Skip to main content
Log in

Recent Advances in Sensor-Based Detection of Toxic Dyes for Bioremediation Application: a Review

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Extensive use of these harmful dyes has resulted in the surplus presence of these emerging pollutants in the environment, thus demanding an instant and sensitive detection method. Various synthetic dyes are illegitimately mixed into food and other consuming items for displaying bright colours that attracts consumers. The synthetic dyes cause a number of environmental health hazards and promote toxicity, mutagenicity and carcinogenicity in humans. Despite these serious health glitches, synthetic dyes are widely used due to their much lower cost. As a result, a faster, more selective and extremely sensitive technology for detecting and quantifying hazardous dyes in trace amount is urgently needed. This topic is currently in its initial phases of development and needs continuous refinements, such as explaining various sensing methods and potential future uses linked with dye detection technologies. The present review encompasses a comprehensive literature survey on detection of dyes and latest progress in developing sensors for dye detection and summarizes different detection mechanisms, including biosensor-, optical- and electrochemical-based sensors. Detection methodologies are examined with a focus on biosensor-based recent advancements in dye detection and the growing demand for more appropriate systems in terms of accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Saratale, R., Saratale, G., Chang, J., & Govindwar, S. (2011). Bacterial Decolorization and Degradation of Azo Dyes: A Review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138–157. https://doi.org/10.1016/j.jtice.2010.06.006

    Article  CAS  Google Scholar 

  2. Jamee, R., & Siddique, R. (2019). Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. European journal of microbiology & immunology, 9(4), 114–118. https://doi.org/10.1556/1886.2019.00018

    Article  CAS  Google Scholar 

  3. Muneer, M., Zuber, M., & Akhtar, N. (2018). Eco-friendly disperse dyeing of ultraviolet-treated polyester fabric using disperse yellow 211. Journal of Enviromental Studies, 27(5), 1935–1939.

    Google Scholar 

  4. Ayadi, I., Souissi, Y., Jlassi, I., Peixoto, F., & Mnif, W. (2016). chemical synonyms, molecular structure and toxicological risk assessment of synthetic textile dyes: A critical review. J Develop Drugs, 5, 151.

    Google Scholar 

  5. Benkhaya, S., M'rabet, S., & El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1), e03271.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rai, H., Bhattacharya, M., et al. (2005). Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Critical Reviews in Environmental Science and Technology, 35, 219–238.

    Article  CAS  Google Scholar 

  7. Rápó, E., & Tonk, S. (2021). Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 26(17), 5419. https://doi.org/10.3390/molecules26175419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amte, G. K., & Mahaska, T. V. (2012). Studies on textiledyeing effluent from Bhiwandi city dist.: thane, Maharashtra, India. Jr. of Industrial Pollution Control, 28(2), 197–199.

    CAS  Google Scholar 

  9. Bal, B., & Das, A. (2020). Recovery of manganese from low-grade ferromanganese ores using Bacillus safensis. In A. Kalamdhad (Ed.), Recent Developments in Waste Management. Lecture Notes in Civil Engineering (Vol. 57). Springer. https://doi.org/10.1007/978-981-15-0990-2_3

    Chapter  Google Scholar 

  10. Das, A., & Mishra, S. (2008). Hexavalent chromium (VI): Health hazards and environmental pollutant. Journal of Environment Research Development, 2, 386–392.

    CAS  Google Scholar 

  11. Das, A. P., Kumar, P. S., & Swain, S. (2014). Recent advances in biosensor based endotoxin detection. Biosensors and Bioelectronics, 51, 62–75.

    Article  CAS  PubMed  Google Scholar 

  12. Das, A. P., Ghosh, S., Mohanty, S., & Sukla, L. B. (2015a). Consequences of manganese compounds: a review. Toxicological and Environmental Chemistry, 96, 981–997.

    Article  CAS  Google Scholar 

  13. Das, A., Bal, B., & Mahapatra, P. (2015b). Chromogenic biosensors for pathogen detection. https://doi.org/10.1201/b18654-15

  14. Ghosh, S., & Das, A. P. (2018). Metagenomic insights into the microbial diversity in manganese-contaminated mine tailings and their role in biogeochemical cycling of manganese. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-26311-w

  15. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mishra, S., Dash, D., & Subhadarsini, S. (2018). Antibacterial Activity Assessment of Native Fungus Isolated from Chromite Mines of Sukinda, Odisha. International Journal of Science and Research (IJSR), 8, 1628–1631. https://doi.org/10.21275/ART20202828

    Article  Google Scholar 

  17. Mohanty, S., Ghosh, S., Nayak, S., & Das, A. P. (2017a). Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere, 172, 302–309. https://doi.org/10.1016/j.chemosphere.2016.12.136

    Article  CAS  PubMed  Google Scholar 

  18. Mohanty, S., Ghosh, S., Nayak, S., & Das, A. P. (2017b). Isolation, Identification and Screening of Manganese Solubilizing Fungi From Low-Grade Manganese Ore Deposits. Geomicrobiology Journal, 34(4), 309–316.

    Article  CAS  Google Scholar 

  19. Aniyikaiye, T. E., Oluseyi, T., Odiyo, J. O., & Edokpayi, J. N. (2019). Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. International Journal of Environmental Research and Public Health, 16(7), 1235.

    Article  CAS  PubMed Central  Google Scholar 

  20. Biswal, P., Ghosh, S., Pal, A., & Das, A. P. (2021). Exploration of probiotic microbial biodiversity in acidic environments (Curd) and their futuristic pharmaceutical applications. Geomicrobiology Journal. https://doi.org/10.1080/01490451.2021.1956020

  21. Lahiri, D., Nag, M., Dey, A., Sarkar, T., Joshi, S., Pandit, S., Das, A. P., Pati, S., Pattanaik, S., Tilak, V. K., & Ray, R. R. (2021). Biofilm Mediated Degradation of Petroleum Products. Geomicrobiology Journal. https://doi.org/10.1080/01490451.2021.1968979

  22. Das, A. P., & Mishra, S. (2010). Biodegradation of the metallic carcinogen hexavalent chromium Cr (VI) by an indigenously isolated bacterial strain. Journal of Carcinogenesis, 9, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Das, A.P., Swain, S. (2013) Algal biosorption of toxic dye methylene blue. A Potential source of Food, Feed, Biochemicals, Biofuels and Biofertilizers, International conference on Algal Biorefinery, Indian Insitiute of Technology, 13 January 2013, Siksha O Anusandhan University, India

  24. Das, A. P. (2016). Biosensors: The future of diagnostics. Sensor Network Data Communication. https://doi.org/10.4172/2090-4886.S1-e001

  25. Ghosh, S., & Das, A. P. (2015). Modified titanium oxide (TiO2) nanocomposites and its array of applications: A review. Toxicological & Environmental Chemistry, 97(5), 491–514.

    Article  CAS  Google Scholar 

  26. Ozkurt, S., Kargi, B. A., Kavas, M., Evyapan, F., Kiter, G., & Baser, S. (2012). Respiratory symptoms and pulmonary functions of workers employed in Turkish textile dyeing factories. International Journal of Environmental Research and Public Health, 9(4), 1068–1076. https://doi.org/10.3390/ijerph9041068

    Article  PubMed  PubMed Central  Google Scholar 

  27. Saha, M., Bhattacharjee, J., Hussain, S. A., & Bhattacharjee, D. (2016). Effect of denaturation of DNA on the molecular organization of a fluorescent dye in ultra thin films. Molecular Crystals and Liquid Crystals, 633(1), 46–53. https://doi.org/10.1080/15421406.2016.1177881

    Article  CAS  Google Scholar 

  28. Cedergreen, N., & Streibig, J. (2005). The toxicity of herbicides to non-target aquatic plants and algae: Assessment of predictive factors and hazard. Pest Management Science, 61, 1152–1160.

    Article  CAS  PubMed  Google Scholar 

  29. Ghosh, S., Bal, B., & Das, A. P. (2018a). Enhancing manganese recovery from low-grade ores by using mixed culture of indigenously isolated bacterial strains. Geomicrobiology Journal, 35(3), 242–246.

    Article  CAS  Google Scholar 

  30. Mohanty, S., Ghosh, S., Bal, B., & Das, A. P. (2018). A review of biotechnology processes applied for manganese recovery from wastes. Reviews in Environmental Science and Bio/Technology., 17. https://doi.org/10.1007/s11157-018-9482-1

  31. Ntrallou, K., Gika, H., & Tsochatzis, E. (2020). Analytical and Sample Preparation Techniques for the Determination of Food Colorants in Food Matrices. Foods., 9(1), 58. https://doi.org/10.3390/foods9010058

    Article  CAS  PubMed Central  Google Scholar 

  32. Roy, A. D., Dey, D., Saha, J., Chakraborty, S., Bhattacharjee, D., & Hussain, S. A. (2015). Development of a sensor to study the DNA conformation using molecular logic gates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy., 136, 1797–1802.

    Article  CAS  Google Scholar 

  33. Richardson, J. R., Fitsanakis, V., Westerink, R., & Kanthasamy, A. G. (2019). Neurotoxicity of pesticides. Acta Neuropathologica, 138(3), 343–362. https://doi.org/10.1007/s00401-019-02033-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jurcovan, M. M., & Diacu, E. (2014). Development of a reversed-phase high performance liquid chromatographic method for simultaneous determination of allura red ac and ponceau 4r in soft drinks. Revista de Chimie, 65, 137–141.

    CAS  Google Scholar 

  35. Bektas, İ., Karaman, S., Dıraz, E., & Celik, M. (2016). The role of natural indigo dye in alleviation of genotoxicity of sodium dithionite as a reducing agent. Cytotechnology, 68(6), 2245–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ginimuge, P. R., & Jyothi, S. D. (2010). Methylene blue: Revisited. Journal of Anaesthesiology Clinical Pharmacology, 26(4), 517–520.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Singh, S., Kumar, A., & Gupta, H. (2020a). Activated banana peel carbon: a potential adsorbent for Rhodamine B decontamination from aqueous system. Applied Water Science, 10, 185. https://doi.org/10.1007/s13201-020-01274-4

    Article  CAS  Google Scholar 

  38. Yashni, G., Al-Gheethi, A., Mohamed, R., et al. (2020). Photodegradation of basic red 51 in hair dye greywater by zinc oxide nanoparticles using central composite design. Reaction Kinetics, Mechanisms and Catalysis, 130, 567–588.

    Article  CAS  Google Scholar 

  39. El Kertaoui, N., Lund, I., Assogba, H., Domínguez, D., Izquierdo, M. S., Baekelandt, S., Cornet, V., Mandiki, S., Montero, D., & Kestemont, P. (2019). Key nutritional factors and interactions during larval development of pikeperch (Sander lucioperca). Scientific Reports, 9(1), 7074. https://doi.org/10.1038/s41598-019-43491-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parrott, J., Bartlett, A., Hill, J., Balakrishnan, V. (2014) Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow. Internal report (unpublished) prepared by the Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment Canada. Submitted to the Emerging Priorities Division, Science and Risk Assessment Directorate, Environment Canada. January, 2014. 31.

  41. Rasheed, T., Bilal, M., Iqbal, H. M. N., et al. (2017). Reaction Mechanism and Degradation Pathway of Rhodamine 6G by Photocatalytic Treatment. Water, Air, and Soil Pollution, 228-291. https://doi.org/10.1007/s11270-017-3458-6

  42. Colakoglu, F., & Selcuk, M. L. (2021). The embryotoxic effects of in ovo administered Sunset Yellow FCF in chick embryos. Vet. Sci, 8, 31. https://doi.org/10.3390/vetsci8020031

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pan, H., Feng, J., He, G. X., Cerniglia, C. E., & Chen, H. (2012). Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria. Anaerobe, 18(4), 445–453. https://doi.org/10.1016/j.anaerobe.2012.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, J., Gomes da Rocha, C., Wang, S., Pupim Ferreira, A. A., & Yamanaka, H. (2015). A label-free impedimetric immunosensor for direct determination of the textile dye Disperse Orange 1. Talanta, 142, 183–189.

    Article  CAS  PubMed  Google Scholar 

  45. de Aragão Umbuzeiro, G., Freeman, H., Warren, S. H., Kummrow, F., & Claxton, L. D. (2005). Mutagenicity evaluation of the commercial product CI Disperse Blue 291 using different protocols of the Salmonella assay. Food and Chemical Toxicology, 43(1), 49–56.

    Article  PubMed  CAS  Google Scholar 

  46. Bonan, S., Fedrizzi, G., Menotta, S., & Elisabetta, C. (2013). Simultaneous determination of synthetic dyes in foodstuffs and beverages by high-performance liquid chromatography coupled with diode-array detector. Dyes and Pigments, 99(1), 36–40.

    Article  CAS  Google Scholar 

  47. Couto, N., Wood, J., & Barber, J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology & Medicine, 95, 27–42.

    Article  CAS  Google Scholar 

  48. Ghosh, S., Kumar, M. S., Bal, B., & Das, A. P. (2018b). Application of bioengineering in revamping human health. In S. Singh (Ed.), Synthetic Biology. Springer. https://doi.org/10.1007/978-981-10-8693-9_2

    Chapter  Google Scholar 

  49. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation,S2452072119300413 https://doi.org/10.1016/j.biori.2019.09.001

  50. Rovina, K., Siddiquee, S., & Shaarani, S. M. (2016a). Extraction, Analytical and Advanced Methods for Detection of Allura Red AC (E129) in Food and Beverages Products. Frontiers in Microbiology, 7, 798. https://doi.org/10.3389/fmicb.2016.00798

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bal, B., Nayak, S., & Das, A. P. (2017). Recent advances in molecular techniques for the diagnosis of foodborne diseases. Nanotechnology Applications in Food, 267–285. https://doi.org/10.1016/b978-0-12-811942-6.00013-3

  52. Biswal, P., Pal, A., & Das, A. P. (2015). A new light of therapy for non-alcoholic fatty liver disease: Symbiotic. Int. J. Pharm. Sci. Rev. Res, 33(1), 326–336.

    CAS  Google Scholar 

  53. Biswal, P., Pal, A., Das, A. (2017) Current trends and future prospective of prebiotics as therapeutic food. https://doi.org/10.1016/B978-0-12-811520-6.00003-9.

  54. Bal, B., Armstrong, P. B., & Das, A. P. (2016). Development of indigenous bio-sensing methodology for rapid and low cost endotoxin detection system. Sensor Network Data Communication, S1, 005. https://doi.org/10.4172/2090-4886.S1-005

    Article  Google Scholar 

  55. Kumar, M. S., & Das, A. P. (2016). Molecular identification of multi drug resistant bacteria from urinary tract infected urine samples. Microbial Pathogenesis, 98, 37–44.

    Article  CAS  PubMed  Google Scholar 

  56. Kumar, M. S., Ghosh, S., Nayak, S., & Das, A. P. (2016). Recent advances in biosensor based diagnosis of urinary tract infection. Biosensors and Bioelectronics, 80, 497–510.

    Article  CAS  PubMed  Google Scholar 

  57. Kumar, M. S., & Das, A. P. (2017). Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review. Advances in Colloid and Interface Science, 249, 53–65.

    Article  CAS  PubMed  Google Scholar 

  58. Sahoo, R. K., Kuanar, A., Joshi, R. K., Das, A. P., Nayak, S., & Subudhi, E. (2011). Anti-dermatophytic activity of eucalyptol rich turmeric somaclone oil against human pathogenic isolates. Journal of Medicinal Plant Research, 5(9), 1594–1597.

    CAS  Google Scholar 

  59. Das, A. P., & Singh, S. (2011). Occupational health assessment of chromite toxicity among Indian miners. Indian journal of occupational and environmental medicine, 15(1), 6–13.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mishra, S., & Das, A. P. (2021). Current treatment technologies for removal of microplastic and microfiber pollutants from wastewater. In Wastewater Treatment- Cutting Edge Molecular Tools, Techniques (pp. 237–251). Elsevier.

    Google Scholar 

  61. Mishra, S., Rout, P. K., & Das, A. P. (2021a). Emerging microfiber pollution and its remediation. In Microbial biotechnology and Environmental issues/ Remediation. Springer Nature.

    Google Scholar 

  62. Mishra, S., Swain, S., Sahoo, M., Mishra, S., & Das, A. P. (2021b). Microbial Colonization and Degradation of Microplastics in Aquatic Ecosystem: A Review. Geomicrobiology Journal. https://doi.org/10.1080/01490451.2021.1983670

  63. Mishra, S., Rath, C. C., & Das, A. P. (2019). Marine microfiber pollution: A review on presentstatus and future challenges. Marine Pollution Bulletin, 140, 188–197.

    Article  CAS  PubMed  Google Scholar 

  64. Mishra, S., Singh, R. P., Rath, C. C., & Das, A. P. (2020). Synthetic microfibers: Source, transport and their remediation. Journal of Water Process Engineering, 38, 101612.

    Article  Google Scholar 

  65. Singh, R. P., Mishra, S., & Das, A. P. (2020b). Synthetic microfibers: Pollution toxicity and remediation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127199

  66. Singh, S., Kumar, V., Dhanjal, D. S., Datta, S., Prasad, R., & Singh, J. (2020c). Biological Biosensors for Monitoring and Diagnosis. Microbial Biotechnology. Basic Research and Applications., 317–335.

  67. Buledi, J. A., Amin, S., Haider, S. I., et al. (2020). A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-07865-7

  68. Xiong, N., Shen, Y., Yang, K., et al. (2018). Color sensors and their applications based on real-time color image segmentation for cyber physical systems. J Image Video Proc., 2018, 23. https://doi.org/10.1186/s13640-018-0258-x

    Article  Google Scholar 

  69. Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016a). Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences, 17(9), 1534.

    Article  PubMed Central  CAS  Google Scholar 

  70. Zhang, J., Cheng, F., Li, J., Zhu, J. J., & Lu, Y. (2016b). Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. Nano Today, 11(3), 309–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kharbade, B., & Joshi, G. (1995). Thin-Layer Chromatographic and Hydrolysis Methods for the Identification of Plant Gums in Art Objects. Studies in Conservation, 40(2), 93–102. https://doi.org/10.2307/1506508

    Article  CAS  Google Scholar 

  72. Mohammad, A., Khan, M., Ullah, Q., et al. (2017). Effective separation of organic dyes using ionic liquids as green mobile phase and polyaniline-modified silica gel nanocomposite-based thin-layer chromatography. Journal of Analytical Science and Technology, 8(18). https://doi.org/10.1186/s40543-017-0127-8

  73. Attimarad, M., Ahmed, K. K., Aldhubaib, B. E., & Harsha, S. (2011). High-performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery. Pharmaceutical methods, 2(2), 71–75.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cortés-Herrera, C., Artavia, G., Leiva, A., & Granados-Chinchilla, F. (2018). Liquid chromatography analysis of common nutritional components, in feed and food. Foods (Basel, Switzerland), 8(1), 1. https://doi.org/10.3390/foods8010001

    Article  CAS  Google Scholar 

  75. Coskun, O. (2016). Separation techniques: Chromatography. Northern clinics of Istanbul, 3(2), 156–160. https://doi.org/10.14744/nci.2016.32757

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yabré, M., Ferey, L., Somé, I. T., & Gaudin, K. (2018). Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules (Basel, Switzerland), 23(5), 1065.

    Article  CAS  Google Scholar 

  77. Grajek, H., Witkiewicz, Z., Purchała, M., et al. (2016). Liquid crystals as stationary phases in chromatography. Chromatographia, 79, 1217–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Peña-García-Brioles, D., Gonzalo-Lumbreras, R., Izquierdo-Hornillos, R., & Santos-Montes, A. (2004). Method development for betamethasone and dexamethasone by micellar liquid chromatography using cetyl trimethyl ammonium bromide and validation in tablets. Application to cocktails. Journal of Pharmaceutical and Biomedical Analysis, 36(1), 65–71. https://doi.org/10.1016/j.jpba.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  79. Ghosh, S., Gandhi, M., van Hullebusch, E. D., et al. (2021). Proteomic insights into Lysinibacillus sp.-mediated biosolubilization of manganese. Environmental Science and Pollution Research, 28, 40249–40263. https://doi.org/10.1007/s11356-020-10863-4

    Article  CAS  PubMed  Google Scholar 

  80. Pitt, J. J. (2009). Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. The Clinical biochemist. Reviews, 30(1), 19–34.

    PubMed  PubMed Central  Google Scholar 

  81. Das, A., Swain, S., Panda, S., Pradhan, N., & Sukla, L. (2012). Reductive Acid Leaching of Low Grade Manganese Ores. Geomaterials, 2(4), 70–72.

    Article  Google Scholar 

  82. Turak, F., Dinç, M., Dülger, O., & Ozgür, M. U. (2014). Four Derivative Spectrophotometric Methods for the Simultaneous Determination of Carmoisine and Ponceau 4R in Drinks and Comparison with High Performance Liquid Chromatography. International journal of analytical chemistry, 2014, 650465. https://doi.org/10.1155/2014/650465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Biswal, P., Pal, A., & Das, A. P. (2019). Molecular identification of native lactic acid bacteria isolated from curd samples with probiotic potential. Biointerface Research Application Chemistry, 9(6), 4591–4597.

    Article  CAS  Google Scholar 

  84. Rastogi, S. D., Dixit, S., Tripathi, A. And Das, M. (2015) Simultaneous Determination of Acetaminophen and Synthetic Color(s) by Derivative Spectroscopy in Syrup Formulations and Validation by HPLC: Exposure Risk of Colors to Children. AAPS Pharmacy of Science Tech 16(3), 505–517. https://doi.org/10.1208/s12249-014-0228-2

    Article  CAS  Google Scholar 

  85. Jiao, J., Wang, J., Li, M., Li, J., Li, Q., Quan, Q., & Chen, J. (2016). Simultaneous determination of three azo dyes in food product by ion mobility spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 1025, 105–109. https://doi.org/10.1016/j.jchromb.2016.05.002 Epub 2016 May 11.

    Article  CAS  PubMed  Google Scholar 

  86. El-Brashy, A., Eid, M., & Talaat, W. (2006). Kinetic spectrophotometric method for the determination of ketoprofen in pharmaceuticals and biological fluids. International Journal of Biomedical Science : IJBS, 2(4), 406–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hulme, E. C., & Trevethick, M. A. (2010). Ligand binding assays at equilibrium: validation and interpretation. British Journal of Pharmacology, 161(6), 1219–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hu, B., Hu, L. L., Chen, M. L., & Wang, J. H. (2013). A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells. Biosensors & Bioelectronics, 49, 499–505.

    Article  CAS  Google Scholar 

  89. Fernandez, D. C., Bhargava, R., Hewitt, S. M., & Levin, I. W. (2005). Infrared spectroscopic imaging for histopathologic recognition. Nature Biotechnology, 23(4), 469–474.

    Article  CAS  PubMed  Google Scholar 

  90. Pilot, R., Signorini, R., Durante, C., Orian, L., Bhamidipati, M., & Fabris, L. (2019). A Review on Surface-Enhanced Raman Scattering. Biosensors, 9(2), 57. https://doi.org/10.3390/bios9020057

    Article  CAS  PubMed Central  Google Scholar 

  91. Sadasivuni, K. K., et al. (2019). Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications. In K. Sadasivuni, D. Ponnamma, M. Rajan, B. Ahmed, & M. Al-Maadeed (Eds.), Polymer Nanocomposites in Biomedical Engineering. Lecture Notes in Bioengineering. Springer. https://doi.org/10.1007/978-3-030-04741-2_11

    Chapter  Google Scholar 

  92. Voeten, R., Ventouri, I.K., Haselberg, R. And Somsen, G.W. (2018) Capillary Electrophoresis: Trends and Recent Advances. Analytical Chemistry 90(3), 1464–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hynes, N. R. J., Kumar, J. S., Kamyab, H., JAJ, S., Al-Khashman, O. A., Kuslu, Y., Ene, A., & Suresh, B. (2020). Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review. Journal of Cleaner Production, 146, 122636. https://doi.org/10.1016/j.jclepro.2020.122636

    Article  CAS  Google Scholar 

  94. Mehrotra, P. (2016). Biosensors and their applications - A review. Journal of oral biology and craniofacial research, 6(2), 153–159.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Karim, F., & Fakhruddin, A. N. M. (2012). Recent advances in the development of biosensor for phenol: A review. Reviews in Environmental Science and Biotechnology, 11, 261–274. https://doi.org/10.1007/s11157-012-9268-9

    Article  CAS  Google Scholar 

  96. Datta, M., Desai, D., & Kumar, A. (2017). Gene specific DNA sensors for diagnosis of pathogenic infections. Indian Journal of Microbiology, 57(2), 139–147. https://doi.org/10.1007/s12088-017-0650-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Md Sani, N. D., Ariffin, E. Y., Sheryn, W., Shamsuddin, M. A., Heng, L. Y., Latip, J., Hasbullah, S. A., & Hassan, N. I. (2019). An Electrochemical DNA Biosensor for Carcinogenicity of Anticancer Compounds Based on Competition between Methylene Blue and Oligonucleotides. Sensors (Basel, Switzerland), 19(23), 5111.

    Article  CAS  Google Scholar 

  98. Roriz, P., Silva, S., Frazão, O., & Novais, S. (2020). Optical Fiber Temperature Sensors and Their Biomedical Applications. Sensors (Basel, Switzerland), 20(7), 2113. https://doi.org/10.3390/s20072113

    Article  CAS  Google Scholar 

  99. Arvand, M., & Samie, H. A. (2013). A biomimetic potentiometric sensor based on molecularly imprinted polymer for the determination of memantine in tablets. Drug Testing and Analysis, 5(6), 461–467.

    Article  CAS  PubMed  Google Scholar 

  100. Damiati, S. (2020). Acoustic biosensors for cell research. In G. Thouand (Ed.), Handbook of Cell Biosensors. Springer. https://doi.org/10.1007/978-3-319-47405-2_150-1

    Chapter  Google Scholar 

  101. Ton, X. A., Acha, V., Bonomi, P., Bui, T. S., & B., Haupt, K. (2015). A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe. Biosensors & Bioelectronics, 64, 359–366. https://doi.org/10.1016/j.bios.2014.09.017 Epub 2014 Sep 8.

    Article  CAS  Google Scholar 

  102. Feng, L., Musto, C. J., Kemling, J. W., Lim, S. H., Zhong, W., & Suslick, K. S. (2010). Colorimetric sensor array for determination and identification of toxic industrial chemicals. Analytical Chemistry, 82(22), 9433–9440. https://doi.org/10.1021/ac1020886 Epub 2010 Oct 18.

    Article  CAS  PubMed  Google Scholar 

  103. Mishra, S., Singh, R. P., Rout, P. K., A. P. Das. (2022) Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics. Development in Wastewater Treatment Research and Processes, Removal of Emerging Contaminants from Wastewater Through Bio-nanotechnology, 45-60. https://www.sciencedirect.com/science/article/pii/B9780323855839000223

  104. Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 4(1), 22–26.

    Article  CAS  Google Scholar 

  105. Roy, A. D., Saha, J., Dey, D., Bhattacharjee, D., & Hussain, S. A. (2016). Influence of Clay and DNA on Fluorescence Resonance Energy Transfer Between Two Laser Dyes Pyrene and Acriflavine. Advanced Science Letters, 22(1), 149–153.

    Article  Google Scholar 

  106. Wei, T., Dong, H., Ma, X., Yang, Q., Zhang, Y., Sun, Y., Shi, B., Zhang, Y., Yao, H., Lin, Q., & Mater, J. (2020). Chem. C. https://doi.org/10.1039/D0TC03681A

  107. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia. Supplementum, 101, 133–164.

    Article  PubMed  Google Scholar 

  108. Berezin, M. Y., & Achilefu, S. (2010). Fluorescence lifetime measurements and biological imaging. Chemical Reviews, 110(5), 2641–2684. https://doi.org/10.1021/cr900343z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Neupane, L. N., Park, J. Y., Park, J. H., & Lee, K. H. (2013). Turn-on fluorescent chemosensor based on an amino acid for Pb(II) and Hg(II) ions in aqueous solutions and role of tryptophan for sensing. Organic Letters, 15(2), 254–257.

    Article  CAS  PubMed  Google Scholar 

  110. Chen, N., Li, H., Gao, Z. F., Qu, F., Li, N., & Luo, H. (2014). Utilizing polyethyleneimine-capped silver nanoclusters as a new fluorescence probe for Sudan I–IV sensing in ethanol based on fluorescence resonance energy transfer. Sensors and Actuators B: Chemical, 193, 730–736. https://doi.org/10.1016/j.snb.2013.12.020

    Article  CAS  Google Scholar 

  111. Das, R. S., & Agrawal, Y. K. (2011). Raman spectroscopy: Recent advancements, techniques and applications. Vibrational Spectroscopy, 57, 163–176.

    Article  CAS  Google Scholar 

  112. Sekar, R. B., & Periasamy, A. (2003). Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. The Journal of Cell Biology, 160(5), 629–633. https://doi.org/10.1083/jcb.200210140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Draz, M. S., & Shafiee, H. (2018). Applications of gold nanoparticles in virus detection. Theranostics, 8(7), 1985–2017. https://doi.org/10.7150/thno.23856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bhattacharjee, J., Hussain, S. A., & Bhattacharjee, D. (2014). Effect of nano clay platelets and DNA on controlling the H-dimer of oxazine 4 perchlorate (OX4) in LbL film. Applied Physics A: Materials Science & Processing, 116, 1669–1676. https://doi.org/10.1007/s00339-014-8298-2

    Article  CAS  Google Scholar 

  115. Oliveira, M. M., Cruz-Tirado, J., & Barbin, D. F. (2019). Nontargeted Analytical Methods as a Powerful Tool for the Authentication of Spices and Herbs: A Review. Comprehensive Reviews in Food Science and Food Safety, 18, 670–689. https://doi.org/10.1111/1541-4337.12436

    Article  PubMed  Google Scholar 

Download references

Availability of Data and Material (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Joyasree Bhattacharjee conceived the manuscript design and collected the data from various sources and wrote the first draft of the manuscript. Some additional sections have been incorporated by Sunanda Mishra. Alok Prasad Das involved in revising it critically for important intellectual content.

Corresponding author

Correspondence to Alok Prasad Das.

Ethics declarations

Ethics Approval

Not applicable, because this is a review article which does not include any experiments using human or animal participants.

Consent to Participate (Include Appropriate Statements)

Consent has been received from all the participating authors for this manuscript.

Consent for Publication (Include Appropriate Statements)

All the authors have provided their consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, J., Mishra, S. & Das, A.P. Recent Advances in Sensor-Based Detection of Toxic Dyes for Bioremediation Application: a Review. Appl Biochem Biotechnol 194, 4745–4764 (2022). https://doi.org/10.1007/s12010-021-03767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03767-7

Keywords

Navigation