nanospheres for high yield biodiesel in one time addition of methanol. Bioresource Technology, 249, 354–360. https://doi.org/10.1016/j.biortech.2017.09.156

    Article  CAS  PubMed  Google Scholar 

  74. Mehdi, W. A., Mehde, A. A., Özacar, M., & Özacar, Z. (2018). Characterization and immobilization of protease and lipase on chitin-starch material as a novel matrix. International Journal of Biological Macromolecules, 117(2017), 947–958. https://doi.org/10.1016/j.ijbiomac.2018.04.195

    Article  CAS  PubMed  Google Scholar 

  75. Šalić, A., Tušek, A. J., Sander, A., & Zelić, B. (2018). Lipase catalysed biodiesel synthesis with integrated glycerol separation in continuously operated microchips connected in series. New Biotechnology, 47, 80–88. https://doi.org/10.1016/j.nbt.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  76. Kochepka, D. M., Dill, L. P., Couto, G. H., Krieger, N., & Ramos, L. P. (2015). Production of fatty acid ethyl esters from waste cooking oil using Novozym 435 in a solvent-free system. Energy and Fuels, 29(12), 8074–8081. https://doi.org/10.1021/acs.energyfuels.5b02116

    Article  CAS  Google Scholar 

  77. Tacias-Pascacio, V. G., Virgen-Ortíz, J. J., Jiménez-Pérez, M., Yates, M., Torrestiana-Sanchez, B., Rosales-Quintero, A., & Fernandez-Lafuente, R. (2017). Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel, 200, 1–10. https://doi.org/10.1016/j.fuel.2017.03.054

    Article  CAS  Google Scholar 

  78. Aghababaie, M., Beheshti, M., Razmjou, A., & Bordbar, A. K. (2016). Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe3O4@SiO2 dip-coated nanocomposite membrane. Food and Bioproducts Processing, 100, 351–360. https://doi.org/10.1016/j.fbp.2016.07.016

    Article  CAS  Google Scholar 

  79. Li, S. F., Fan, Y. H., Hu, J. F., Huang, Y. S., & Wu, W. T. (2011). Immobilization of Pseudomonas cepacia lipase onto the electrospun PAN nanofibrous membranes for transesterification reaction. Journal of Molecular Catalysis B: Enzymatic, 73(1–4), 98–103. https://doi.org/10.1016/j.molcatb.2011.08.005

    Article  CAS  Google Scholar 

  80. Gupta, S., Bhattacharya, A., & Murthy, C. N. (2013). Tune to immobilize lipases on polymer membranes: Techniques, factors and prospects. Biocatalysis and Agricultural Biotechnology, 2(3), 171–190. https://doi.org/10.1016/j.bcab.2013.04.006

    Article  Google Scholar 

  81. Savvidou, M. G., Katsabea, A., Kotidis, P., Mamma, D., Lymperopoulou, T. V., Kekos, D., & Kolisis, F. N. (2018). Studies on the catalytic behavior of a membrane-bound lipolytic enzyme from the microalgae Nannochloropsis oceanica CCMP1779. Enzyme and Microbial Technology, 116, 64–71. https://doi.org/10.1016/j.enzmictec.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  82. Poppe, J. K., Fernandez-Lafuente, R., Rodrigues, R. C., & Ayub, M. A. Z. (2015). Enzymatic reactors for biodiesel synthesis: Present status and future prospects. Biotechnology Advances, 33(5), 511–525. https://doi.org/10.1016/j.biotechadv.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  83. Jiang, C., Cheng, C., Hao, M., Wang, H., Wang, Z., Shen, C., & Cheong, L. Z. (2017). Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification. International Journal of Biological Macromolecules, 105, 1328–1336. https://doi.org/10.1016/j.ijbiomac.2017.07.166

    Article  CAS  PubMed  Google Scholar 

  84. Mahboubi, A., Ylitervo, P., Doyen, W., De Wever, H., Molenberghs, B., & Taherzadeh, M. J. (2017). Continuous bioethanol fermentation from wheat straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor. Bioresource Technology, 241, 296–308. https://doi.org/10.1016/j.biortech.2017.05.125

    Article  CAS  PubMed  Google Scholar 

  85. Skouteris, G., Hermosilla, D., López, P., Negro, C., & Blanco, Á. (2012). Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal, 198–199, 138–148. https://doi.org/10.1016/j.cej.2012.05.070

    Article  CAS  Google Scholar 

  86. Dereli, R. K., Ersahin, M. E., Ozgun, H., Ozturk, I., Jeison, D., van der Zee, F., & van Lier, J. B. (2012). Potentials of anaerobic membrane bioreactors to overcome treatment limitations induced by industrial wastewaters. Bioresource Technology, 122, 160–170. https://doi.org/10.1016/j.biortech.2012.05.139

    Article  CAS  PubMed  Google Scholar 

  87. Youngsukkasem, S., Chandolias, K., & Taherzadeh, M. J. (2015). Rapid bio-methanation of syngas in a reverse membrane bioreactor: Membrane encased microorganisms. Bioresource Technology, 178, 334–340. https://doi.org/10.1016/j.biortech.2014.07.071

    Article  CAS  PubMed  Google Scholar 

  88. Youngsukkasem, S., Barghi, H., Rakshit, S. K., & Taherzadeh, M. J. (2013). Rapid biogas production by compact multi-layer membrane bioreactor: Efficiency of synthetic polymeric membranes. Energies, 6(12), 6211–6224. https://doi.org/10.3390/en6126211

    Article  CAS  Google Scholar 

  89. Nataraj, S. K., Hosamani, K. M., & Aminabhavi, T. M. (2006). Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Research, 40(12), 2349–2356. https://doi.org/10.1016/j.watres.2006.04.022

    Article  CAS  PubMed  Google Scholar 

  90. Luiz, A., Handelsman, T., Barton, G., Coster, H., & Kavanagh, J. (2015). Membrane treatment options for wastewater from cellulosic ethanol biorefineries. Desalination and Water Treatment, 53(6), 1547–1558. https://doi.org/10.1080/19443994.2014.943056

    Article  CAS  Google Scholar 

  91. Shirazi, M. M. A., Kargari, A., Bazgir, S., Tabatabaei, M., Shirazi, M. J. A., Abdullah, M. S., …, Ismail, A. F. (2013). Characterization of electrospun polystyrene membrane for treatment of biodiesel’s water-washing effluent using atomic force microscopy. Desalination, 329, 1–8.https://doi.org/10.1016/j.desal.2013.08.019

  92. Jaber, R., Shirazi, M. M. A., Toufaily, J., Hamieh, A. T., Noureddin, A., Ghanavati, H., …, Tabatabaei, M. (2015). Biodiesel wash-water reuse using microfiltration: Toward zero-discharge strategy for cleaner and economized biodiesel production. Biofuel Research Journal, 2(1), 148–151. https://doi.org/10.18331/BRJ2015.2.1.3

  93. Atadashi, I. M. (2015). Purification of crude biodiesel using dry washing and membrane technologies. Alexandria Engineering Journal, 54(4), 1265–1272. https://doi.org/10.1016/j.aej.2015.08.005

    Article  Google Scholar 

  94. Amelio, A., Loise, L., Azhandeh, R., Darvishmanesh, S., Calabró, V., Degrève, J., …, Van Der Bruggen, B. (2016). Purification of biodiesel using a membrane contactor: Liquid-liquid extraction. Fuel Processing Technology, 142, 352–360.https://doi.org/10.1016/j.fuproc.2015.10.037

  95. Cai, D., Chen, H., Chen, C., Hu, S., Wang, Y., Chang, Z., …, Tan, T. (2016). Gas stripping-pervaporation hybrid process for energy-saving product recovery from acetone-butanol-ethanol (ABE) fermentation broth. Chemical Engineering Journal, 287, 1–10.https://doi.org/10.1016/j.cej.2015.11.024

  96. Fan, S., Xiao, Z., & Li, M. (2016). Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps. Bioresource Technology, 211, 24–30. https://doi.org/10.1016/j.biortech.2016.03.063

    Article  CAS  PubMed  Google Scholar 

  97. Bakonyi, P., Buitrón, G., Valdez-Vazquez, I., Nemestóthy, N., & Bélafi- Bakó, K. (2017). A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation. Applied Energy, 190, 813–823. https://doi.org/10.1016/j.apenergy.2016.12.151

    Article  CAS  Google Scholar 

  98. Bakonyi, P., Kumar, G., Koók, L., Tóth, G., Rózsenberszki, T., Bélafi-Bakó, K., & Nemestóthy, N. (2018). Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: A review on process characteristics, experiences and lessons. Bioresource Technology, 251(November), 381–389. https://doi.org/10.1016/j.biortech.2017.12.064

    Article  CAS  PubMed  Google Scholar 

  99. Jeong, Y., Hermanowicz, S. W., & Park, C. (2017). Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater. Water Research, 123, 86–95. https://doi.org/10.1016/j.watres.2017.06.049

    Article  CAS  PubMed  Google Scholar 

  100. Kuo, Y. T., Chen, J. S., Yang, T. Y., & Wan, H. P. (2018). Technical and Economic approach of bioethanol production from nanofiltration of biomass chemical hydrolysis solutions. Applied Energy, 215(February), 426–436. https://doi.org/10.1016/j.apenergy.2018.02.026

    Article  CAS  Google Scholar 

  101. Arora, R., Behera, S., & Kumar, S. (2015). Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renewable and Sustainable Energy Reviews, 51, 699–717. https://doi.org/10.1016/j.rser.2015.06.050

    Article  CAS  Google Scholar 

  102. da Silva, A. R. G., Torres Ortega, C. E., & Rong, B. G. (2016). Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production. Bioresource Technology, 218, 561–570. https://doi.org/10.1016/j.biortech.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  103. Chen, J., Zhang, Y., Wang, Y., Ji, X., Zhang, L., Mi, X., & Huang, H. (2013). Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation. Bioresource Technology, 144, 680–683. https://doi.org/10.1016/j.biortech.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  104. Pino, M. S., Rodríguez-Jasso, R. M., Michelin, M., Flores-Gallegos, A. C., Morales-Rodriguez, R., Teixeira, J. A., & Ruiz, H. A. (2018). Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 347, 119–136. https://doi.org/10.1016/j.cej.2018.04.057

    Article  CAS  Google Scholar 

  105. Wei, C. H., Harb, M., Amy, G., Hong, P. Y., & Leiknes, T. O. (2014). Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment. Bioresource Technology, 166, 326–334. https://doi.org/10.1016/j.biortech.2014.05.053

    Article  CAS  PubMed  Google Scholar 

  106. Tomaszewska, M., & Białończyk, L. (2016). Ethanol production from whey in a bioreactor coupled with direct contact membrane distillation. Catalysis Today, 268, 156–163. https://doi.org/10.1016/j.cattod.2016.01.059

    Article  CAS  Google Scholar 

  107. Niemistö, J., Pasanen, A., Hirvelä, K., Myllykoski, L., Muurinen, E., & Keiski, R. L. (2013). Pilot study of bioethanol dehydration with polyvinyl alcohol membranes. Journal of Membrane Science, 447, 119–127. https://doi.org/10.1016/j.memsci.2013.06.048

    Article  CAS  Google Scholar 

  108. Rajagopalan, G., He, J., & Yang, K. L. (2016). One-pot fermentation of agricultural residues to produce butanol and hydrogen by Clostridium strain BOH3. Renewable Energy, 85, 1127–1134. https://doi.org/10.1016/j.renene.2015.07.051

    Article  CAS  Google Scholar 

  109. Gottumukkala, L. D., Haigh, K., & Görgens, J. (2017). Trends and advances in conversion of lignocellulosic biomass to biobutanol: Microbes, bioprocesses and industrial viability. Renewable and Sustainable Energy Reviews, 76(November 2015), 963–973. https://doi.org/10.1016/j.rser.2017.03.030

    Article  CAS  Google Scholar 

  110. Zheng, J., Tashiro, Y., Wang, Q., & Sonomoto, K. (2015). Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. Journal of Bioscience and Bioengineering, 119(1), 1–9. https://doi.org/10.1016/j.jbiosc.2014.05.023

    Article  CAS  PubMed  Google Scholar 

  111. Sarchami, T., Munch, G., Johnson, E., Kießlich, S., & Rehmann, L. (2016). A review of process-design challenges for industrial fermentation of butanol from crude glycerol by non-biphasic clostridium pasteurianum. Fermentation, 2(2), 1–33. https://doi.org/10.3390/fermentation2020013

    Article  CAS  Google Scholar 

  112. Karimi, K., Tabatabaei, M., Horváth, I. S., & Kumar, R. (2015). Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Research Journal, 2(4), 301–308. https://doi.org/10.18331/BRJ2015.2.4.4

    Article  CAS  Google Scholar 

  113. Lin, D. S., Yen, H. W., Kao, W. C., Cheng, C. L., Chen, W. M., Huang, C. C., & Chang, J. S. (2015). Bio-butanol production from glycerol with Clostridium pasteurianum CH4: The effects of butyrate addition and in situ butanol removal via membrane distillation. Biotechnology for Biofuels, 8(1), 1–12. https://doi.org/10.1186/s13068-015-0352-6

    Article  CAS  Google Scholar 

  114. Singh, K. G., Lapsiya, K. L., Gophane, R. R., & Ranade, D. R. (2016). Optimization for butanol production using response surface methodology by Clostridium beijerenckii strain CHTa isolated from distillery waste manure. Journal of Biochemical Technology, 7(1), 1063–1068.

    CAS  Google Scholar 

  115. Khedkar, M. A., Nimbalkar, P. R., Gaikwad, S. G., Chavan, P. V., & Bankar, S. B. (2017). Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study. Bioresource Technology, 225, 359–366. https://doi.org/10.1016/j.biortech.2016.11.058

    Article  CAS  PubMed  Google Scholar 

  116. Al-Shorgani, N. K. N., Kalil, M. S., Yusoff, W. M. W., & Hamid, A. A. (2018). Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi Journal of Biological Sciences, 25(2), 339–348. https://doi.org/10.1016/j.sjbs.2017.03.020

    Article  CAS  PubMed  Google Scholar 

  117. Abdehagh, N., Tezel, F. H., & Thibault, J. (2014). Separation techniques in butanol production: Challenges and developments. Biomass and Bioenergy, 60, 222–246. https://doi.org/10.1016/j.biombioe.2013.10.003

    Article  CAS  Google Scholar 

  118. Schwarz, K. M., Grosse-Honebrink, A., Derecka, K., Rotta, C., Zhang, Y., & Minton, N. P. (2017). Towards improved butanol production through targeted genetic modification of Clostridium pasteurianum. Metabolic Engineering, 40, 124–137. https://doi.org/10.1016/j.ymben.2017.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cai, D., Hu, S., Miao, Q., Chen, C., Chen, H., Zhang, C., …, Tan, T. (2017). Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth. Bioresource Technology, 224, 380–388.https://doi.org/10.1016/j.biortech.2016.11.010

  120. Jiménez-Bonilla, P., & Wang, Y. (2018). In situ biobutanol recovery from clostridial fermentations: A critical review. Critical Reviews in Biotechnology, 38(3), 469–482. https://doi.org/10.1080/07388551.2017.1376308

    Article  CAS  PubMed  Google Scholar 

  121. Van Der Bruggen, B., & Luis, P. (2014). Pervaporation as a tool in chemical engineering: A new era? Current Opinion in Chemical Engineering, 4, 47–53. https://doi.org/10.1016/j.coche.2014.01.005

    Article  Google Scholar 

  122. Xue, C., Zhao, J. B., Chen, L. J., Bai, F. W., Yang, S. T., & Sun, J. X. (2014). Integrated butanol recovery for an advanced biofuel: Current state and prospects. Applied Microbiology and Biotechnology, 98(8), 3463–3474. https://doi.org/10.1007/s00253-014-5561-6

    Article  CAS  PubMed  Google Scholar 

  123. Díaz, V. H. G., & Tost, G. O. (2016). Butanol production from lignocellulose by simultaneous fermentation, saccharification, and pervaporation or vacuum evaporation. Bioresource Technology, 218, 174–182. https://doi.org/10.1016/j.biortech.2016.06.091

    Article  CAS  PubMed  Google Scholar 

  124. Wu, H., Chen, X. P., Liu, G. P., Jiang, M., Guo, T., Jin, W. Q., …, Zhu, D. W. (2012). Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane. Bioprocess and Biosystems Engineering, 35(7), 1057–1065.https://doi.org/10.1007/s00449-012-0721-5

  125. Outram, V., Lalander, C. A., Lee, J. G. M., Davies, E. T., & Harvey, A. P. (2017). Applied in situ product recovery in ABE fermentation. Biotechnology Progress, 33(3), 563–579. https://doi.org/10.1002/btpr.2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zheng, P. Y., Li, X. Q., Wu, J. K., Wang, N. X., Li, J., & An, Q. F. (2018). Enhanced butanol selectivity of pervaporation membrane with fluorinated monolayer on polydimethylsiloxane surface. Journal of Membrane Science, 548(November 2017), 215–222. https://doi.org/10.1016/j.memsci.2017.11.015

    Article  CAS  Google Scholar 

  127. Xue, C., Liu, F., Xu, M., Zhao, J., Chen, L., Ren, J., …, Yang, S. T. (2016). A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnology and Bioengineering, 113(1), 120–129.https://doi.org/10.1002/bit.25666

  128. Wu, H., He, A. Y., Kong, X. P., Jiang, M., Chen, X. P., Zhu, D. W., …, Jin, W. Q. (2015). Acetone-butanol-ethanol production using pH control strategy and immobilized cells in an integrated fermentation-pervaporation process. Process Biochemistry, 50(4), 614–622.https://doi.org/10.1016/j.procbio.2014.12.006

  129. Cai, D., Zhang, T., Zheng, J., Chang, Z., Wang, Z., Qin, P. yong, & Tan, T. wei. (2013). Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresource Technology, 145, 97–102. https://doi.org/10.1016/j.biortech.2013.02.094

    Article  CAS  PubMed  Google Scholar 

  130. Van Hecke, W., Vandezande, P., Claes, S., Vangeel, S., Beckers, H., Diels, L., & De Wever, H. (2012). Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresource Technology, 111, 368–377. https://doi.org/10.1016/j.biortech.2012.02.043

    Article  CAS  PubMed  Google Scholar 

  131. Plaza, A., Merlet, G., Hasanoglu, A., Isaacs, M., Sanchez, J., & Romero, J. (2013). Separation of butanol from ABE mixtures by sweep gas pervaporation using a supported gelled ionic liquid membrane: Analysis of transport phenomena and selectivity. Journal of Membrane Science, 444, 201–212. https://doi.org/10.1016/j.memsci.2013.04.034

    Article  CAS  Google Scholar 

  132. Dalle Ave, G., & Adams, T. A. (2018). Techno-economic comparison of acetone-butanol-ethanol fermentation using various extractants. Energy Conversion and Management, 156(November 2017), 288–300. https://doi.org/10.1016/j.enconman.2017.11.020

    Article  CAS  Google Scholar 

  133. Qureshi, N., & Maddox, I. S. (2005). Reduction in butanol inhibition by perstraction: Utilization of concentrated lactose/whey permeate by Clostridium acetobutylicum to enhance butanol fermentation economics. Food and Bioproducts Processing, 83(1 C), 43–52. https://doi.org/10.1205/fbp.04163

    Article  CAS  Google Scholar 

  134. Merlet, G., Uribe, F., Aravena, C., Rodríguez, M., Cabezas, R., Quijada-Maldonado, E., & Romero, J. (2017). Separation of fermentation products from ABE mixtures by perstraction using hydrophobic ionic liquids as extractants. Journal of Membrane Science, 537(February), 337–343. https://doi.org/10.1016/j.memsci.2017.05.045

    Article  CAS  Google Scholar 

  135. Bharathiraja, B., Jayamuthunagai, J., Sudharsanaa, T., Bharghavi, A., Praveenkumar, R., Chakravarthy, M., & Devarajan, Y. (2017). Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques. Renewable and Sustainable Energy Reviews, 68(October 2016), 788–807. https://doi.org/10.1016/j.rser.2016.10.017

    Article  Google Scholar 

  136. Ito, M., Morita, I., Yamane, S., & Yamada, K. (2013). Butanol manufacturing method. January 2013, Japan. Retrieved from https://patents.google.com/patent/US20130041187A1/en

  137. Garcia, A., Iannotti, E. L., & Fischer, J. L. (1986). Butanol fermentation liquor production and separation by reverse osmosis. Biotechnology and Bioengineering, 28(6), 785–791. https://doi.org/10.1002/bit.260280603

    Article  CAS  PubMed  Google Scholar 

  138. Stone, K. A., Hilliard, M. V., He, Q. P., & Wang, J. (2017). A mini review on bioreactor configurations and gas transfer enhancements for biochemical methane conversion. Biochemical Engineering Journal, 128, 83–92. https://doi.org/10.1016/j.bej.2017.09.003

    Article  CAS  Google Scholar 

  139. Dvořák, L., Gómez, M., Dolina, J., & Černín, A. (2016). Anaerobic membrane bioreactors—A mini review with emphasis on industrial wastewater treatment: Applications, limitations and perspectives. Desalination and Water Treatment, 57(41), 19062–19076. https://doi.org/10.1080/19443994.2015.1100879

    Article  CAS  Google Scholar 

  140. Shin, C., & Bae, J. (2018). Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: A critical review. Bioresource Technology, 247, 1038–1046. https://doi.org/10.1016/j.biortech.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  141. Li, Q., Li, Y. Y., Qiao, W., Wang, X., & Takayanagi, K. (2015). Sulfate addition as an effective method to improve methane fermentation performance and propionate degradation in thermophilic anaerobic co-digestion of coffee grounds, milk and waste activated sludge with AnMBR. Bioresource Technology, 185, 308–315. https://doi.org/10.1016/j.biortech.2015.03.019

    Article  CAS  PubMed  Google Scholar 

  142. Angenent, L. T., Usack, J. G., Xu, J., Hafenbradl, D., Posmanik, R., & Tester, J. W. (2018). Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresource Technology, 247(July), 1085–1094. https://doi.org/10.1016/j.biortech.2017.09.104

    Article  CAS  PubMed  Google Scholar 

  143. Zabranska, J., & Pokorna, D. (2018). Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnology Advances, 36(3), 707–720. https://doi.org/10.1016/j.biotechadv.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  144. Bharathiraja, B., Sudharsanaa, T., Bharghavi, A., Jayamuthunagai, J., & Praveenkumar, R. (2016). Biohydrogen and biogas – An overview on feedstocks and enhancement process. Fuel, 185, 810–828. https://doi.org/10.1016/j.fuel.2016.08.030

    Article  CAS  Google Scholar 

  145. Bakonyi, P., Nemestóthy, N., Simon, V., & Bélafi-Bakó, K. (2014). Fermentative hydrogen production in anaerobic membrane bioreactors: A review. Bioresource Technology, 156, 357–363. https://doi.org/10.1016/j.biortech.2014.01.079

    Article  CAS  PubMed  Google Scholar 

  146. Cashman, S., Ma, X., Mosley, J., Garland, J., Crone, B., & Xue, X. (2018). Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery. Bioresource Technology, 254, 56–66. https://doi.org/10.1016/j.biortech.2018.01.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, L., Feng, L., Zhang, R., He, Y., Wang, W., Chen, C., & Liu, G. (2015). Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor. Bioresource Technology, 186, 338–342. https://doi.org/10.1016/j.biortech.2015.03.086

    Article  CAS  PubMed  Google Scholar 

  148. Garcia, I. M., Mokosch, M., Soares, A., Pidou, M., & Jefferson, B. (2013). Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates. Water Research, 47(14), 4853–4860. https://doi.org/10.1016/j.watres.2013.05.008

    Article  CAS  Google Scholar 

  149. Dutta, K., Lee, M. Y., Lai, W. W. P., Lee, C. H., Lin, A. Y. C., Lin, C. F., & Lin, J. G. (2014). Removal of pharmaceuticals and organic matter from municipal wastewater using two-stage anaerobic fluidized membrane bioreactor. Bioresource Technology, 165(C), 42–49. https://doi.org/10.1016/j.biortech.2014.03.054

    Article  CAS  PubMed  Google Scholar 

  150. Shin, C., McCarty, P. L., Kim, J., & Bae, J. (2014). Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresource Technology, 159, 95–103. https://doi.org/10.1016/j.biortech.2014.02.060

    Article  CAS  PubMed  Google Scholar 

  151. Saddoud, A., Abdelkafi, S., & Sayadi, S. (2009). Effects of domestic wastewater toxicity on anaerobic membrane-bioreactor (MBR) performances. Environmental Technology, 30(13), 1361–1369. https://doi.org/10.1080/09593330903100027

    Article  CAS  PubMed  Google Scholar 

  152. Dai, W., Xu, X., Liu, B., & Yang, F. (2015). Toward energy-neutral wastewater treatment: A membrane combined process of anaerobic digestion and nitritation-anammox for biogas recovery and nitrogen removal. Chemical Engineering Journal, 279, 725–734. https://doi.org/10.1016/j.cej.2015.05.036

    Article  CAS  Google Scholar 

  153. Xie, Z., Wang, Z., Wang, Q., Zhu, C., & Wu, Z. (2014). An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: Performance and microbial community identification. Bioresource Technology, 161, 29–39. https://doi.org/10.1016/j.biortech.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  154. Alibardi, L., Cossu, R., Saleem, M., & Spagni, A. (2014). Development and permeability of a dynamic membrane for anaerobic wastewater treatment. Bioresource Technology, 161, 236–244. https://doi.org/10.1016/j.biortech.2014.03.045

    Article  CAS  PubMed  Google Scholar 

  155. Goh, S., Zhang, J., Liu, Y., & Fane, A. G. (2015). Membrane distillation bioreactor (MDBR) - A lower green-house-gas (GHG) option for industrial wastewater reclamation. Chemosphere, 140, 129–142. https://doi.org/10.1016/j.chemosphere.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  156. Gu, Y., Chen, L., Ng, J. W., Lee, C., Chang, V. W. C., & Tang, C. Y. (2015). Development of anaerobic osmotic membrane bioreactor for low-strength wastewater treatment at mesophilic condition. Journal of Membrane Science, 490, 197–208. https://doi.org/10.1016/j.memsci.2015.04.032

    Article  CAS  Google Scholar 

  157. Kim, J., Shin, J., Kim, H., Lee, J. Y., Yoon, M. hyuk, Won, S., …, Song, K. G. (2014). Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor. Bioresource Technology, 172, 321–327.https://doi.org/10.1016/j.biortech.2014.09.013

  158. Prieto, A. L., Futselaar, H., Lens, P. N. L., Bair, R., & Yeh, D. H. (2013). Development and start up of a gas-lift anaerobic membrane bioreactor (Gl-AnMBR) for conversion of sewage to energy, water and nutrients. Journal of Membrane Science, 441, 158–167. https://doi.org/10.1016/j.memsci.2013.02.016

    Article  CAS  Google Scholar 

  159. Kola, A., Ye, Y., Le-Clech, P., & Chen, V. (2014). Transverse vibration as novel membrane fouling mitigation strategy in anaerobic membrane bioreactor applications. Journal of Membrane Science, 455, 320–329. https://doi.org/10.1016/j.memsci.2013.12.078

    Article  CAS  Google Scholar 

  160. Ng, K. K., Shi, X., Tang, M. K. Y., & Ng, H. Y. (2014). A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Separation and Purification Technology, 132, 634–643. https://doi.org/10.1016/j.seppur.2014.06.021

    Article  CAS  Google Scholar 

  161. Khan, M. A., Ngo, H. H., Guo, W. S., Liu, Y. W., Zhou, J. L., Zhang, J., …, Wang, J. (2016). Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors. Bioresource Technology, 214, 816–825.https://doi.org/10.1016/j.biortech.2016.05.013

  162. Sahota, S., Shah, G., Ghosh, P., Kapoor, R., Sengupta, S., Singh, P., …, Thakur, I. S. (2018). Review of trends in biogas upgradation technologies and future perspectives. Bioresource Technology Reports, 1, 79–88.https://doi.org/10.1016/j.biteb.2018.01.002

  163. Yousef, A. M. I., Eldrainy, Y. A., El-Maghlany, W. M., & Attia, A. (2016). Upgrading biogas by a low-temperature CO2 removal techni que. Alexandria Engineering Journal, 55(2), 1143–1150. https://doi.org/10.1016/j.aej.2016.03.026

    Article  Google Scholar 

  164. Minardi, E. R., Chakraborty, S., Calabrò, V., Curcio, S., & Drioli, E. (2015). RSC advances. RSC Advances, 5, 38591–38600. https://doi.org/10.1039/C4RA11819G.This

    Article  Google Scholar 

  165. Rongwong, W., Goh, K., & Bae, T. H. (2018). Energy analysis and optimization of hollow fiber membrane contactors for recovery of dissolve methane from anaerobic membrane bioreactor effluent. Journal of Membrane Science, 554(March), 184–194. https://doi.org/10.1016/j.memsci.2018.03.002

    Article  CAS  Google Scholar 

  166. Ismail, A. F., Khulbe, K. C., & Matsuura, T. (2015). Gas separation membranes: Polymeric and inorganic. Gas Separation Membranes: Polymeric and Inorganic, 1–331.https://doi.org/10.1007/978-3-319-01095-3

  167. Crone, B. C., Garland, J. L., Sorial, G. A., & Vane, L. M. (2016). Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Research, 104, 520–531. https://doi.org/10.1016/j.watres.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  168. Shin, S. G., Han, G., Lee, J., Cho, K., Jeon, E. J., Lee, C., & Hwang, S. (2015). Characterization of food waste-recycling wastewater as biogas feedstock. Bioresource Technology, 196, 200–208. https://doi.org/10.1016/j.biortech.2015.07.089

    Article  CAS  PubMed  Google Scholar 

  169. Vazifehkhoran, A. H., Shin, S. G., & Triolo, J. M. (2018). Use of tannery wastewater as an alternative substrate and a pre-treatment medium for biogas production. Bioresource Technology, 258, 64–69. https://doi.org/10.1016/j.biortech.2018.02.116

    Article  CAS  PubMed  Google Scholar 

  170. Elsamadony, M., & Tawfik, A. (2015). Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor. Bioresource Technology, 196, 9–16. https://doi.org/10.1016/j.biortech.2015.07.048

    Article  CAS  PubMed  Google Scholar 

  171. Liu, Q., Chen, W., Zhang, X., Yu, L., Zhou, J., Xu, Y., & Qian, G. (2015). Phosphate enhancing fermentative hydrogen production from substrate with municipal solid waste composting leachate as a nutrient. Bioresource Technology, 190, 431–437. https://doi.org/10.1016/j.biortech.2015.01.139

    Article  CAS  PubMed  Google Scholar 

  172. Asadi, N., Karimi Alavijeh, M., & Zilouei, H. (2017). Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran. International Journal of Hydrogen Energy, 42(4), 1989–2007. https://doi.org/10.1016/j.ijhydene.2016.10.021

    Article  CAS  Google Scholar 

  173. Nagarajan, D., Lee, D. J., Kondo, A., & Chang, J. S. (2017). Recent insights into biohydrogen production by microalgae – From biophotolysis to dark fermentation. Bioresource Technology, 227, 373–387. https://doi.org/10.1016/j.biortech.2016.12.104

    Article  CAS  Google Scholar 

  174. Ghimire, A., Trably, E., Frunzo, L., Pirozzi, F., Lens, P. N. L., Esposito, G., …, Escudié, R. (2018). Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresource Technology, 248, 180–186.https://doi.org/10.1016/j.biortech.2017.07.062

  175. Dhar, B. R., Elbeshbishy, E., Hafez, H., & Lee, H. S. (2015). Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresource Technology, 198, 223–230. https://doi.org/10.1016/j.biortech.2015.08.048

    Article  CAS  PubMed  Google Scholar 

  176. Gomes, S. D., Fuess, L. T., Penteado, E. D., Lucas, S. D. M., Gotardo, J. T., & Zaiat, M. (2015). The application of an innovative continuous multiple tube reactor as a strategy to control the specific organic loading rate for biohydrogen production by dark fermentation. Bioresource Technology, 197, 201–207. https://doi.org/10.1016/j.biortech.2015.08.077

    Article  CAS  PubMed  Google Scholar 

  177. Kumar, G., Bakonyi, P., Periyasamy, S., Kim, S. H., Nemestóthy, N., & Bélafi-Bakó, K. (2015). Lignocellulose biohydrogen: Practical challenges and recent progress. Renewable and Sustainable Energy Reviews, 44(1), 728–737. https://doi.org/10.1016/j.rser.2015.01.042

    Article  CAS  Google Scholar 

  178. Show, K. Y., Yan, Y., Ling, M., Ye, G., Li, T., & Lee, D. J. (2018). Hydrogen production from algal biomass – Advances, challenges and prospects. Bioresource Technology, 257(February), 290–300. https://doi.org/10.1016/j.biortech.2018.02.105

    Article  CAS  PubMed  Google Scholar 

  179. Saleem, M., Lavagnolo, M. C., & Spagni, A. (2018). Biological hydrogen production via dark fermentation by using a side-stream dynamic membrane bioreactor: Effect of substrate concentration. Chemical Engineering Journal, 349, 719–727. https://doi.org/10.1016/j.cej.2018.05.129

    Article  CAS  Google Scholar 

  180. Ma, Y. H., Catalano, J., & Guazzone, F. (2013). Metallic membranes for high temperature hydrogen separation, chapter in Encyclopedia of membrane science and technology. Membrane Processes, 4(April 2013). https://doi.org/10.1002/9781118522318.emst095

  181. Amini, Z., Ong, H. C., Harrison, M. D., Kusumo, F., Mazaheri, H., & Ilham, Z. (2017). Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Conversion and Management, 132, 82–90. https://doi.org/10.1016/j.enconman.2016.11.017

    Article  CAS  Google Scholar 

  182. Sivaramakrishnan, R., & Incharoensakdi, A. (2018). Microalgae as feedstock for biodiesel production under ultrasound treatment – A review. Bioresource Technology, 250, 877–887. https://doi.org/10.1016/j.biortech.2017.11.095

    Article  CAS  PubMed  Google Scholar 

  183. Wang, X., Qin, X., Li, D., Yang, B., & Wang, Y. (2017). One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. Bioresource Technology, 235, 18–24. https://doi.org/10.1016/j.biortech.2017.03.086

    Article  CAS  PubMed  Google Scholar 

  184. Rastogi, R. P., Pandey, A., Larroche, C., & Madamwar, D. (2018). Algal green energy – R&D and technological perspectives for biodiesel production. Renewable and Sustainable Energy Reviews, 82(April), 2946–2969. https://doi.org/10.1016/j.rser.2017.10.038

    Article  CAS  Google Scholar 

  185. Sharma, Y. C., & Singh, V. (2017). Microalgal biodiesel: A possible solution for India’s energy security. Renewable and Sustainable Energy Reviews, 67, 72–88. https://doi.org/10.1016/j.rser.2016.08.031

    Article  CAS  Google Scholar 

  186. Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R. D., Drogui, P., & Surampalli, R. Y. (2018). The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews, 90(March), 336–346. https://doi.org/10.1016/j.rser.2018.03.073

    Article  Google Scholar 

  187. Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., …, Kuppam, C. (2018). Production of biofuels from microalgae - A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94(May 2017), 49–68. https://doi.org/10.1016/j.rser.2018.05.012

  188. Christopher, L. P., Kumar, H., & Zambare, V. P. (2014). Enzymatic biodiesel: Challenges and opportunities. Applied Energy, 119, 497–520. https://doi.org/10.1016/j.apenergy.2014.01.017

    Article  CAS  Google Scholar 

  189. Arumugam, A., Thulasidharan, D., & Jegadeesan, G. B. (2018). Process optimization of biodiesel production from Hevea brasiliensis oil using lipase immobilized on spherical silica aerogel. Renewable Energy, 116, 755–761. https://doi.org/10.1016/j.renene.2017.10.021

    Article  CAS  Google Scholar 

  190. Teixeira, C. B., Madeira Junior, J. V., & Macedo, G. A. (2014). Biocatalysis combined with physical technologies for development of a green biodiesel process. Renewable and Sustainable Energy Reviews, 33, 333–343. https://doi.org/10.1016/j.rser.2014.01.072

    Article  CAS  Google Scholar 

  191. Gomes, M. C. S., Pereira, N. C., & de Barros, S. T. D. (2010). Separation of biodiesel and glycerol using ceramic membranes. Journal of Membrane Science, 352(1–2), 271–276. https://doi.org/10.1016/j.memsci.2010.02.030

    Article  CAS  Google Scholar 

  192. Saleh, J., Tremblay, A. Y., & Dubé, M. A. (2010). Glycerol removal from biodiesel using membrane separation technology. Fuel, 89(9), 2260–2266. https://doi.org/10.1016/j.fuel.2010.04.025

    Article  CAS  Google Scholar 

  193. Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. https://doi.org/10.1016/j.rser.2012.03.047

    Article  CAS  Google Scholar 

  194. Olagunju, O. A., & Musonge, P. (2017). Production of biodiesel using a membrane reactor to minimize separation cost. IOP Conference Series: Earth and Environmental Science, 78(1). https://doi.org/10.1088/1755-1315/78/1/012019

  195. Bélafi-Bakó, K., Kovács, F., Gubicza, L., & Hancsók, J. (2002). Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatalysis and Biotransformation, 20(6), 437–439. https://doi.org/10.1080/1024242021000040855

    Article  Google Scholar 

  196. Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2011). Biodiesel separation and purification: A review. Renewable Energy, 36(August 2010), 437–443. https://doi.org/10.1016/j.renene.2010.07.019

  197. Shuit, S. H., Ong, Y. T., Lee, K. T., Subhash, B., & Tan, S. H. (2012). Membrane technology as a promising alternative in biodiesel production: A review. Biotechnology Advances, 30(6), 1364–1380. https://doi.org/10.1016/j.biotechadv.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  198. Lin, Y. K., Nguyen, V. H., Yu, J. C. C., Lee, C. W., Deng, Y. H., Wu, J. C. S., …, Chen, C. L. (2017). Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. Journal of the Taiwan Institute of Chemical Engineers, 79, 23–30.https://doi.org/10.1016/j.jtice.2017.06.031

  199. Aca-Aca, G., Loría-Bastarrachea, M. I., Ruiz-Treviño, F. A., & Aguilar-Vega, M. (2018). Transesterification of soybean oil by PAAc catalytic membrane: Sorption properties and reactive performance for biodiesel production. Renewable Energy, 116, 250–257. https://doi.org/10.1016/j.renene.2017.09.042

    Article  CAS  Google Scholar 

  200. Wang, Y., Wang, X., Liu, Y., Ou, S., Tan, Y., & Tang, S. (2009). Refining of biodiesel by ceramic membrane separation. Fuel Processing Technology, 90(3), 422–427. https://doi.org/10.1016/j.fuproc.2008.11.004

    Article  CAS  Google Scholar 

  201. Mozaffarikhah, K., Kargari, A., Tabatabaei, M., Ghanavati, H., & Shirazi, M. M. A. (2017). Membrane treatment of biodiesel wash-water: A sustainable solution for water recycling in biodiesel production process. Journal of Water Process Engineering, 19(April), 331–337. https://doi.org/10.1016/j.jwpe.2017.09.007

    Article  Google Scholar 

  202. Daud, N. M., Sheikh Abdullah, S. R., Abu Hasan, H., & Yaakob, Z. (2015). Production of biodiesel and its wastewater treatment technologies. Process Safety and Environmental Protection, 94(C), 487–508. https://doi.org/10.1016/j.psep.2014.10.009

    Article  CAS  Google Scholar 

  203. Hajji, M. E. L., Chorfi, N., & Jleli, M. (2015). Mathematical model for a membrane bioreactor process. Electronic Journal of Differential Equations, 315(December 2015), 1–7. http://ejde.math.txstate.edu or http://ejde.math.unt.eduftpejde.math.txstate.edu

  204. Shi, Y., Wang, Z., Du, X., Gong, B., Jegatheesan, V., & Haq, I. U. (2021). Recent advances in the prediction of fouling in membrane bioreactors. Membranes, 11(381). https://doi.org/10.3390/membranes11060381

  205. Sewsynker-sukai, Y., Faloye, F., & Gueguim, E. B. (2017). Artificial neural networks: An efficient tool for modelling and optimization of biofuel production. Biotechnology and Biotechnological Equipment, 31(December 2016), 221–235. https://doi.org/10.1080/13102818.2016.1269616

  206. Lahiri, D., Nag, M., Mukherjee, D., Garai, S., Banerjee, R., & Rani, R. (2021). Recent trends in approaches for optimization of process parameters for the production of microbial cellulase from wastes. Environmental Sustainability, 4(2), 273–284. https://doi.org/10.1007/s42398-021-00189-3

    Article  CAS  Google Scholar 

  207. Janus, T. (2014). Integrated mathematical model of a MBR reactor including biopolymer kinetics and membrane fouling. Procedia Engineering, 70, 882–891. https://doi.org/10.1016/j.proeng.2014.02.098

    Article  CAS  Google Scholar 

  208. Giwa, A., Daer, S., Ahmed, I., Marpu, P. R., & Hasan, S. W. (2016). Journal of water process engineering experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment. Journal of Water Process Engineering, 11, 88–97. https://doi.org/10.1016/j.jwpe.2016.03.011

    Article  Google Scholar 

  209. Schmitt, F., Banu, R., Yeom, I., & Do, K. (2018). Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochemical Engineering Journal, 133, 47–58. https://doi.org/10.1016/j.bej.2018.02.001

    Article  CAS  Google Scholar 

  210. Zhao, Z., Lou, Y., Chen, Y., Lin, H., Li, R., & Yu, G. (2019). Bioresource Technology Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function arti fi cial neural network ( ANN ). Bioresource Technology, 282(March), 262–268. https://doi.org/10.1016/j.biortech.2019.03.044

    Article  CAS  PubMed  Google Scholar 

  211. Yaqub, M., Asif, H., Kim, S., & Lee, W. (2020). Journal of Water Process Engineering Modeling of a full-scale sewage treatment plant to predict the nutrient removal e ffi ciency using a long short-term memory ( LSTM ) neural network. Journal of Water Process Engineering, 37(January), 101388. https://doi.org/10.1016/j.jwpe.2020.101388

    Article  Google Scholar 

  212. Tan, S., Hou, Y., Cui, C., Chen, X., & Li, W. (2017). Real-time monitoring of biofoulants in a membrane bioreactor during saline wastewater treatment for anti-fouling strategies. Bioresource Technology, 224, 183–187. https://doi.org/10.1016/j.biortech.2016.11.021

    Article  CAS  PubMed  Google Scholar 

  213. Lin, H., Zhang, M., Wang, F., Meng, F., Liao, B. Q., Hong, H., …, Gao, W. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies. Journal of Membrane Science, 460, 110–125.https://doi.org/10.1016/j.memsci.2014.02.034

  214. Chun, Y., Zaviska, F., Kim, S. J., Mulcahy, D., Yang, E., Kim, I. S., & Zou, L. (2016). Fouling characteristics and their implications on cleaning of a FO-RO pilot process for treating brackish surface water. Desalination, 394, 91–100. https://doi.org/10.1016/j.desal.2016.04.026

    Article  CAS  Google Scholar 

  215. Charfi, A., Kim, S., Yoon, Y., & Cho, J. (2021). Chemosphere optimal cleaning strategy to alleviate fouling in membrane distillation process to treat anaerobic digestate. 279. https://doi.org/10.1016/j.chemosphere.2021.130524

  216. Huang, H., Yang, C., He, C., Hu, X., Hu, Z., & Wang, W. (2021). Science of the total environment combining bio fi lm and membrane fl occulation to enhance simultaneous nutrients removal and membrane fouling reduction. Science of the Total Environment, 796, 148922. https://doi.org/10.1016/j.scitotenv.2021.148922

    Article  CAS  PubMed  Google Scholar 

  217. Mittal, S., Gupta, A., Srivastava, S., & Jain, M. (2021). Chemical engineering and processing - Process intensification artificial neural network based modeling of the vacuum membrane distillation process : Effects of operating parameters on membrane fouling. Chemical Engineering and Processing - Process Intensification, 164(April), 108403. https://doi.org/10.1016/j.cep.2021.108403

    Article  CAS  Google Scholar 

  218. Sohn, W., Guo, W., Ngo, H. H., Deng, L., & Cheng, D. (2021). Bioresource technology reports powdered activated carbon addition for fouling control in anaerobic membrane bioreactor. Bioresource Technology Reports, 15(April), 100721. https://doi.org/10.1016/j.biteb.2021.100721

    Article  CAS  Google Scholar 

  219. Alkhatib, A., Ayari, M. A., & Hawari, A. H. (2021). Chemical engineering and processing - Process intensification fouling mitigation strategies for different foulants in membrane distillation. Chemical Engineering and Processing - Process Intensification, 167(June), 108517. https://doi.org/10.1016/j.cep.2021.108517

    Article  CAS  Google Scholar 

  220. Patwardhan, S. B., Pandit, S., Gupta, P. K., Jha, N. K., Rawat, J., Joshi, H. C., …, Kesari, K. K. (2022). Recent advances in the application of biochar in microbial electrochemical cells _ Elsevier Enhanced Reader.pdf. Fuel, 311. https://doi.org/10.1016/j.fuel.2021.122501

  221. Huang, Ly., Lee, D. J., & Lai, J. Y. (2015). Forward osmosis membrane bioreactor for wastewater treatment with phosphorus recovery. Bioresource Technology, 198, 418–423. https://doi.org/10.1016/j.biortech.2015.09.045

    Article  CAS  PubMed  Google Scholar 

  222. Deng, L., Guo, W., Ngo, H. H., Zhang, H., Wang, J., Li, J., …, Wu, Y. (2016). Biofouling and control approaches in membrane bioreactors. Bioresource Technology, 221, 656–665.https://doi.org/10.1016/j.biortech.2016.09.105

  223. Eliseus, A., & Bilad, M. R. (2017). Improving membrane fouling control by maximizing the impact of air bubbles shear in a submerged plate-and-frame membrane module. AIP Conference Proceedings, 1891.https://doi.org/10.1063/1.5005372

  224. Berk, Z. (2018). Membrane processes. In Food process engineering and technology (3rd ed.). Elsevier. https://doi.org/10.1016/C2016-0-03186-8

  225. Suwal, S., Li, J., Engelberth, A. S., & Huang, J. Y. (2018). Application of electro-membrane separation for recovery of acetic acid in lignocellulosic bioethanol production. Food and Bioproducts Processing, 109, 41–51. https://doi.org/10.1016/j.fbp.2018.02.010

    Article  CAS  Google Scholar 

  226. Chen, C. C., Wu, C. H., Wu, J. J., Chiu, C. C., Wong, C. H., Tsai, M. L., & Lin, H. T. V. (2015). Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane. Process Biochemistry, 50(10), 1509–1515. https://doi.org/10.1016/j.procbio.2015.06.006

    Article  CAS  Google Scholar 

  227. Mittal, N., Bai, P., Siepmann, J. I., Daoutidis, P., & Tsapatsis, M. (2017). Bioethanol enrichment using zeolite membranes: Molecular modeling, conceptual process design and techno-economic analysis. Journal of Membrane Science, 540(June), 464–476. https://doi.org/10.1016/j.memsci.2017.06.075

    Article  CAS  Google Scholar 

  228. Lewandowicz, G., Białas, W., Marczewski, B., & Szymanowska, D. (2011). Application of membrane distillation for ethanol recovery during fuel ethanol production. Journal of Membrane Science, 375(1–2), 212–219. https://doi.org/10.1016/j.memsci.2011.03.045

    Article  CAS  Google Scholar 

  229. Fan, S., Xiao, Z., Zhang, Y., Tang, X., Chen, C., Li, W., …, Yao, P. (2014). Enhanced ethanol fermentation in a pervaporation membrane bioreactor with the convenient permeate vapor recovery. Bioresource Technology, 155(2014), 229–234.https://doi.org/10.1016/j.biortech.2013.12.114

  230. Xu, H., Cao, Y., Li, X., Cao, X., Xu, Y., Qiao, D., & Cao, Y. (2018). An electrospun chitosan-based nanofibrous membrane reactor immobilized by the non-glycosylated rPGA for hydrolysis of pectin-rich biomass. Renewable Energy, 126, 573–582. https://doi.org/10.1016/j.renene.2017.08.094

    Article  CAS  Google Scholar 

  231. Cao, Z., Xia, C., Jia, W., Qing, W., & Zhang, W. (2020). Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process. Journal of Membrane Science, 595(September 2019), 117485. https://doi.org/10.1016/j.memsci.2019.117485

    Article  CAS  Google Scholar 

  232. Mahboubi, A., Uwineza, C., Doyen, W., De Wever, H., & Taherzadeh, M. J. (2020). Intensification of lignocellulosic bioethanol production process using continuous double-staged immersed membrane bioreactors. Bioresource Technology, 296, 122314. https://doi.org/10.1016/j.biortech.2019.122314

    Article  CAS  PubMed  Google Scholar 

  233. Mahboubi, A., Elyasi, S., Doyen, W., De Wever, H., & Taherzadeh, M. J. (2020). Concentration-driven reverse membrane bioreactor for the fermentation of highly inhibitory lignocellulosic hydrolysate. Process Biochemistry, 92(January), 409–416. https://doi.org/10.1016/j.procbio.2020.01.031

    Article  CAS  Google Scholar 

  234. Kumar, R., Ghosh, A. K., & Pal, P. (2019). Fermentative ethanol production from Madhuca indica flowers using immobilized yeast cells coupled with solar driven direct contact membrane distillation with commercial hydrophobic membranes. Energy Conversion and Management, 181(September 2018), 593–607. https://doi.org/10.1016/j.enconman.2018.12.050

    Article  CAS  Google Scholar 

  235. Van Hecke, W., & De Wever, H. (2017). High-flux POMS organophilic pervaporation for ABE recovery applied in fed-batch and continuous set-ups. Journal of Membrane Science, 540(June), 321–332. https://doi.org/10.1016/j.memsci.2017.06.058

    Article  CAS  Google Scholar 

  236. Van Hecke, W., Hofmann, T., & De Wever, H. (2013). Pervaporative recovery of ABE during continuous cultivation: Enhancement of performance. Bioresource Technology, 129, 421–429. https://doi.org/10.1016/j.biortech.2012.11.072

    Article  CAS  PubMed  Google Scholar 

  237. Tanaka, S., Tashiro, Y., Kobayashi, G., Ikegami, T., & Negishi, H. (2012). Bioresource technology membrane-assisted extractive butanol fermentation by Clostridium saccharoperbutylacetonicum N1–4 with 1-dodecanol as the extractant. Bioresource Technology, 116, 448–452. https://doi.org/10.1016/j.biortech.2012.03.096

    Article  CAS  PubMed  Google Scholar 

  238. Yeo, H., & Lee, H. S. (2013). The effect of solids retention time on dissolved methane concentration in anaerobic membrane bioreactors. Environmental Technology (United Kingdom), 34(13–14), 2105–2112. https://doi.org/10.1080/09593330.2013.808675

    Article  CAS  Google Scholar 

  239. Chen, R., Jiang, H., & Li, Y. Y. (2018). Caffeine degradation by methanogenesis: Efficiency in anaerobic membrane bioreactor and analysis of kinetic behavior. Chemical Engineering Journal, 334, 444–452. https://doi.org/10.1016/j.cej.2017.10.052

    Article  CAS  Google Scholar 

  240. Millati, R., Lukitawesa, Permanasari, E. D., Sari, K. W., Cahyanto, M. N., Niklasson, C., & Taherzadeh, M. J. (2018). Anaerobic digestion of citrus waste using two-stage membrane bioreactor. IOP Conference Series: Materials Science and Engineering, 316(1). https://doi.org/10.1088/1757-899X/316/1/012063

  241. Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G., & Chmielewski, A. G. (2007). Application of polyimide membranes for biogas purification and enrichment. Journal of Hazardous Materials, 144(3), 698–702. https://doi.org/10.1016/j.jhazmat.2007.01.098

    Article  CAS  PubMed  Google Scholar 

  242. Wikandari, R., Millati, R., Cahyanto, M. N., & Taherzadeh, M. J. (2014). Biogas production from citrus waste by membrane bioreactor. Membranes, 4(3), 596–607. https://doi.org/10.3390/membranes4030596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Cookney, J., Mcleod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B., & McAdam, E. J. (2016). Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of Membrane Science, 502, 141–150. https://doi.org/10.1016/j.memsci.2015.12.037

    Article  CAS  Google Scholar 

  244. Ji, J., Sakuma, S., Ni, J., Chen, Y., Hu, Y., Ohtsu, A., …, Li, Y. Y. (2020). Application of two anaerobic membrane bioreactors with different pore size membranes for municipal wastewater treatment. Science of the Total Environment, 745, 140903.https://doi.org/10.1016/j.scitotenv.2020.140903

  245. Li, Y., Cheng, H., Guo, G., Zhang, T., Qin, Y., & Li, Y. Y. (2020). High solid mono-digestion and co-digestion performance of food waste and sewage sludge by a thermophilic anaerobic membrane bioreactor. Bioresource Technology, 310(February), 123433. https://doi.org/10.1016/j.biortech.2020.123433

    Article  CAS  PubMed  Google Scholar 

  246. Bakonyi, P., Nemestóthy, N., Ramirez, J., Ruiz-Filippi, G., & Bélafi-Bakó, K. (2012). Escherichia coli (XL1-BLUE) for continuous fermentation of bioH2 and its separation by polyimide membrane. International Journal of Hydrogen Energy, 37(7), 5623–5630. https://doi.org/10.1016/j.ijhydene.2012.01.009

    Article  CAS  Google Scholar 

  247. Bakonyi, P., Nemestóthy, N., Lankó, J., Rivera, I., Buitrón, G., & Bélafi-Bakó, K. (2015). Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. International Journal of Hydrogen Energy, 40(4), 1690–1697. https://doi.org/10.1016/j.ijhydene.2014.12.002

    Article  CAS  Google Scholar 

  248. Wainaina, S., Awasthi, M. K., Horváth, I. S., & Taherzadeh, M. J. (2020). Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renewable Energy, 152, 1140–1148. https://doi.org/10.1016/j.renene.2020.01.138

    Article  CAS  Google Scholar 

  249. Gao, X., Zhang, Q., & Zhu, H. (2019). High rejection rate of polysaccharides by microfiltration benefits Christensenella minuta and acetic acid production in an anaerobic membrane bioreactor for sludge fermentation. Bioresource Technology, 282(January), 197–201. https://doi.org/10.1016/j.biortech.2019.03.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India for providing laboratory space to complete this piece of work. Authors are also thankful to Vasantdada Sugar Institute, Pune, India for completing this work. Among the authors, Mrs. Shruti Garg would also express deep gratitude toward Guru Nanak Dev University (GNDU), Amritsar, India for registering her Ph.D. in Microbiology with reg. no 2017.Ph.D. (MIC)-01.

Funding

Science & Engineering Research Board (SERB), India (YSS/2015/000295) and Department of Biotechnology (DBT), Inda (DBT/IC-2/Indo-Brazil/2016–19/05).

Author information

Authors and Affiliations

Authors

Contributions

Shruti Garg: writing–original draft; Shuvashish Behera: writing–original draft and editing; Hector A. Ruiz: review; Sachin Kumar: review, editing, and supervision.

Corresponding authors

Correspondence to Shuvashish Behera or Sachin Kumar.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, S., Behera, S., Ruiz, H.A. et al. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 195, 5497–5540 (2023). https://doi.org/10.1007/s12010-022-03955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-03955-z

Keywords

Navigation