Skip to main content

Advertisement

Log in

Abstract

Microwave energy will soon be used in material manufacturing. Microwaves may generate a lot of heat. Through many interactions, microwaves convey electromagnetic energy straight to the material’s molecules. Direct molecular interaction transfers electromagnetic energy to materials. Microwaves are increasingly used to process materials because to their time and energy economy, shorter process cycle times, enhanced mechanical characteristics, and reduced environmental dangers. Microwave processing transfers linearly equal electric and magnetic energy between molecules. Microwaves can process several materials. Metal matrix composites, fibre reinforced polymers (FRP), alloys, ceramics, metals, pulverised metallurgy, metal coatings, and metal cladding are examples. This article lists basic microwave properties and briefly discusses the mechanisms that regulate microwave-material interactions. The essay also discusses the systems that control interactions. Microwave heating basics have been covered here. Cladding, coating, and glazing are the main uses of microwave energy in surface engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh, M., Ohji, T., Asthana, R.J.G., Material, S.M.A.:Green and Sustainable Manufacturing of Advanced Materials—Progress and Prospects. :3–10. (2016)

  2. Zhou, H., Nabiyouni, M., Bhaduri, S.B.J.M.S.: C E. Microwave assisted apatite coating deposition on Ti6Al4V implants. ;33:4435–43. (2013)

  3. Mishra, R.R., Sharma, A.K.J.C.R.S.S., Sciences, M.: A review of research trends in microwave processing of metal-based materials and opportunities in microwave metal casting. ;41:217–55. (2016)

  4. Liyana, M., Adzali, N.M.S., Rahman, W., Zamzuri, M., Azmi, H.: Mechanical Properties of Microwave Sintered 60YSZ-Al2O3/10HAP Bioceramics Composites, pp. 18–23. Applied Mechanics and Materials: Trans Tech Publ; (2014)

  5. Prasad, C.D., Joladarashi, S., Ramesh, M., Srinath, M., Channabasappa, B.J.S.: Development and sliding wear behavior of Co-Mo-Cr-Si cladding through microwave heating. ;11:2975–86. (2019)

  6. Badiger, R.I., Narendranath, S., Srinath, M., Hebbale, A.M.J.T.I.I.M.: Effect of power input on metallurgical and mechanical characteristics of Inconel-625 welded joints processed through microwave hybrid heating. ;72:811–24. (2019)

  7. Badiger, R.I., Narendranath, S., Srinath, M.J.M., Microstructure, A.: Optimization of process parameters by Taguchi grey relational analysis in joining Inconel-625 through microwave hybrid heating. ;8:92–108. (2019)

  8. Bhoi, N.K., Singh, H., Pratap, S.: A study on microwave susceptor material for hybrid heating. Journal of Physics: Conference Series: IOP Publishing; p. 012097. (2019)

  9. Wei, W., Shao, Z., Zhang, Y., Qiao, R., Gao, J.J.A.T.E.: Fundamentals and applications of microwave energy in rock and concrete processing–A review. ;157:113751. (2019)

  10. Loharkar, P.K., Ingle, A., Jhavar SJJoMR, Technology: Parametric Rev. microwave-based Mater. Process. its Appl. 8, 3306–3326 (2019)

    Google Scholar 

  11. Green, M., Xiang, P., Liu, Z., Murowchick, J., Tan, X., Huang, F., et al.: Microwave absorption of aluminum/hydrogen treated titanium dioxide nanoparticles. ;5:133–46. (2019)

  12. Bartoli, M., Frediani, M., Briens, C., Berruti, F., Rosi, L.J.P.: An overview of temperature issues in microwave-assisted pyrolysis. ;7:658. (2019)

  13. Verma, N., Zafar, S., Talha, M.J.M.R.E.: Influence of nano-hydroxyapatite on mechanical behavior of microwave processed polycaprolactone composite foams. ;6:085336. (2019)

  14. Muley, P.D., Mobley, J.K., Tong, X., Novak, B., Stevens, J., Moldovan, D., et al.: Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. ;196:1080–8. (2019)

  15. Green, M., Chen, X.J.J.M.: Recent progress of nanomaterials for microwave absorption. ;5:503 – 41. (2019)

  16. García-Baños, B., Reinosa, J., Penaranda-Foix, F.L., Fernandez, J.F.: Catalá-Civera JMJSr. Temp. Assess. microwave-enhanced Heat. processes. 9, 1–10 (2019)

    Google Scholar 

  17. Li, K., Chen, G., Li, X., Peng, J., Ruan, R., Omran, M., et al.: High-temperature dielectric properties and pyrolysis reduction characteristics of different biomass-pyrolusite mixtures in microwave field. ;294:122217. (2019)

  18. Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K., et al.: Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. ;118:67–76. (2019)

  19. Li, K., Chen, J., Chen, G., Peng, J., Ruan, R., Srinivasakannan, C.J.B.: Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore. ;286:121381. (2019)

  20. Reddy, M.P., Manakari, V., Parande, G., Shakoor, R., Mohamed, A., Gupta, M.J.C.P.B.E.: Structural, mechanical and thermal characteristics of Al-Cu-Li particle reinforced Al-matrix composites synthesized by microwave sintering and hot extrusion. ;164:485–92. (2019)

  21. Karunakaran, G., Kumar, G.S., Cho, E.-B., Sunwoo, Y., Kolesnikov, E., Kuznetsov, D.J.C.I.: Microwave-assisted hydrothermal synthesis of mesoporous carbonated hydroxyapatite with tunable nanoscale characteristics for biomedical applications. ;45:970–7. (2019)

  22. Feng, D., Xu, D., Wang, Q., Liu, P.J.J.M.C.C.: Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. ;7:7938–46. (2019)

  23. Li, H., Zhao, Z., Xiouras, C., Stefanidis, G.D., Li, X., Gao, X.J.R., et al.: Fundamentals and applications of microwave heating to chemicals separation processes. ;114:109316. (2019)

  24. Julian, I., Ramirez, H., Hueso, J.L., Mallada, R., Santamaria, J.J.C.E.J.: Non-oxidative methane conversion in microwave-assisted structured reactors. ;377:119764. (2019)

  25. Omran, M., Fabritius, T., Heikkinen, E.-P.J.J.S.M.: Selective zinc removal from electric arc furnace (EAF) dust by using microwave heating. ;5:331–40. (2019)

  26. Levin, E.E., Grebenkemper, J.H., Pollock, T.M., Seshadri, R.J.C.M.: Protocols for high temperature assisted-microwave preparation of inorganic compounds. ;31:7151–9. (2019)

  27. El-Galy, I.M., Saleh, B.I., Ahmed, M.H.J.S.A.S.: Functionally graded materials classifications and development trends from industrial point of view. ;1:1–23. (2019)

  28. Loknath, D., Kumar, V.R.J.M.T.P.: A review on processing and characterization of bulk functionally graded polymer materials. ;56:1192–200. (2022)

  29. Zhong, G., Xu, S., Chen, C., Kline, D.J., Giroux, M., Pei, Y., et al.: Synthesis of metal oxide nanoparticles by rapid, high-temperature 3D microwave heating. ;29:1904282. (2019)

  30. Xiao, S., Dai, W., Liu, X., Pan, D., Zou, H., Li, G., et al.: Microwave-Induced Metal Dissolution Synthesis of Core–Shell Copper Nanowires/ZnS for Visible Light Photocatalytic H2 Evolution. ;9:1900775. (2019)

  31. Sizov: FJSp, quantum electronics, optoelectronics. Brief history of THz and IR technologies. :67–79. (2019)

  32. Singh, G., Vasudev, H., Bansal, A., Vardhan, S.J.M.R.E.: Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection. ;7:026512. (2020)

  33. Mago, J., Bansal, S., Gupta, D., Jain, V.J.M.: A MT. Investigation of microwave processing parameters on development of Ni-40Cr3C2 composite clad and their characterization. ;51:4288–300. (2020)

  34. Kaushal, S., Gupta, D., Bhowmick, H.: Development of microwave processed Ni + 20% SiC based composite clads on AISI-304 steel. IOP Conference Series: Materials Science and Engineering: IOP Publishing; p. 012001. (2020)

  35. Hebbale, A.M., Vishwanatha, J., Srinath, M., Badiger, R.I.: Dry Sliding Wear Performance Studies of WC–12Co Deposited on AISI 420 Steel Through Microwave Energy. Advances in Lightweight Materials and Structures: Springer; p. 489 – 96. (2020)

  36. Prasad, C.D., Mathapati, M., Vasudev, H., Thakur, L.: Analysis of Mechanical Properties and Microstructural Characterization of Microwave Cladding on Stainless Steel. Advances in Microwave Processing for Engineering Materials:CRC Press. p.109–20

  37. Mishra, R.R., Sharma, A.K.J.J.M.P., Energy, E.: Effect of input microwave power and insulation on microstructure and tensile properties of cast Al 7039 alloy produced at 2.45 GHz. ;54:312–29. (2020)

  38. Mago, J., Bansal, S., Gupta, D., Jain VJPotIoME, Part, L.: Journal of Materials: Design, Applications. Cavitation erosion behavior of microwave-processed Ni–40Cr3C2 composite clads: a parametric investigation using ultrasonic apparatus. ;235:265–92. (2021)

  39. Abbas, S.T., Shreyas, D., Lingappa, M.S.: Durgaprasad CJJoM, Metals, Fuels. Microstructural characterisation of microwave cladding on stainless steel. :73 – 7. (2021)

  40. Mago, J., Bansal, S., Gupta, D., Jain VJPotIoME, Part, C.: Journal of Mechanical Engineering Science. Influence of microwave heating on metallurgical and mechanical properties of Ni-40Cr3C2 composite clads in the context of cavitation erosion resistance characteristics. ;235:1258-76. (2021)

  41. Ferreira, A.A., Amaral, R.L., Romio, P.C., Cruz, J.M., Reis, A.R., Vieira, M.F.J.M.: Deposition of nickel-based superalloy claddings on low alloy structural steel by direct laser deposition. ;11:1326. (2021)

  42. Zafar, S., Sharma, A.K.J.: Development and characterisations of WC–12Co microwave clad. ;96:241–8. (2014)

  43. Gupta, D., Sharma, A.K.J.J.M.P.: Microwave cladding: a new approach in surface engineering. ;16:176 – 82. (2014)

  44. Panchal, G.R., Srinath, M.: Development of Aluminum Matrix Composite Through Microwave Stir Casting. Advances in Engineering Design, pp. 75–83. Springer (2021)

  45. Kaushal, S., Gupta, D., Bhowmick HJPotIoME, Part, L.: Journal of Materials: Design, Applications. Wear behavior of microwave-processed Ni-WC8Co-based functionally graded materials. ;235:1036–45. (2021)

  46. Nair, R.B., Arora, H., Boyana, A., Saiteja, P., Grewal, H.J.W.: Tribological behavior of microwave synthesized high entropy alloy claddings. ;436:203028. (2019)

  47. Guirong, L., Lipeng, G., Hongming, W., Ming, L., Changwen, W., Haoran, W., et al.: Effects of boron on microstructure and properties of microwave sintered FeCoNi1. 5CuY0. 2 high-entropy alloy. ;866:157848. (2021)

  48. Kumaresan, G., Bharathiraja, G., Anbuchezhiyan, G., Sailesh, A.J.M.T.P.: Investigation on wear properties of super alloys using thermal barrier coating method. ;46:4326–30. (2021)

  49. Ariharan, S., Balani, K.J.I.J.R.M., Materials, H.: Fretting wear behaviour and frictional force mapping of Al2O3 based thermal barrier coatings. ;98:105525. (2021)

  50. Thakare, J.G., Pandey, C., Mahapatra, M., Mulik, R.S.J.M., International, M.: Thermal barrier coatings—a state of the art review. ;27:1947–68. (2021)

  51. Bansal, A., Vasudev, H., Thakur, L.: Effect of Microwave Heating on the Mechanical and Tribological Properties of the Thermal-Sprayed Coatings, pp. 307–316. CRC Press, Thermal Spray Coatings (2021)

    Google Scholar 

  52. Patterson, T., Hochanadel, J., Sutton, S., Panton, B., Lippold, J.J.W.W.: A review of high energy density beam processes for welding and additive manufacturing applications. ;65:1235 – 306. (2021)

  53. Li, L., Steen, W.M., Modern, P.J., Spencer, J.T.: Laser removal of surface and embedded contaminations on/in building structures. Laser Materials Processing and Machining: SPIE; p. 84–95. (1994)

  54. Suresh, G., Ramesh, M., Srinath, M.J.M., International, M.: Development of Self-lubricating Nickel Based Composite Clad using Microwave Heating in Improving Resistance to Wear at Elevated Temperatures. ;28:2000–11. (2022)

  55. Prashar, G., Vasudev, H., Thakur, L.J.S.T.M., Properties: Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: a review. (2021)

  56. Babu, A., Arora, H., Grewal, H.J.J.T.S.T.: Microwave-assisted post-processing of detonation gun-sprayed coatings for better slurry and cavitation erosion resistance. ;28:1565–78. (2019)

  57. Mishra, T.K., Sahu, P., Gedam, V.J.M.T.P.: Effect of heat treatment on friction and abrasive wear behavior of WC-12Co microwave cladding. ;56:373–8. (2022)

  58. Whittles, D., Kingman, S., Reddish, D.J.I.: Application of numerical modelling for prediction of the influence of power density on microwave-assisted breakage. ;68:71–91. (2003)

  59. Cha-um, W., Rattanadecho, P., Pakdee, W.J.F., Technology, B.: Experimental and numerical analysis of microwave heating of water and oil using a rectangular wave guide: influence of sample sizes, positions, and microwave power. ;4:544 – 58. (2011)

  60. Albertoni, A., Perfetto, S.: Mid-wave and long-wave infrared metamaterials and nano-materials design with finite element and finite difference time domain models for target camouflage. Electro-Optical and Infrared Systems: Technology and Applications VII: SPIE; p. 234 – 44. (2010)

  61. Kim, J.Y., Jeon, S.I., Lee, K.J., Kim, B.R., Simonov, N., Yoon, J.S., et al.: Computational study on focused microwave thermotherapy for knee pathological treatment. ;12:1901–7. (2018)

  62. Ghorbel, I., Ganster, P., Moulin, N., Meunier, C., Bruchon, J.J.J.A.C.S.: Experimental and numerical thermal analysis for direct microwave heating of silicon carbide. ;104:302–12. (2021)

  63. Ke, C., Liu, T., Zhang, Y., Xiong, Q.J.C.E., Intensification, P.-P.: Energy Absorpt. performances silicon carbide particles Dur. Microw. Heat. process. 172, 108796 (2022)

    Google Scholar 

  64. Malhotra, A., Chen, W., Goyal, H., Plaza-Gonzalez, P.J., Julian, I., Catala-Civera, J.M., et al.: Temperature homogeneity under selective and localized microwave heating in structured flow reactors. ;60:6835–47. (2021)

  65. Rattanadecho, P., Suwannapum, N.: Cha-um WJJoht. Interactions between electromagnetic and thermal fields in microwave heating of hardened type I-cement paste using a rectangular waveguide (influence of frequency and sample size). ;131. (2009)

  66. Shukla, A., Mondal, A., Upadhyaya, A.J.S.S.: Numer. Model. Microw. Heat. 42, 99–124 (2010)

    Google Scholar 

  67. Verma, R., Kumar, S.: Temperature distribution in living tissue with Two-Dimensional Parabolic Bioheat Model using radial basis function. In: Applied Analysis, Computation and Mathematical Modelling in Engineering, pp. 363–374. Springer (2022)

  68. Wang, L., Sun, D.-W.J.T.F.S.: Technology. Recent developments in numerical modelling of heating and cooling processes in the food industry—a review. ;14:408 – 23. (2003)

  69. Singh, C., Khanna, V., Singh, S.J.M.T.P.: Sustainability of microwave heating in materials processing technologies. (2022)

  70. Naik, T.P., Singh, I., Sharma, A.K.J.C.P.A.A.S.: Manufacturing. Processing of polymer matrix composites using microwave energy: A review. :106870. (2022)

  71. Singh, M.K., Zafar, S.J.J.I.T.: Effect of layering sequence on mechanical properties of woven kenaf/jute fabric hybrid laminated microwave-processed composites. ;51:2731S-52S. (2022)

  72. Naik, T.P., Gairola, S., Singh, I., Sharma, A.K.J.J.N.F.: Microwave Hybrid Heating for Moulding of Sisal/Jute/HDPE Composites. :1–15. (2022)

  73. Gautam, U., Asgar, M.E., Singh, K.J.M.T.P.: A review on materials processing using microwave radiation. (2022)

  74. Kumar, R., Sahoo, S., Joanni, E., Singh, R.K.J.J.E.C.: A review on the current research on microwave processing techniques applied to graphene-based supercapacitor electrodes: An emerging approach beyond conventional heating. (2022)

  75. Bhatt, S.C., Ghetiya, N.D.J.I.J.M.: Review on effect of tooling parameters on microwave processing of metallic materials with special emphasis on melting/casting application. :1–31. (2022)

  76. Singh, P., Bansal, A., Verma, V.K.: Hydroxyapatite reinforced s3306… urface modification of SS-316L by microwave processing. Surf. Interfaces. 28, 101701 (2022)

    Article  Google Scholar 

  77. Poomathi, N., Singh, S., Prakash, C., Patil, R.V., Perumal, P.T., Barathi, V.A., Balasubramanian, K.K., Ramakrishna, S., Maheshwari, N.U.: Bioprinting in ophthalmology: current advances and future pathways,Rapid Prototyping Journal. (2018)

  78. Prakash, C., Singh, G., Singh, S., Linda, W.L., Zheng, H.Y., Ramakrishna, S., Narayan, R.: Mechanical reliability and in vitro bioactivity of 3D-printed porous polylactic acid-hydroxyapatite scaffold. J. Mater. Eng. Perform. 30, 4946–4956 (2021)

    Article  Google Scholar 

  79. Singh, S., Prakash, C., Ramakrishna, S.: Three-dimensional printing in the fight against novel virus COVID-19: Technology helping society during an infectious disease pandemic. Technol. Soc. 62, 101305 (2020)

    Article  Google Scholar 

  80. Prakash, C., Singh, S., Singh, M., Gupta, M.K., Mia, M., Dhanda, A.: Multi-objective parametric appraisal of pulsed current gas tungsten arc welding process by using hybrid optimization algorithms. Int. J. Adv. Manuf. Technol. 101, 1107–1123 (2019)

    Article  Google Scholar 

  81. Nguyen, D.-N., Dao, T.-P., Prakash, C., Singh, S., Pramanik, A., Krolczyk, G., Pruncu, C.I.: Machining parameter optimization in shear thickening polishing of gear surfaces. J. Mater. Res. Technol. 9, 5112–5126 (2020)

    Article  Google Scholar 

  82. Singh, H., Kumar, R., Prakash, C., Singh, S.: HA-based coating by plasma spray techniques on titanium alloy for orthopedic applications, Materials Today: Proceedings. 50 612–628. (2022)

  83. Gupta, N.K., Somani, N., Prakash, C., Singh, R., Walia, A.S., Singh, S., Pruncu, C.I.: Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy, Materials. 14 2292. (2021)

  84. Prakash, C., Singh, S., Pabla, B.S., Sidhu, S.S., Uddin, M.S.: Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater. Manuf. Processes. 34, 357–368 (2019)

    Article  Google Scholar 

  85. Prakash, C., Singh, S., Gupta, M.K., Mia, M., Królczyk, G., Khanna, N.: Synthesis, characterization, corrosion resistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications, Materials. 11 1602. (2018)

  86. Basak, A.K., Pramanik, A., Prakash, C.: Deformation and strengthening of SiC reinforced Al-MMCs during in-situ micro-pillar compression. Mater. Sci. Engineering: A. 763, 138141 (2019)

    Article  Google Scholar 

  87. Singh, M., Vasudev, H., Kumar, R.: Microstructural characterization of BN thin films using RF magnetron sputtering method, Materials Today: Proceedings. 26 2277–2282. (2020)

  88. Prashar, G., Vasudev, H., Thakur, L.: High-temperature oxidation and Erosion Resistance of Ni-Based thermally-sprayed Coatings used in Power Generation Machinery: A review. Surf. Rev. Lett. 29, 2230003 (2022)

    Article  Google Scholar 

  89. Vasudev, H., Singh, P., Thakur, L., Bansal, A.: Mechanical and microstructural characterization of microwave post processed Alloy-718 coating. Mater. Res. Express. 6, 1265f5 (2020)

    Article  Google Scholar 

  90. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed Inconel-718 coating on gray cast iron. J. Fail. Anal. Prev. 21, 250–260 (2021)

    Article  Google Scholar 

  91. Singh, G., Vasudev, H., Bansal, A., Vardhan, S.: Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating. Surf. Topogr. Metrol. Prop. 9, 25019 (2021)

    Article  Google Scholar 

  92. Prashar, G., Vasudev, H.: Surface topology analysis of plasma sprayed Inconel625-Al2O3 composite coating, Materials Today: Proceedings. 50 607–611. (2022)

  93. Majji, B.G.R., Vasudev, H., Bansal, A.: A review on the oxidation and wear behavior of the thermally sprayed high-entropy alloys, Materials Today: Proceedings. 50 1447–1451. (2022)

  94. Mehta, A., Vasudev, H., Singh, S., Prakash, C., Saxena, K.K., Linul, E., Buddhi, D., Xu, J.: Processing and Advancements in the development of thermal barrier coatings: A Review, Coatings. 121318. (2022)

  95. Singh, M., Vasudev, H., Kumar, R.: Corrosion and tribological behaviour of bn thin films deposited using magnetron sputtering. Int. J. Surf. Eng. Interdisciplinary Mater. Sci. (IJSEIMS). 9, 24–39 (2021)

    Article  Google Scholar 

  96. Singh, P., Bansal, A., Vasudev, H.: In situ surface modification of stainless steel with hydroxyapatite using microwave heating. Surf. Topogr. Metrol. Prop. 9, 35053 (2021). https://doi.org/10.1088/2051-672X/ac28a9

    Article  Google Scholar 

  97. Dutta, V., Thakur, L., Singh, B., Vasudev, H.: A study of Erosion – corrosion Behaviour of Friction stir-processed chromium-reinforced NiAl bronze composite. Materials. 15, 5401 (2022). https://doi.org/10.3390/ma15155401

    Article  Google Scholar 

  98. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl2O3 composite coatings. Surf. Topogr. Metrol. Prop. 9(3), 35003 (2021)

    Article  Google Scholar 

  99. Arora, H., et al.: “Analysis of sensitization in austenitic stainless steel-welded joint,” in Advances in Metrology and Measurement of Engineering Surfaces, Springer, pp. 13–23. (2021)

  100. Prashar, G., Vasudev, H., Thakur, L.: “Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: a review,”Surface Topography: Metrology and Properties, (2021)

  101. Singh, G., Vasudev, H., Bansal, A., Vardhan, S.: Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection. Mater. Res. Express. 7(2), 26512 (2020)

    Article  Google Scholar 

  102. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed inconel718-Al2O3 composite coatings. Surf. Rev. Lett. 29(2), 2250017 (2022)

    Article  Google Scholar 

  103. Prashar, G., Vasudev, H.: “High temperature erosion behavior of plasma sprayed Al2O3 coating on AISI-304 stainless steel,”World Journal of Engineering, (2021)

  104. Prashar, G., Vasudev, H.: Structure-property correlation and high-temperature erosion performance of Inconel625-Al2O3 plasma-sprayed bimodal composite coatings. Surf. Coat. Technol. 439, 128450 (2022)

    Article  Google Scholar 

  105. Singh, J., Vasudev, H., Singh, S.: “Performance of different coating materials against high temperature oxidation in boiler tubes–A review,” Materials Today: Proceedings, vol. 26, pp. 972–978, (2020)

  106. Bansal, A., Vasudev, H., Sharma, A.K., Kumar, P.: Investigation on the effect of post weld heat treatment on microwave joining of the Alloy-718 weldment. Mater. Res. Express. 6(8), 86554 (2019)

    Article  Google Scholar 

  107. Mehta, A., Vasudev, H., Singh, S.: “Recent developments in the designing of deposition of thermal barrier coatings–A review,” Materials Today: Proceedings, vol. 26, pp. 1336–1342, (2020)

  108. Vasudev, H., Thakur, L., Singh, H., Bansal, A.: “Effect of addition of Al2O3 on the high-temperature solid particle erosion behaviour of HVOF sprayed Inconel-718 coatings,” Materials Today Communications, vol. 30, no. November p. 103017, 2022. (2021)

  109. Vasudev, H., Thakur, L., Singh, H., Bansal, A.: Mechanical and microstructural behaviour of wear resistant coatings on cast iron lathe machine beds and slides. Kovove Materialy, Metallic Materials. 56(1), 55–63 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh Vasudev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, A., Vasudev, H. & Jeyaprakash, N. Role of sustainable manufacturing approach: microwave processing of materials. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01318-4

Keywords

Navigation