Skip to main content
Log in

Nitrogen Source Optimization for Cellulase Production by Penicillium funiculosum, using a Sequential Experimental Design Methodology and the Desirability Function

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study aimed at maximizing cellulase production by Penicillium funiculosum using sequential experimental design methodology for optimizing the concentrations of nitrogen sources. Three sequential experimental designs were performed. The first and the second series of experiments consisted of a 24 and a 23 factorial designs, respectively, and in the third one, a central composite rotational design was used for better visualizing the optimum conditions. The following nitrogen sources were evaluated: urea, ammonium sulfate, peptone, and yeast extract. Peptone and ammonium sulfate were removed from the medium optimization since they did not present significant statistical effect on cellulase production. The optimal concentrations of urea and yeast extract predicted by the model were 0.97 and 0.36 g/L, respectively, which were validated experimentally. By the use of the desirability function, it was possible to maximize the three main enzyme activities simultaneously, which resulted in values for FPase of 227 U/L, for CMCase of 6,917 U/L, and for β-glucosidase of 1,375 U/L. These values corresponded to increases of 3.3-, 3.2-, and 6.7-folds, respectively, when compared to those obtained in the first experimental design. The results showed that the use of sequential experimental designs associated to the use of the desirability function can be used satisfactorily to maximize cellulase production by P. funiculosum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pereira, R. E. (2006). MSc Thesis. Escola de Química. Universidade Federal do Rio de Janeiro

  2. Pereira, N., Jr., Couto, M. A. P. G., & Anna, L. M. M. S. (2008). Series on biotechnology (2nd ed., p. 45). Rio de Janeiro: Biblioteca Nacional.

    Google Scholar 

  3. Vasquez, M. P., Silva, J. N. C., Souza, M. B., Jr., & Pereira, N., Jr. (2007). Applied Biochemistry and Biotechnology, 137/140(12), 141–154.

    Article  Google Scholar 

  4. Schlitter, L. A. F. (2006). Msc Thesis. Escola de Química. Universidade Federal do Rio de Janeiro

  5. Zabel, R. A., & Morrell, J. J. (1992). Wood microbiology, decay and its prevention. San Diego: Academic. 476p.

    Google Scholar 

  6. Marzluf, G. (1997). Microbiology and Molecular Biology Reviews, 61(1), 17–32.

    CAS  Google Scholar 

  7. Merrick, M. J., & Edwards, R. A. (1995). Microbiological Reviews, 59, 604–622.

    CAS  Google Scholar 

  8. Betancur, G. J. V. (2005). Msc Thesis. Escola de Química. Universidade Federal do Rio de Janeiro

  9. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). NREL, 14 p.

  10. Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D. G., Santas, P., Santas, R., et al. (2007). Bioresource Technology, 98, 296–301.

    Article  CAS  Google Scholar 

  11. Ghose, T. K. (1987). Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  12. Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 391–414.

    Article  CAS  Google Scholar 

  13. Derringer, G., & Suich, R. (1980). Journal of Quality Technology, 12, 214–219.

    Google Scholar 

  14. Reyes, J., Peralta-Zamora, P., & Duran, N. (1998). Química Nova, 21(2), 140–143.

    Article  CAS  Google Scholar 

  15. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83(1), 1–11.

    Article  CAS  Google Scholar 

  16. Jorgensen, H., & Olsson, L. (2006). Enzyme and Microbial Technology, 38, 381–390.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian Council for Research (CNPq), the Rio de Janeiro State Foundation for Science and Technology (FAPERJ), and the Brazilian Petroleum Company (PETROBRAS) for scholarship and other financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nei Pereira Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, R.N., da Silva, M.M.P., Santa Anna, L.M.M. et al. Nitrogen Source Optimization for Cellulase Production by Penicillium funiculosum, using a Sequential Experimental Design Methodology and the Desirability Function. Appl Biochem Biotechnol 161, 411–422 (2010). https://doi.org/10.1007/s12010-009-8875-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8875-6

Keywords

Navigation