Skip to main content
Log in

Layered double hydroxides: a gleam on their synthetic routes with biomedical applications

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) are prominent class of anionic clays which have been recently investigated to be involved in various applications due to composition, reusability, cost effectiveness and facile synthesis. Altogether, these materials can be termed as green materials on the basis of their non-toxic nature, availability of their precursors, facile and low cost of production using aqueous medium conditions with less hazardous effluents. The simplified method of these lamellar materials involves facile one-pot route synthesis from low cost, abundant and commonly available chemical precursors through the aqueous synthetic pathways under mild reaction conditions. Various convincing characteristics namely acidic and basic properties, unique diffusion properties, ion-exchangeability, self-healing (memory effect) and surface modification etc. have attracted considerable attention for their applicability in various fields related to energy, environment, catalysis and biomedical sector. This study enlightens about a variety of production methods with applicability in the biomedical field as delivery agent of bioactive molecules such as drugs, cosmeceuticals etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khatoon, N., Chu, M.Q., Zhou, C.H.: Nanoclay-based drug delivery systems and their therapeutic potentials. J. Mater. Chem. B. (2020). https://doi.org/10.1039/D0TB01031F

    Article  Google Scholar 

  2. Bharti, C., Nagaich, U., Pal, A.K., Gulati, N.: Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharma Invest. (2015). https://doi.org/10.4103/2230-973X.160844

    Article  Google Scholar 

  3. Fan, W.K., Tahir, M.: Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review. Sci. Total Environ. (2022). https://doi.org/10.1016/j.scitotenv.2022.157206

    Article  Google Scholar 

  4. Moores, A., Yan, N.: Novel catalytic materials for energy and the environment. ACS Sustain. Chemi Eng. (2017). https://doi.org/10.1021/acssuschemeng.7b04217

    Article  Google Scholar 

  5. Sheldon, R.A.: Engineering a more sustainable world through catalysis and green chemistry. J. R Soc. Interface. (2016). https://doi.org/10.1098/rsif.2016.0087

    Article  Google Scholar 

  6. Liang, R., Wei, M., Evans, D.G., Duan, X.: Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun. (2014). https://doi.org/10.1039/C4CC03118K

  7. Mishra, G., Dash, B., Pandey, S.: Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. (2018). https://doi.org/10.1016/j.clay.2017.12.021

  8. Barbosa, G.V., Zaghete, M.A., Amoresi, R.A.C., da Silva, M.S., Cavalheiro, A.A., da Silva, R.C.D.L.: Structural Analysis of Magnesium-Aluminium Hydrotalcites Modified with Iron III Obtained by Hydroxide Precipitation Method.Mater. Sci. Appl. (2017). https://doi.org/10.4236/msa.2017.811057

  9. Zheng, Y., Chen, Y.: Preparation of polypropylene/Mg–Al layered double hydroxides nanocomposites through wet pan-milling: Formation of a second-staging structure in LDHs intercalates. RSC Adv. (2017). https://doi.org/10.1039/C6RA26050K

    Article  Google Scholar 

  10. Grosu, E.F., Simiuc, D., Froidevaux, R.: Layered double hydroxides nanomaterials in biomedicine and (bio) sensing design. Biomed. J. Sci. Tech. Res. (2018). https://doi.org/10.26717/BJSTR.2018.02.000786

    Article  Google Scholar 

  11. Saikia, P., Goswamee, R.L.: The Effect of Strength of Bases and Temperature on the Synthesis of Zn-Al Layered Double Hydroxides by a Non‐Aqueous ‘Soft Chemical’Sol‐Gel Method and Formation of High Surface Area Mesoporous ZnAl2O4 Spinel. Chemistry Select. (2018). https://doi.org/10.1002/slct.201801094

  12. Mosangi, D., Moyo, L., Pillai, S.K., Ray, S.S.: Acetyl salicylic acid–ZnAl layered double hydroxide functional nanohybrid for skin care application. RSC Adv. (2016). https://doi.org/10.1039/C6RA22172F

    Article  Google Scholar 

  13. Gicha, B.B., Tufa, L.T., Kang, S., Goddati, M., Bekele, E.T., Lee, J.: Transition Metal-Based 2D Layered Double Hydroxide Nanosheets: Design Strategies and Applications in Oxygen Evolution Reaction. Nanomaterials. (2021). https://doi.org/10.3390/nano11061388

  14. Ke, X., Bernal, S.A., Provis, J.L.: Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cem. Concr Res. (2016). https://doi.org/10.1016/j.cemconres.2015.11.012

    Article  Google Scholar 

  15. Wang, Q., O’Hare, D.: Recent advances in the synthesis and application of layered double hydroxide (LDH) nano-sheets. Chem. Rev. (2012). https://doi.org/10.1021/cr200434v

    Article  Google Scholar 

  16. Kovanda, F., Jindova, E., Dousova, B., Kolousek, D., Plestil, J., Sedlakova, Z.: Layered double hydroxides intercalated with organic anions and their application in preparation of ldh/polymer nanocomposites. Acta Geodyn. Geomater. 6, 111–119 (2009)

    Google Scholar 

  17. Kura, A.U., Ali, S.H.H.A., Hussein, M.Z., Fakurazi, S., Arulselvan, P.: Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int. J. Nanomedicine. (2013). https://doi.org/10.2147/IJN.S39740

    Article  Google Scholar 

  18. Ali, S.H.H.A., Al-Qubaisi, M., Hussein, M.Z., Zainal, Z., Hakim, M.N.: Preparation of hippurate-zinc layered hydroxide nanohybrid and its synergistic effect with tamoxifen on HepG2 cell lines. Int. J. Nanomedicine. (2011). https://doi.org/10.2147/IJN.S24510

    Article  Google Scholar 

  19. Saifullah, B., Hussein, M.Z., Hussein-Al-Ali, S.H., Arulselvan, P., Fakurazi, S.: Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite. Chem. Cent. J. (2013). https://doi.org/10.1186/1752-153X-7-72

    Article  Google Scholar 

  20. Wei, P.R., Cheng, S.H., Liao, W.N., Kao, K.C., Weng, C.F., Lee, C.H.: Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging. J. Mater. Chem. (2012). https://doi.org/10.1039/C2JM16447G

  21. Perioli, L., Pagano, C.: Inorganic matrices: an answer to low drug solubility problem.Expert Opin. Drug Deliv. (2012). https://doi.org/10.1517/17425247.2012.733693

  22. Perioli, L., Mutascio, P., Pagano, C.: The influence of the nanocomposite MgAl–HTlc on gastric absorption of drugs: In vitro and ex vitro studies. Pharm. Res. 30, 156–166 (2013). https://doi.org/10.1007/s11095-012-0857-7

    Article  Google Scholar 

  23. Pillai, S.K., Kleyi, P., De Beer, M., Mudaly, P.: Layered double hydroxides: An advanced encapsulation and delivery system for cosmetic ingredients-an overview. Appl. Clay Sci. (2020). https://doi.org/10.1016/j.clay.2020.105868

    Article  Google Scholar 

  24. Wu, D., Chang, P.R., Ma, X.: Preparation and properties of layered double hydroxide– carboxymethylcellulose sodium/glycerol plasticized starch nanocomposites. Carbohyd. Polym. (2011). https://doi.org/10.1016/j.carbpol.2011.05.030

  25. Daniel, S., Thomas, S.: Layered double hydroxides: Fundamentals to applications. In: Thomas, S., Daniel, S. (eds.) Layered Double Hydroxide Polymer Nanocomposites, pp. 1–76. Woodhead Publishing, New York (2020)

    Google Scholar 

  26. Jinesh, C.M.: Catalytic and Ion-exchange Applications of Hydrotalcite-Like Materials. Thesis, Discipline of Inorganic Materials Catalysis. pp. 1–39, CSMCRI, CSIR, Bhavnagar, G.: (2012). http://hdl.handle.net/10603/9208

  27. Churchil, A.A.R.J.: Layered Double Hydroxides: Variations of synthesis methodologies and their influence on catalytic behaviour- A structure property relationship study. Thesis, Discipline of Inorganic MaterialsCatalysis. pp. 1–34, CSMCRI, CSIR, Bhavnagar: Gujarat. (2011). http://hdl.handle.net/10603/8415

  28. Rives, V., del Arco, M., Martín, C.: Intercalation of drugs in layered double hydroxides and their controlled release: A review. Appl. Clay Sci. (2014). https://doi.org/10.1016/j.clay.2013.12.002

    Article  Google Scholar 

  29. Jin, W., Lee, D., Jeon, Y., Park, D.H.: Biocompatible hydrotalcite nanohybrids for medical functions. Minerals. (2020). https://doi.org/10.3390/min10020172

    Article  Google Scholar 

  30. Jijoe, P.S., Yashas, S.R., Shivaraju, H.P.: Fundamentals, synthesis, characterization and environmental applications of layered double hydroxides: A review. Environ. Chem. Lett. (2021). https://doi.org/10.1007/s10311-021-01200-3

    Article  Google Scholar 

  31. Paredes, S.P., Valenzuela, M.A., Fetter, G., Flores, S.O.: TiO2/MgAl layered double hydroxides mechanical mixtures as efficient photocatalysts in phenol degradation. J. Phys. Chem. Solids. (2011). https://doi.org/10.1016/j.jpcs.2011.03.017

    Article  Google Scholar 

  32. Tammaro, L., Vittoria, V., Bugatti, V.: Dispersion of modified layered double hydroxides in poly (ethylene terephthalate) by High Energy Ball Milling for food packaging applications. Eur. Polym. J. (2014). https://doi.org/10.1016/j.eurpolymj.2014.01.001

    Article  Google Scholar 

  33. Tichit, D., Layrac, G., Gérardin, C.: Synthesis of layered double hydroxides through continuous flow processes: a review. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.03.057

  34. Jaiswal, A., Gautam, R.K., Chattopadhyaya, M.C.: Layered double hydroxides and the environment: An overview. In: Tiwari, A., Syvajarvi, M. (eds.) Advanced Materials for Agriculture, Food, and Environmental Safety, pp. 1–26. Wiley Inc., New York (2014)

    Google Scholar 

  35. Miyata, S.: Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Miner. (1980). https://doi.org/10.1346/CCMN.1980.0280107

    Article  Google Scholar 

  36. Brindley, G.W., Kikkawa, S.: Thermal behavior of hydrotalcite and of anion-exchanged forms of hydrotalcite. Clays Clay Miner. (1980). https://doi.org/10.1346/CCMN.1980.0280202

  37. Saifullah, B., Hussein, M.Z.: Inorganic nanolayers: structure, preparation, and biomedical applications. Int. J. Nanomedicine. (2015). https://doi.org/10.2147/IJN.S72330

  38. Chaillot, D., Bennici, S., Brendlé, J.: Layered double hydroxides and LDH-derived materials in chosen environmental applications: a review. Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-020-08498-6

  39. Labuschagne, F.J., Wiid, A., Venter, H.P., Gevers, B.R., Leuteritz, A.: Green synthesis of hydrotalcite from untreated magnesium oxide and aluminum hydroxide. Green. Chem. Lett. Rev. (2018). https://doi.org/10.1080/17518253.2018.1426791

    Article  Google Scholar 

  40. Tokudome, Y., Morimoto, T., Tarutani, N., Vaz, P.D., Nunes, C.D., Prevot, V., Stenning, G.B., Takahashi, M.: Layered double hydroxide nanoclusters: Aqueous, concentrated, stable, and catalytically active colloids toward green chemistry. ACS Nano. (2016). https://doi.org/10.1021/acsnano.6b02110

    Article  Google Scholar 

  41. Arrabito, G., Bonasera, A., Prestopino, G., Orsini, A., Mattoccia, A., Martinelli, E., Pignataro, B., Medaglia, P.G.: Layered double hydroxides: A toolbox for chemistry and biology. Crystals. (2019). https://doi.org/10.3390/cryst90703616

    Article  Google Scholar 

  42. Gao, T.T., Sun, Y.G., Zhu, Y.B., Lin, F., Zhong, Y.D., Li, Y.Y., Ji, W.X., Ma, Y.L.: Ni-Based multifunctional catalysts derived from layered double hydroxides for the catalytic conversion of cellulose to polyols. New. J. Chem. (2022). https://doi.org/10.1039/D2NJ02104H

    Article  Google Scholar 

  43. Taherian, Z., Gharahshiran, V.S., Khataee, A., Orooji, Y.: Synergistic effect of freeze-drying and promoters on the catalytic performance of Ni/MgAl layered double hydroxide. Fuel. (2022). https://doi.org/10.1016/j.fuel.2021.122620

    Article  Google Scholar 

  44. Dou, Y., Yao, Y., Wu, G., Gao, G., Zatloukal, M., Hélix-Nielsen, C., Zhang, W.: A defect-rich layered double hydroxide nanofiber filter with solar-driven regeneration for wastewater treatment. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.132842

    Article  Google Scholar 

  45. Xiong, X., Zhao, Y., Shi, R., Yin, W., Zhao, Y., Waterhouse, G.I., Zhang, T.: Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. (2020). https://doi.org/10.1016/j.scib.2020.03.032

    Article  Google Scholar 

  46. Song, Y., Bai, J., Jiang, S., Yang, H., Yang, L., Wei, D., Bai, L., Wang, W., Liang, Y., Chen, H.: Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization. Fuel. (2021). https://doi.org/10.1016/j.fuel.2021.121751

  47. Kim, J., Kim, T.H., Lee, J.H., Park, Y.A., Kang, Y.J., Ji, H.G.: Porous nanocomposite of layered double hydroxide nanosheet and chitosan biopolymer for cosmetic carrier application. Appl. Clay Sci. (2021). https://doi.org/10.1016/j.clay.2021.106067

    Article  Google Scholar 

  48. Kim, H.J., Charoensri, K., Ko, J.A., Park, H.J.: Effects of layered double hydroxides on poly (vinyl alcohol)/poly (acrylic acid) films for green food packaging applications. Prog Org. Coat. (2022). https://doi.org/10.1016/j.porgcoat.2021.106634

    Article  Google Scholar 

  49. Kankala, R.K.: Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv.Drug Deliv. Rev. (2022). https://doi.org/10.1016/j.addr.2022.114270

  50. Mao, F., Hao, P., Zhu, Y., Kong, X., Duan, X.: Layered double hydroxides: Scale production and application in soil remediation as super-stable mineralizer. Chin. J. Chem. Eng. 41, 42–48 (2022). https://doi.org/10.1016/j.cjche.2021.09.023

    Article  Google Scholar 

  51. Singha Roy, A., Kesavan Pillai, S., Ray, S.S.: Layered Double Hydroxides for Sustainable Agriculture and Environment: An Overview. ACS omega (2022). https://doi.org/10.1021/acsomega.2c01405

  52. Huang, W., Wang, H., Zhu, X., Yang, D., Yu, S., Liu, F., Song, X.: Highly efficient application of Mg/Al layered double oxides catalysts in the methanolysis of polycarbonate. Appl. Clay Sci. (2021). https://doi.org/10.1016/j.clay.2021.105986

    Article  Google Scholar 

  53. Zeng, J., Xie, J., Liu, J., Wang, Z., Cao, X., Lu, X.: Fe-decorated-NiCo layered double hydroxide nanoflakes via corrosion engineering for high-energy rechargeable Zn-based batteries. J. Mater. Chem. A. (2022). https://doi.org/10.1039/D2TA04769A

    Article  Google Scholar 

  54. Bendary, S.H., Abdelrahman, A.A.: Flexible and novel counter electrode from graphene/Zn Al layered double hydroxide nanocomposite in dye sensitized solar cells. J. Electroanal. Chem. (2022). https://doi.org/10.1016/j.jelechem.2022.116736

    Article  Google Scholar 

  55. Almeida, A.A., Santos, R.M., Rosa, A., Pulcinelli, M.A., John, S.H., Santilli, V.M.: MgAl-layered double hydroxide nanoparticles as smart nanofillers to control the rheological properties and the residual porosity of cement-based materials. ACS Appl. Nano Mater. (2022). https://doi.org/10.1021/acsanm.2c00957

    Article  Google Scholar 

  56. Ghazali, S.A., Adam, N., Me, R.: Synthesis of layered double hydroxide 4, 4’-methylenebis (3-hydroxy-2-napthoic acid) via Direct Co-Precipitation Method and its controlled release behaviours. In: Ahmad, T.S.A.S., Abedin, N.F.Z. (eds.) Growing Creative and Innovative Solutions, pp. 18–22. Malaysia (2016)

  57. Pagano, C., Perioli, L., Latterini, L., Nocchetti, M., Ceccarini, M.R., Marani, M., Ramella, D., Ricci, M.: Folic acid-layered double hydroxides hybrids in skin formulations: Technological, photochemical and in vitro cytotoxicity on human keratinocytes and fibroblasts. Appl. Clay Sci. (2019). https://doi.org/10.1016/j.clay.2018.12.009

    Article  Google Scholar 

  58. Kumari, S., Thakur, N., Kumar, R., Thakur, R.C., Sharma, A.: Effect of synthetic parameters on crystallinity of Hydrotalcite-Like Anionic Clays with Elucidation and Identification through X-Ray Diffraction Analysis. ECS Trans. (2022). https://doi.org/10.1149/10701.18903ecst

    Article  Google Scholar 

  59. Silva, C.G., Bouizi, Y., Fornés, V., García, H.: Layered double hydroxides as highly efficient photocatalysts for visible light Oxygen Generation from Water. J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja905467v

    Article  Google Scholar 

  60. Li, L., Gu, Z., Gu, W., Liu, J., Xu, Z.P.: Efficient drug delivery using SiO 2 -layered double hydroxide nanocomposites. J. Colloid Interface Sci. (2016). https://doi.org/10.1016/j.jcis.2016.02.042

    Article  Google Scholar 

  61. Zhou, W., Wang, C., Liu, Y., Zhang, W., Chen, Z.: Layered double hydroxides based ion exchange extraction for high sensitive analysis of non-steroidal anti-inflammatory drugs. J. Chromatogr. A. (2017). https://doi.org/10.1016/j.chroma.2017.07.047

    Article  Google Scholar 

  62. Benício, L.P.F., Silva, R.A., Lopes, J.A., Eulálio, D., Santos, R.M.M.D., Aquino, L.A.D., Vergütz, L., Novais, R.F., Costa, L.M.D., Pinto, F.G., Tronto, J.: Layered double hydroxides: Nanomaterials for applications in agriculture. Rev. Bras. Ciênc Solo. (2015). https://doi.org/10.1590/01000683rbcs2015081

    Article  Google Scholar 

  63. Janani, F.Z., Taoufik, N., Khiar, H., Boumya, W., Elhalil, A., Sadiq, M., Puga, A.V., Barka, N.: Nanostructured layered double hydroxides based photocatalysts: Insight on synthesis methods, application in water decontamination/splitting and antibacterial activity. Surf. Interfaces. (2021). https://doi.org/10.1016/j.surfin.2021.101263

    Article  Google Scholar 

  64. Kumari, S., Sharma, A., Kumar, S., Thakur, A., Thakur, R., Bhatia, S.K., Sharma, A.K.: Multifaceted potential applicability of hydrotalcite-type anionic clays from green chemistry to environmental sustainability. Chemosphere. (2022). https://doi.org/10.1016/j.chemosphere.2022.135464

    Article  Google Scholar 

  65. Zhou, Y., Sun, X., Zhong, K., Evans, D.G., Lin, Y., Duan, X.: Control of Surface Defects and Agglomeration Mechanism of Layered Double Hydroxide Nanoparticles. Ind. Eng. Chem. Res. (2012). https://doi.org/10.1021/ie202302n

  66. Shao, M., Zhang, R., Li, Z., Wei, M., Evans, D.G., Duan, X.: Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. ChemComm. (2015). https://doi.org/10.1039/c5cc07296d

  67. Gu, Z., Zuo, H., Li, L., Wu, A., Xu, Z.P.: Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake. J. Mater. Chem. B. (2015). https://doi.org/10.1039/C5TB00248F

    Article  Google Scholar 

  68. Arrabito, G., Pezzilli, R., Prestopino, G., Medaglia, P.G.: Layered double hydroxides in bioinspired nanotechnology. Crystals. (2020). https://doi.org/10.3390/cryst10070602

    Article  Google Scholar 

  69. Pavlovic, M., Rouster, P., Oncsik, T., Szilagyi, I.: Tuning Colloidal Stability of Layered double hydroxides: From Monovalent Ions to Polyelectrolytes. ChemPlusChem. (2016). https://doi.org/10.1002/cplu.201600295

    Article  Google Scholar 

  70. Szilagyi, I.: Layered double hydroxide-based Nanomaterials-From Fundamentals to applications. Nanomaterials. (2019). https://doi.org/10.3390/nano9081174

    Article  Google Scholar 

  71. Li, Z., Wang, D., Yuan, Z., Lu, C.: Improved sensitivity via layered-double-hydroxide-uniformity-dependent chemiluminescence. Anal. Bioanal. Chem. (2016). https://doi.org/10.1007/s00216-016-9393-3

  72. Mallakpour, S., Rashidimoghadam, S.: Microscopic characterization techniques for layered double. In: Thomas, S., Daniel, S. (eds.) Layered Double Hydroxide Polymer Nanocomposites, pp. 157–203. Woodhead Publishing, New York (2019)

    Google Scholar 

  73. Wu, M., Pang, J.H., Song, P.P., Peng, J.J., Xu, F., Li, Q., Zhang, X.M.: Visible light-driven oxidation of vanillyl alcohol in air with Au–Pd bimetallic nanoparticles on phosphorylated hydrotalcite. New J. Chem. (2019). https://doi.org/10.1039/C8NJ05477K

  74. Yu, J., Ruengkajorn, K., Crivoi, D.G., Chen, C., Buffet, J.C., O’Hare, D.: High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-10362-2

  75. Ribeiro, A.S., Estanqueiro, M., Oliveira, M.B., Sousa Lobo, J.M.: Main benefits and applicability of plant extracts in skin care products. Cosmetics. (2015). https://doi.org/10.3390/cosmetics2020048

  76. Li, P., Wang, S., Zhou, S.: Comfortable skin sunscreens based on waterborne cross-linkable polydimethylsiloxane coatings. J. Mater. Chem. C. (2020). https://doi.org/10.1039/D0TC04097E

  77. Wypych, F., Satyanarayana, K.G.J.: Functionalization of single layers and nanofibers: A new strategy to produce polymer nanocomposites with optimized properties. J. Colloid Interface Sci. (2005). https://doi.org/10.1016/j.jcis.2004.12.028

    Article  Google Scholar 

  78. Botan, R., de Bona Sartor, S.: X-ray diffraction analysis of layered double hydroxide polymer nanocomposite. In: Thomas, S., Daniel S. (.) (ed.) Layered Double Hydroxide Polymer Nanocomposites, pp. 205–229. Woodhead Publishing, New York (2020)

    Chapter  Google Scholar 

  79. Li, S.F., Shen, Y.M., Xiao, M., Zhang, Z.G., Li, W.X.: Stable UV absorption material synthesized by intercalation of squaric acid anion into layered double hydroxides. Chem. Pap. (2015). https://doi.org/10.1515/chempap-2015-0039

    Article  Google Scholar 

  80. Mosangi, D., Pillai, S.K., Moyo, L., Ray, S.S.: Inorganic layered double hydroxides as a 4-hexyl resorcinol delivery system for topical applications. RSC Adv. (2016). https://doi.org/10.1039/C6RA19195A

    Article  Google Scholar 

  81. Shafiei, S.S., Solati-Hashjin, M., Samadikuchaksaraei, A., Kalantarinejad, R., Asadi-Eydivand, M., Osman, N.A.: Epigallocatechin gallate/layered double hydroxide nanohybrids: Preparation, characterization, and in vitro anti-tumor study. PLoS One. (2015). https://doi.org/10.1371/journal.pone.0136530

    Article  Google Scholar 

  82. Wang, X.R., Cheng, H.M., Gao, X.W., Zhou, W., Li, S.J., Cao, X.L., Yan, D.: Intercalation assembly of kojic acid into Zn-Ti layered double hydroxide with antibacterial and whitening performances. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.03.050

    Article  Google Scholar 

  83. Gaskell, E.E., Ha, T., Hamilton, A.R.: Ibuprofen intercalation and release from different layered double hydroxides. Ther. Deliv. (2018). https://doi.org/10.4155/tde-2018-0046

    Article  Google Scholar 

  84. Zhang, X., Liu, J., Hou, W., Tong, J., Ren, L., Sun, G., Sun, Y.: Preparation and properties of pesticide/cyclodextrin complex intercalated into ZnAl-layered double hydroxide. Ind. Eng. Chem. Res. (2016). https://doi.org/10.1021/acs.iecr.5b04001

    Article  Google Scholar 

  85. Ma, S., Chen, Q., Li, H., Wang, P., Islam, S.M., Gu, Q., Yang, X., Kanatzidis, M.G.: Highly selective and efficient heavy metal capture with polysulfide intercalated layered double hydroxides. J. Mater. Chem. A. (2014). https://doi.org/10.1039/C4TA01203H

    Article  Google Scholar 

  86. Valverde, J.A., Echavarría, A., Eon, J.G., Faro, A.C., Palacio, L.A.: V–Mg–Al catalyst from hydrotalcite for the oxidative dehydrogenation of propane. Reac. Kinet. Mech. Cat. (2014). https://doi.org/10.1007/s11144-014-0674-6

    Article  Google Scholar 

  87. Peralta, M., Mendieta, S., Scolari, I., Granero, G., Crivello, M.: Synthesis and release behavior of layered double hydroxides–carbamazepine composites. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-00117-9

    Article  Google Scholar 

  88. Ballarin, B., Mignani, A., Mogavero, F., Gabbanini, S., Morigi, M.: Hybrid material based on ZnAl hydrotalcite and silver nanoparticles for deodorant formulation. Appl. Clay Sci. (2015). https://doi.org/10.1016/j.clay.2015.06.014

    Article  Google Scholar 

  89. Bernardo, M.P., Moreira, F.K., Colnago, L.A., Ribeiro, C.: Physico-chemical assessment of [Mg-Al-PO4]-LDHs obtained by structural reconstruction in high concentration of phosphate. Colloids Surf. A: Physicochem Eng. Asp. (2016). https://doi.org/10.1016/j.colsurfa.2016.02.021

    Article  Google Scholar 

  90. Yu, J., Buffet, J.C., O’Hare, D.: Aspect ratio control of layered double hydroxide nanosheets and their application for high Oxygen Barrier Coating in Flexible Food Packaging. ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.9b21986

    Article  Google Scholar 

  91. Liu, S.Q., Li, S.P., Li, X.D.: Intercalation of methotrexatum into layered double hydroxides via exfoliation-reassembly process. Appl. Surf. Sci. (2015). https://doi.org/10.1016/j.apsusc.2015.01.047

    Article  Google Scholar 

  92. Ding, P., Kang, B., Zhang, J., Yang, J., Song, N., Tang, S., Shi, L.: Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. J. Colloid Interface Sci. (2015). https://doi.org/10.1016/j.jcis.2014.10.048

    Article  Google Scholar 

  93. Veerabhadrappa, M.G., Maroto-Valer, M.M., Chen, Y., Garcia, S.: Layered double Hydroxides-Based mixed metal oxides: Development of Novel Structured Sorbents for CO2 capture applications. ACS Appl. Mater. Interfaces. (2021). https://doi.org/10.1021/acsami.0c20457

    Article  Google Scholar 

  94. Zhu, Y., Rong, J., Zhang, T., Xu, J., Dai, Y., Qiu, F.: Facile and controlled fabrication of Cu–Al layered double hydroxide nanosheets/laccase hybrid films: A route to efficient biocatalytic removal of congo red from aqueous solutions. ACS Appl. Nano Mater. (2018). https://doi.org/10.1021/acsanm.7b00149

    Article  Google Scholar 

  95. San Román, M.S., Holgado, M.J., Salinas, B., Rives, V.: Drug release from layered double hydroxides and from their polylactic acid (PLA) nanocomposites. Appl. Clay Sci. (2013). https://doi.org/10.1016/j.clay.2012.10.014

    Article  Google Scholar 

  96. Ansy, K.M., Lee, J.H., Piao, H., Choi, G., Choy, J.H.: Stabilization of antioxidant gallate in layered double hydroxide by exfoliation and reassembling reaction. Solid State Sci. (2018). https://doi.org/10.1016/j.solidstatesciences.2018.04.001

    Article  Google Scholar 

  97. Li, G.F., Luo, W.H., Xiao, M., Wang, S.J., Meng, Y.Z.: Biodegradable poly (propylene carbonate)/layered double hydroxide composite films with enhanced gas barrier and mechanical properties. Chin. J. Polym. Sci. (2016). https://doi.org/10.1007/s10118-016-1720-9

    Article  Google Scholar 

  98. Pan, T., Xu, S., Dou, Y., Liu, X., Li, Z., Han, J., Yan, H., Wei, M.: Remarkable oxygen barrier films based on a layered double hydroxide/chitosan hierarchical structure. J. Mater. Chem. A. (2015). https://doi.org/10.1039/C5TA02520F

    Article  Google Scholar 

  99. Dou, Y., Xu, S., Liu, X., Han, J., Yan, H., Wei, M., Evans, D.G., Duan, X.: Transparent, flexible films based on layered double hydroxide/cellulose acetate with excellent oxygen barrier property. Adv. Funct. Mater. (2014). https://doi.org/10.1002/adfm.201301775

  100. Liu, Y., Song, J., Jiao, F., Huang, J.: Synthesis, characterization and release of a-naphthaleneacetate from thin films containing Mg/Al-layered double hydroxide. J. Mol. Struct. (2014). https://doi.org/10.1016/j.molstruc.2014.01.088

    Article  Google Scholar 

  101. Fawaz, J., Mittal, V.: Synthesis of polymer nanocomposites: Review of various techniques. In: Mittal, V. (ed.) Synthesis Techniques for Polymer Nanocomposites, pp. 1–30. Wiley Online Library, US (2015)

    Google Scholar 

  102. Du, P., Qiu, S., Liu, C., Liu, G., Zhao, H., Wang, L.: In situ polymerization of sulfonated polyaniline in layered double hydroxide host matrix for corrosion protection. New. J. Chem. (2018). https://doi.org/10.1039/C7NJ05127A

    Article  Google Scholar 

  103. Guo, B., Liu, Y., Zhang, Q., Wang, F., Wang, Q., Liu, Y., Li, J., Yu, H.: Efficient flame-retardant and smoke-suppression properties of Mg–Al-layered double-hydroxide nanostructures on wood substrate. ACS Appl. Mater. Interfaces. (2017). https://doi.org/10.1021/acsami.7b06803

    Article  Google Scholar 

  104. Yao, X., Du, C., Hua, Y., Zhang, J., Peng, R., Huang, Q., Liu, H.: Flame-retardant and smoke suppression properties of nano MgAl-LDH coating on bamboo prepared by an in situ reaction. J. Nanomater. (2019). https://doi.org/10.1155/2019/9067510

    Article  Google Scholar 

  105. Chakraborty, M., Mitra, M.K., Chakraborty, J.: One-pot synthesis of CaAl-layered double hydroxide–methotrexate nanohybrid for anticancer application. Bull. Mater. Sci. (2017). https://doi.org/10.1007/s12034-017-1468-z

    Article  Google Scholar 

  106. Ghani, M.: In-situ growth of zinc-aluminum-layered double hydroxide on nanoporous anodized aluminum bar for stir-bar sorptive extraction of phenolic acids. Microchem J. (2019). https://doi.org/10.1016/j.microc.2019.04.052

    Article  Google Scholar 

  107. Liu, Y., Jing, Z., Zhang, T., Chen, Q., Qiu, F., Peng, Y., Tang, S.: Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. Food Bioprod. Process. (2018). https://doi.org/10.1016/j.fbp.2018.07.004

    Article  Google Scholar 

  108. Botan, R., Nogueira, T.R., Wypych, F., Lona, L.M.F.: In situ synthesis, morphology, and thermal properties of polystyrene-MgAl layered double hydroxide nanocomposites. Polym. Eng. Sci. (2012). https://doi.org/10.1002/pen.23122

  109. Botan, R., Caio, T.R.N., Lona, L.M.F.J.: In situ synthesis of polystyrene nanocomposites with layered double hydroxide with an unusual anion arrangement: Morphology and thermal and mechanical properties. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.42856

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Career Point University, Tikker- Kharwarian, Hamirpur, Himachal Pradesh and Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala) Haryana for providing the requisite platform to complete this review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajay Sharma or Anil Kumar Sharma.

Ethics declarations

Conflict of authors

Authors declare no conflict of interest with any content of this review article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Sharma, V., Sharma, A. et al. Layered double hydroxides: a gleam on their synthetic routes with biomedical applications. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01333-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01333-5

Keywords

Navigation