Skip to main content
Log in

A review of polymer-matrix piezoelectric composite coatings for energy harvesting and smart sensors

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Piezoelectric paints/coatings usually consist of a polymeric matrix (binder) with embedded piezoelectric ceramics (second phase or pigment) in the form of microparticles or nanoparticles. Piezoelectric paints have gained prominence in aerospace applications among the various categories of smart coatings, especially for structural health monitoring and absorbing radiation. These coatings (in the form of thin/thick films) are also being applied in the place of brittle piezo-ceramics in various microelectronic devices, for example, in gas sensors and flexible electronics, as well as in various energy-harvesting applications. This review paper focuses on the current state of research for the processing and characterization of piezoelectric composites used as paints/coatings films. Special emphasis is on: (i) the processes of application of piezoelectric paints/coatings in the form of a single layer or stacks of thick films and (ii) the processes of poling these piezoelectric coatings. Various modes and process parameters of poling and their effects on the piezoelectric output of different piezoelectric composites are discussed with examples from the literature. Finally, we have tried to identify the existing issues and address the possible way forward in terms of industrial or academic research within the domain of piezoelectric paint/coating film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ahmed, A, Hassan, I, Helal, AS, Sencadas, V, Radhi, A, Jeong, CK, El-Kady, MF, “Triboelectric Nanogenerator Versus Piezoelectric Generator at Low Frequency (<4 Hz): A Quantitative Comparison.” iScience, 23 101286. https://doi.org/10.1016/j.isci.2020.101286 (2020)

    Article  Google Scholar 

  2. Ikeda, T, Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990)

    Google Scholar 

  3. Zhao, Z-H, Dai, Y, Huang, F, “The Formation and Effect of Defect Dipoles in Lead-Free Piezoelectric Ceramics: A Review.” Sustain. Mater. Technol., 20 e00092. https://doi.org/10.1016/j.susmat.2019.e00092 (2019)

    Article  CAS  Google Scholar 

  4. Thomann, H, “Piezoelectric Ceramics.” Adv. Mater., 2 458–463. https://doi.org/10.1002/adma.19900021004 (1990)

    Article  CAS  Google Scholar 

  5. Osho, S, Wu, N, Aramfard, M, Deng, C, Ojo, O, “Fabrication and Calibration of a Piezoelectric Nanocomposite Paint.” Smart Mater. Struct., 27 035007. https://doi.org/10.1088/1361-665X/aaa797 (2018)

    Article  Google Scholar 

  6. Mishra, S, Unnikrishnan, L, Nayak, SK, Mohanty, S, “Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review.” Macromol. Mater. Eng., 304 1–25. https://doi.org/10.1002/mame.201800463 (2019)

    Article  CAS  Google Scholar 

  7. Sappati, KK, Bhadra, S, “Piezoelectric Polymer and Paper Substrates: A Review.” Sensors (Switzerland)https://doi.org/10.3390/s18113605 (2018)

    Article  Google Scholar 

  8. Das, MS, Mohapatra, PC, Aria, AI, Christie, G, Mishra, YK, Hofmann, S, Thakur, VK, “Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials.” Adv. Sci.https://doi.org/10.1002/advs.202100864 (2021)

    Article  Google Scholar 

  9. Egusa, S, Iwasawa, N, “Piezoelectric Paints: Preparation and Application as Built-in Vibration Sensors of Structural Materials.” J. Mater. Sci., 28 1667–1672. https://doi.org/10.1007/BF00363366 (1993)

    Article  CAS  Google Scholar 

  10. Kang, L-H, “Vibration and Impact Monitoring of a Composite-Wing Model Using Piezoelectric Paint.” Adv. Compos. Mater., 23 73–84. https://doi.org/10.1080/09243046.2013.862390 (2014)

    Article  CAS  Google Scholar 

  11. Deutz, DB, Mascarenhas, NT, Schelen, JBJ, de Leeuw, DM, van der Zwaag, S, Groen, P, “Flexible Piezoelectric Touch Sensor by Alignment of Lead-Free Alkaline Niobate Microcubes in PDMS.” Adv. Funct. Mater., 27 1–7. https://doi.org/10.1002/adfm.201700728 (2017)

    Article  CAS  Google Scholar 

  12. Zhang, Y, “Piezoelectric Paint Sensor for Real-time Structural Health Monitoring.” In: Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. International Society for Optics and Photonics, pp 1095–1103 (2005)

  13. Kim, KB, Cho, JY, Hamid, J, Ahn, JH, Do, HS, Woo, SB, Sung, TH, “Optimized Composite Piezoelectric Energy Harvesting Floor Tile for Smart Home Energy Management.” Energy Convers. Manag., 171 31–37. https://doi.org/10.1016/j.enconman.2018.05.031 (2018)

    Article  CAS  Google Scholar 

  14. Bohara, BB, Batra, AK, “Development of Multi-functional Nano-Paint for Energy Harvesting Applications.” Prog. Nat. Sci. Mater. Int., 28 1–6. https://doi.org/10.1016/j.pnsc.2018.01.005 (2018)

    Article  CAS  Google Scholar 

  15. Surmenev, RA, Orlova, T, Chernozem, RV, Ivanova, AA, Bartasyte, A, Mathur, S, Surmeneva, MA, “Hybrid Lead-free Polymer-Based Nanocomposites with Improved Piezoelectric Response for Biomedical Energy-Harvesting Applications: A Review.” Nano Energy, 62 475–506. https://doi.org/10.1016/j.nanoen.2019.04.090 (2019)

    Article  CAS  Google Scholar 

  16. Sezer, N, Koç, M, “A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting.” Nano Energy, 80 105567. https://doi.org/10.1016/j.nanoen.2020.105567 (2021)

    Article  CAS  Google Scholar 

  17. Lasrado, D, Ahankari, S, Kar, K, “Nanocellulose-Based Polymer Composites for Energy Applications—A Review.” J. Appl. Polym. Sci., 137 48959. https://doi.org/10.1002/app.48959 (2020)

    Article  CAS  Google Scholar 

  18. Ramadan, KS, Sameoto, D, Evoy, S, “A Review of Piezoelectric Polymers as Functional Materials for Electromechanical Transducers.” Smart Mater. Struct.https://doi.org/10.1088/0964-1726/23/3/033001 (2014)

    Article  Google Scholar 

  19. Safari, A, Akdogan, EK, Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  20. Uchino, K, Advanced Piezoelectric Materials: Science and Technology. Woodhead Publishing, Cambridge (2017)

    Google Scholar 

  21. Topolov, VY, Bowen, CR, Bisegna, P, Piezo-Active Composites: Microgeometry-Sensitivity Relations. Springer, Berlin (2018)

    Book  Google Scholar 

  22. Purusothaman, Y, Alluri, NR, Chandrasekhar, A, Kim, SJ, “Harnessing Low Frequency-Based Energy Using a K0.5Na0.5NbO3 (KNN) Pigmented Piezoelectric Paint System.” J. Mater. Chem. C, 5 5501–5508. https://doi.org/10.1039/c7tc00846e (2017)

    Article  CAS  Google Scholar 

  23. Payo, I, Rodriguez, D, Oliva, J, Valverde, D, “Energy Harvesting from Piezoelectric Paint Films Under Biaxial Strain.” Smart Mater. Struct.https://doi.org/10.1088/1361-665X/ab79b4 (2020)

    Article  Google Scholar 

  24. Payo, I, Hale, JM, “Sensitivity Analysis of Piezoelectric Paint Sensors Made Up of PZT Ceramic Powder and Water-Based Acrylic Polymer.” Sens. Actuat., A Phys., 168 77–89. https://doi.org/10.1016/j.sna.2011.04.008 (2011)

    Article  CAS  Google Scholar 

  25. Capsal, JF, David, C, Dantras, E, Lacabanne, C, “Piezoelectric Sensing Coating for Real Time Impact Detection and Location on Aircraft Structures.” Smart Mater. Struct., 21 1–7. https://doi.org/10.1088/0964-1726/21/5/055021 (2012)

    Article  CAS  Google Scholar 

  26. Singh, A, Das, S, Bharathkumar, M, Revanth, D, Karthik, ARB, Sastry, BS, Rao, VR, “Low Cost Fabrication of Polymer Composite (h-ZnO + PDMS) Material for Piezoelectric Device Application.” Mater. Res. Expr., 3 1–11. https://doi.org/10.1088/2053-1591/3/7/075702 (2016)

    Article  CAS  Google Scholar 

  27. Matoroc, M, Piezoelectric Ceramics Databook for Designers. Morgan Matoroc Ltd (1996)

    Google Scholar 

  28. Choy, MM, Cook, WR, Hearmon, RFS, Jaffe, H, Jerphagnon, J, Kurtz, SK, Landolt-BoÈrnstein, STL, Numerical Data and Functional Relationships in Science and Technology. Springer, Heidelberg and New York, p. 328 (1979)

    Google Scholar 

  29. Turner, RC, Fuierer, PA, Newnham, RE, Shrout, TR, “Materials for High Temperature Acoustic and Vibration Sensors: A Review.” Appl. Acoust., 41 299–324 (1994)

    Article  Google Scholar 

  30. Vegesna, SV, Bhat, VJ, Bürger, D, Dellith, J, Skorupa, I, Schmidt, OG, Schmidt, H, “Increased Static Dielectric Constant in ZnMnO and ZnCoO Thin Films with Bound Magnetic Polarons.” Sci. Rep., 10 6698. https://doi.org/10.1038/s41598-020-63195-1 (2020)

    Article  CAS  Google Scholar 

  31. Karan, SK, Bera, R, Paria, S, Das, AK, Maiti, S, Maitra, A, Khatua, BB, “An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self-Poled PVDF/AlO-rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency.” Adv. Energy Mater., 6 1–12. https://doi.org/10.1002/aenm.201601016 (2016)

    Article  CAS  Google Scholar 

  32. Xu, S, Wei, Y, Kirkham, M, Liu, J, Mai, W, Davidovic, D, Snyder, RL, Zhong, LW, “Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature Without Catalyst.” J. Am. Chem. Soc., 130 14958–14959. https://doi.org/10.1021/ja806952j (2008)

    Article  CAS  Google Scholar 

  33. Le Brizoual, L, Krüger, JK, Elmazria, O, Vincent, B, Bouvot, L, Kolle, M, Rouxel, D, Alnot, P, “Mapping of Microwave-Induced Phonons by μ-Brillouin Spectroscopy: Hypersons in ZnO on Silicon.” J. Phys. D Appl. Phys.https://doi.org/10.1088/0022-3727/41/10/105502 (2008)

    Article  Google Scholar 

  34. Lu, Y, Emanetoglu, NW, Chen, Y, “ZnO Piezoelectric Devices Zinc Oxide Bulk Thin Film Nanostructures.” Process. Prop. Appl.https://doi.org/10.1016/B978-008044722-3/50013-0 (2006)

    Article  Google Scholar 

  35. Xu, T, Xie, CS, “Tetrapod-like Nano-Particle ZnO/Acrylic Resin Composite and Its Multi-Function Property.” Prog. Org. Coat., 46 297–301. https://doi.org/10.1016/S0300-9440(03)00016-X (2003)

    Article  CAS  Google Scholar 

  36. Janotti, A, Van de Walle, CG, “Fundamentals of Zinc Oxide as a Semiconductor.” Reports Prog. Phys., 72 126501. https://doi.org/10.1088/0034-4885/72/12/126501 (2009)

    Article  CAS  Google Scholar 

  37. Alam, MM, Sultana, A, Mandal, D, “Biomechanical and Acoustic Energy Harvesting from TiO2 Nanoparticle Modulated PVDF Nanofiber Made High Performance Nanogenerator.” ACS Appl. Energy Mater., 1 3103–3112. https://doi.org/10.1021/acsaem.8b00216 (2018)

    Article  CAS  Google Scholar 

  38. Dutta, B, Kar, E, Bose, N, Mukherjee, S, “NiO@SiO2/PVDF: A Flexible Polymer Nanocomposite for a High Performance Human Body Motion-Based Energy Harvester and Tactile e-Skin Mechanosensor.” ACS Sustain. Chem. Eng., 6 10505–10516. https://doi.org/10.1021/acssuschemeng.8b01851 (2018)

    Article  CAS  Google Scholar 

  39. Iacob, M, Tugui, C, Tiron, V, Bele, A, Vlad, S, Vasiliu, T, Cazacu, M, Vasiliu, AL, Racles, C, “Iron Oxide Nanoparticles as Dielectric and Piezoelectric Enhancers for Silicone Elastomers.” Smart Mater. Struct.https://doi.org/10.1088/1361-665X/aa867c (2017)

    Article  Google Scholar 

  40. Egusa, S, Iwasawa, N, “Preparation of Piezoelectric Paints and Application as Vibration Modal Sensors.” J. Intell. Mater. Syst. Struct., 5 140–144. https://doi.org/10.1177/1045389X9400500118 (1994)

    Article  CAS  Google Scholar 

  41. Zhang, Y, “In Situ Fatigue Crack Detection Using Piezoelectric Paint Sensor.” J. Intell. Mater. Syst. Struct., 17 843–852. https://doi.org/10.1177/1045389X06059957 (2006)

    Article  Google Scholar 

  42. Hajra, S, Padhan, AM, Sahu, M, Alagarsamy, P, Lee, K, Kim, HJ, “Lead-Free Flexible Bismuth Titanate-PDMS Composites: A Multifunctional Colossal Dielectric Material for Hybrid Piezo-Triboelectric Nanogenerator to Sustainably Power Portable Electronics.” Nano Energy, 89 106316. https://doi.org/10.1016/j.nanoen.2021.106316 (2021)

    Article  CAS  Google Scholar 

  43. Yang, X, Li, P, Wu, B, Li, H, Zhou, G, “A Flexible Piezoelectric-Triboelectric Hybrid Nanogenerator in One Structure with Dual Doping Enhancement Effects.” Curr. Appl. Phys., 32 50–58. https://doi.org/10.1016/j.cap.2021.09.003 (2021)

    Article  Google Scholar 

  44. Sriphan, S, Vittayakorn, N, “Hybrid Piezoelectric-Triboelectric Nanogenerators for Flexible Electronics: Recent Advances and Perspectives.” J. Sci. Adv. Mater. Dev., 7 100461. https://doi.org/10.1016/j.jsamd.2022.100461 (2022)

    Article  CAS  Google Scholar 

  45. Kim, DH, Dudem, B, Yu, JS, “High-Performance Flexible Piezoelectric-Assisted Triboelectric Hybrid Nanogenerator via Polydimethylsiloxane-Encapsulated Nanoflower-like ZnO Composite Films for Scavenging Energy from Daily Human Activities.” ACS Sustain. Chem. Eng., 6 8525–8535. https://doi.org/10.1021/acssuschemeng.8b00834 (2018)

    Article  CAS  Google Scholar 

  46. Barnett, DM, Lothe, J, “Dislocations and Line Charges in Anisotropic Piezoelectric Insulators.” Phys. Status Solidi B, 67 105–111. https://doi.org/10.1002/pssb.2220670108 (1975)

    Article  Google Scholar 

  47. Tressler, JF, Alkoy, S, Newnham, RE, “Piezoelectric Sensors and Sensor Materials.” J. Electrocer., 2 257–272. https://doi.org/10.1023/A:1009926623551 (1998)

    Article  CAS  Google Scholar 

  48. Kim, HS, Kim, JH, Kim, J, “A Review of Piezoelectric Energy Harvesting Based on Vibration.” Int. J. Precis. Eng. Manuf., 12 1129–1141. https://doi.org/10.1007/s12541-011-0151-3 (2011)

    Article  Google Scholar 

  49. Takenaka, T, Nagata, H, “Present Status of Non-Lead-Based Piezoelectric Ceramics.” Key Eng. Mater., 157–158 57–64. https://doi.org/10.4028/www.scientific.net/kem.157-158.57 (1999)

    Article  Google Scholar 

  50. Takenaka, T, Nagata, H, “Current Status and Prospects of Lead-Free Piezoelectric Ceramics.” J. Eur. Ceram. Soc., 25 2693–2700. https://doi.org/10.1016/j.jeurceramsoc.2005.03.125 (2005)

    Article  CAS  Google Scholar 

  51. Kholkin, AL, Pertsev, NA, Goltsev, AV, “Piezoelectricity and Crystal Symmetry.” Piezoelect. Acoust. Mater. Transducer Appl.https://doi.org/10.1007/978-0-387-76540-2_2 (2008)

    Article  Google Scholar 

  52. Da-Zhi, SUN, Met-Yu, Z, Hao-Su, LUO, Cui-Feng, QU, Qi-Hua, JIN, Chun-Hua, YAO, Sheng-Wei, LIN, Zhi-Wen, YIN, “Piezoelectric and Dielectric Properties of PMNT Ceramic Materials.” J. Inorg. Mater., 5 939–942 (2000)

    Google Scholar 

  53. Safaei, M, Sodano, HA, Anton, SR, “A Review of Energy Harvesting Using Piezoelectric Materials: State-of-the-art a Decade Later (2008–2018).” Smart. Mater. Struct., 28 113001. https://doi.org/10.1088/1361-665x/ab36e4 (2019)

    Article  CAS  Google Scholar 

  54. Liu, W, Ren, X, “Large Piezoelectric Effect in Pb-Free Ceramics.” Phys. Rev. Lett., 103 1–4. https://doi.org/10.1103/PhysRevLett.103.257602 (2009)

    Article  CAS  Google Scholar 

  55. Deluca, M, Stoleriu, L, Curecheriu, LP, Horchidan, N, Ianculescu, AC, Galassi, C, Mitoseriu, L, “High-Field Dielectric Properties and Raman Spectroscopic Investigation of the Ferroelectric-to-Relaxor Crossover in BaSnxTi1−xO3 Ceramics.” J. Appl. Phys.https://doi.org/10.1063/13703672 (2012)

    Article  Google Scholar 

  56. Zhu, LF, Zhang, BP, Zhao, L, Li, JF, “High Piezoelectricity of BaTiO3-CaTiO3-BaSnO3 Lead-Free Ceramics.” J. Mater. Chem. C, 2 4764–4771. https://doi.org/10.1039/c4tc00155a (2014)

    Article  CAS  Google Scholar 

  57. Mahesh, MLV, Bhanu Prasad, VV, James, AR, “Enhanced Dielectric and Ferroelectric Properties of Lead-Free Ba(Zr 0.15Ti0.85)O3 Ceramics Compacted by Cold Isostatic Pressing.” J. Alloys Compd., 611 43–49. https://doi.org/10.1016/j.jallcom.2014.05.098 (2014)

    Article  CAS  Google Scholar 

  58. Xue, P, Wu, H, Lu, Y, Zhu, X, “Recent Progress in Molten Salt Synthesis of Low-Dimensional Perovskite Oxide Nanostructures, Structural Characterization, Properties, and Functional Applications: A Review.” J. Mater. Sci. Technol., 34 914–930. https://doi.org/10.1016/j.jmst.2017.10.005 (2018)

    Article  CAS  Google Scholar 

  59. Wang, X, Wu, J, Xiao, D, Zhu, J, Cheng, X, Zheng, T, Zhang, B, Lou, X, Wang, X, “Giant Piezoelectricity in Potassium-Sodium Niobate Lead-Free Ceramics.” J. Am. Chem. Soc., 136 2905–2910. https://doi.org/10.1021/ja500076h (2014)

    Article  CAS  Google Scholar 

  60. Simões, AZ, Cruz, MP, Ries, A, Longo, E, Varela, JA, Ramesh, R, “Ferroelectric and Piezoelectric Properties of Bismuth Titanate Thin Films Grown on Different Bottom Electrodes by Soft Chemical Solution and Microwave Annealing.” Mater. Res. Bull., 42 975–981. https://doi.org/10.1016/j.materresbull.2006.08.006 (2007)

    Article  CAS  Google Scholar 

  61. Camargo, J, Osinaga, S, Febbo, M, Machado, SP, Rubio-Marcos, F, Ramajo, L, Castro, M, “Piezoelectric and Structural Properties of Bismuth Sodium Potassium Titanate Lead-Free Ceramics for Energy Harvesting.” J. Mater. Sci. Mater. Electron, 32 19117–19125. https://doi.org/10.1007/s10854-021-06430-3 (2021)

    Article  CAS  Google Scholar 

  62. Fancher, CM, Blendell, JE, Bowman, KJ, “Poling Effect on d33 in Textured Bi0.5Na0.5TiO3-Based Materials.” Scr. Mater., 68 443–446. https://doi.org/10.1016/j.scriptamat.2012.10.047 (2013)

    Article  CAS  Google Scholar 

  63. Choi, M, Murillo, G, Hwang, S, Kim, JW, Jung, JH, Chen, CY, Lee, M, “Mechanical and Electrical Characterization of PVDF-ZnO Hybrid Structure for Application to Nanogenerator.” Nano Energy, 33 462–468. https://doi.org/10.1016/j.nanoen.2017.01.062 (2017)

    Article  CAS  Google Scholar 

  64. Modi, G, “Zinc Oxide Tetrapod: A Morphology with Multifunctional Applications.” Adv. Nat. Sci. Nanosci. Nanotechnol., 6 33002. https://doi.org/10.1088/2043-6262/6/3/033002 (2015)

    Article  CAS  Google Scholar 

  65. Roduner, E, “Size Matters: Why Nanomaterials are Different.” Chem. Soc. Rev., 35 583–592. https://doi.org/10.1039/b502142c (2006)

    Article  CAS  Google Scholar 

  66. Newton, MC, Warburton, PA, “ZnO Tetrapod Nanocrystals ZnO has Received Considerable Attention Because of Its Unique Optical.” Mater. Today, 10 50–54 (2007)

    Article  CAS  Google Scholar 

  67. Priya, S, Song, HC, Zhou, Y, Varghese, R, Chopra, A, Kim, SG, Kanno, I, Wu, L, Ha, DS, Ryu, J, Polcawich, RG, “A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits.” Energy Harvest Syst., 4 3–39. https://doi.org/10.1515/ehs-2016-0028 (2019)

    Article  Google Scholar 

  68. Liu, H, Zhong, J, Lee, C, Lee, SW, Lin, L, “A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications.” Appl. Phys. Rev.https://doi.org/10.1063/15074184 (2018)

    Article  Google Scholar 

  69. Anton, SR, Sodano, HA, “A Review of Power Harvesting Using Piezoelectric Materials (2003–2006).” Smart Mater. Struct.https://doi.org/10.1088/0964-1726/16/3/R01 (2007)

    Article  Google Scholar 

  70. Ounaies, Z, Harrison, JS, “Piezoelectric Polymers.” USA (2001)

  71. Kawai, H, “The Piezoelectricity of Poly(vinylidene fluoride).” Jpn. J. Appl. Phys., 8 975–976. https://doi.org/10.1143/jjap.8.975 (1969)

    Article  CAS  Google Scholar 

  72. Huan, Y, Liu, Y, Yang, Y, “Simultaneous Stretching and Static Electric Field Poling of Poly(Vinylidene Fluoride-Hexafluoropropylene) Copolymer Films.” Polym. Eng. Sci., 47 1630–1633. https://doi.org/10.1002/pen.20843 (2007)

    Article  CAS  Google Scholar 

  73. Künstler, W, Wegener, M, Seiß, M, Gerhard-Multhaupt, R, “Preparation and Assessment of Piezo- and Pyroelectric Poly (Vinylidene Fluoride-Hexafluoropropylene) Copolymer Films.” Appl. Phys. A, 73 641–645. https://doi.org/10.1007/s003390100991 (2001)

    Article  Google Scholar 

  74. Martins, P, Lopes, AC, Lanceros-Mendez, S, “Electroactive Phases of Poly(Vinylidene Fluoride): Determination, Processing and Applications.” Prog. Polym. Sci., 39 683–706. https://doi.org/10.1016/j.progpolymsci.2013.07.006 (2014)

    Article  CAS  Google Scholar 

  75. Hillenbrand, J, Sessler, GM, “Quasistatic and Dynamic Piezoelectric Coefficients of Polymer Foams and Polymer Film Systems.” IEEE Trans. Dielectr. Electr. Insul., 11 72–79. https://doi.org/10.1109/TDEI.2004.1266319 (2004)

    Article  Google Scholar 

  76. Sessler, GM, West, JE, “Self-Biased Condenser Microphone with High Capacitance.” J. Acoust. Soc. Am., 34 1787–1788 (1962)

    Article  Google Scholar 

  77. Heikkinen, LM, Panula, HE, Olkkonen, H, Nevalainen, T, Helminen, HJ, “Electromechanical Film Sensor Device for Dynamic Force Recordings from Canine Limbs.” Scand J. Lab. Anim. Sci.https://doi.org/10.23675/sjlasv24i2809 (1997)

    Article  Google Scholar 

  78. D’Ambrogio, G, Zahhaf, O, Bordet, M, Le, MQ, Della Schiava, N, Liang, R, Cottinet, PJ, Capsal, JF, “Structuring BaTiO3/PDMS Nanocomposite via Dielectrophoresis for Fractional Flow Reserve Measurement.” Adv. Eng. Mater.https://doi.org/10.1002/adem.202100341 (2021)

    Article  Google Scholar 

  79. Ye, S, Cheng, C, Chen, X, Chen, X, Shao, J, Zhang, J, Hu, H, Tian, H, Li, X, Ma, L, Jia, W, “High-Performance Piezoelectric Nanogenerator Based on Microstructured P(VDF-TrFE)/BNNTs Composite for Energy Harvesting and Radiation Protection in Space.” Nano Energy, 60 701–714. https://doi.org/10.1016/j.nanoen.2019.03.096 (2019)

    Article  CAS  Google Scholar 

  80. Fu, J, Hou, Y, Gao, X, Zheng, M, Zhu, M, “Highly Durable Piezoelectric Energy Harvester Based on a PVDF Flexible Nanocomposite Filled with Oriented BaTi2O5 Nanorods with High Power Density.” Nano Energy, 52 391–401. https://doi.org/10.1016/j.nanoen.2018.08.006 (2018)

    Article  CAS  Google Scholar 

  81. Newnham, RE, Skinner, DP, Cross, LE, “Connectivity and Piezoelectric-Pyroelectric Composites.” Mater. Res. Bull., 13 525–536. https://doi.org/10.1016/0025-5408(78)90161-7 (1978)

    Article  CAS  Google Scholar 

  82. Gururaja, TR, “Piezoelectric Transducers for Medical Ultrasonic Imaging.” In: ISAF’92: Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics. IEEE, pp 259–265 (1992)

  83. Schlaberg, HI, Duffy, JS, “Piezoelectric Polymer Composite Arrays for Ultrasonic Medical Imaging Applications.” Sens. Actuators A Phys., 44 111–117. https://doi.org/10.1016/0924-4247(94)00791-8 (1994)

    Article  CAS  Google Scholar 

  84. Jain, A, Prasanna, KJ, Sharma, AK, Jain, A, Rashmi, PN, “Dielectric and Piezoelectric Properties of PVDF/PZT Composites: A Review.” Polym. Eng. Sci., 55 1589–1616. https://doi.org/10.1002/pen.24088 (2015)

    Article  CAS  Google Scholar 

  85. Greeshma, T, Balaji, R, Jayakumar, S, “PVDF Phase Formation and Its Influence on Electrical and Structural Properties of PZT-PVDF Composites.” Ferroelectr. Lett. Sect, 40 41–55. https://doi.org/10.1080/07315171.2013.814460 (2013)

    Article  CAS  Google Scholar 

  86. Chowdhury, AR, Jaksik, J, Hussain, I, Longoria, R, Faruque, O, Cesano, F, Scarano, D, Parsons, J, Uddin, MJ, “Multicomponent Nanostructured Materials and Interfaces for Efficient Piezoelectricity.” Nano-Struct. Nano-Objects, 17 148–184. https://doi.org/10.1016/j.nanoso.2018.12.002 (2019)

    Article  CAS  Google Scholar 

  87. Zhang, X, He, Q, Gu, H, Wei, S, Guo, Z, “Polyaniline Stabilized Barium Titanate Nanoparticles Reinforced Epoxy Nanocomposites with High Dielectric Permittivity and Reduced Flammability.” J Mater. Chem. C, 1 2886–2899. https://doi.org/10.1039/c3tc30129j (2013)

    Article  CAS  Google Scholar 

  88. Yang, X, Li, J, Lei, Y, “The Preparation and Dielectric Properties of BT/PANI/PVDF Composite.” Adv. Mater. Res., 668 17–20. https://doi.org/10.4028/www.scientific.net/AMR.668.17 (2013)

    Article  CAS  Google Scholar 

  89. Patil, R, Ashwin, A, Radhakrishnan, S, “Novel Polyaniline/PVDF/BaTiO3 Hybrid Composites with High piezo-Sensitivity.” Sens. Actuators A Phys., 138 361–365. https://doi.org/10.1016/j.sna.2007.05.025 (2007)

    Article  CAS  Google Scholar 

  90. Peng, H, Yan, B, Jiang, M, Liu, B, Gu, Y, Yao, G, Zhang, Y, Ye, L, Bai, X, Chen, S, “A Coral-like Polyaniline/Barium Titanate Nanocomposite Electrode with Double Electric Polarization for Electrochromic Energy Storage Applications.” J. Mater. Chem. A, 9 1669–1677. https://doi.org/10.1039/d0ta08263e (2021)

    Article  CAS  Google Scholar 

  91. Francisco, L, Langiano, C, Manoel, J, Cordeiro, M, Solteira, I, “Thermal and Mechanical Properties of PVDF/PANI Blends.” Mater. Res., 13 465–470 (2010)

    Article  Google Scholar 

  92. Sousa, EA, Deniz, WDS, Arlindo, EPS, Sakamoto, WK, Fuzari, GC, “PVDF-PAni Blend: A Free-Standing Film with Variable Electrical Resistance.” Polym. Bull., 74 1483–1492. https://doi.org/10.1007/s00289-016-1785-1 (2017)

    Article  CAS  Google Scholar 

  93. Tabhane, GH, Giripunje, SM, Kondawar, SB, “Fabrication and Dielectric Performance of RGO-PANI Reinforced PVDF/BaTiO3 Composite for Energy Harvesting.” Synth. Met., 279 116845. https://doi.org/10.1016/j.synthmet.2021.116845 (2021)

    Article  CAS  Google Scholar 

  94. Beeby, SP, Tudor, MJ, White, NM, “Energy Harvesting Vibration Sources for Microsystems Applications.” Meas. Sci. Technol.https://doi.org/10.1088/0957-0233/17/12/R01 (2006)

    Article  Google Scholar 

  95. Jagadish, C, Pearton, SJ, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing Properties and Applications. Elsevier, Armsterdam (2011)

    Google Scholar 

  96. Coleman, VA, Jagadish, C, Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier, Armsterdam, pp. 1–5 (2006)

    Book  Google Scholar 

  97. Tamvakos, D, Lepadatu, S, Antohe, V-A, Tamvakos, A, Weaver, PM, Piraux, L, Cain, MG, Pullini, D, “Piezoelectric Properties of Template-free Electrochemically Grown ZnO Nanorod Arrays.” Appl. Surf. Sci., 356 1214–1220. https://doi.org/10.1016/j.apsusc.2015.08.187 (2015)

    Article  CAS  Google Scholar 

  98. Varada Rajulu, KC, Tilak, B, Sambasiva Rao, K, “Impedance Spectroscopy Study of BNKLT Polycrystalline Ceramic.” Appl. Phys. A, 106 533–543 (2012)

    Article  Google Scholar 

  99. Martins, P, Nunes, JS, Hungerford, G, Miranda, D, Ferreira, A, Sencadas, V, Lanceros-Méndez, S, “Local Variation of the Dielectric Properties of Poly(Vinylidene Fluoride) During the α- to β-Phase Transformation.” Phys. Lett. A, 373 177–180. https://doi.org/10.1016/j.physleta.2008.11.026 (2009)

    Article  CAS  Google Scholar 

  100. Koga, K, Ohigashi, H, “Piezoelectricity and Related Properties of Vinylidene Fluoride and Trifluoroethylene Copolymers.” J. Appl. Phys., 59 2142–2150. https://doi.org/10.1063/1.336351 (1986)

    Article  CAS  Google Scholar 

  101. Nalwa, HS, Ferroelectric Polymers: Chemistry: Physics, and Applications. CRC Press, Cambridge (1995)

    Book  Google Scholar 

  102. Gomes, J, Serrado Nunes, J, Sencadas, V, Lanceros-Mendez, S, “Influence of the β-Phase Content and Degree of Crystallinity on the Piezo- and Ferroelectric Properties of Poly(Vinylidene Fluoride).” Smart Mater. Struct., 19 65010. https://doi.org/10.1088/0964-1726/19/6/065010 (2010)

    Article  CAS  Google Scholar 

  103. Gonzalez, JL, Rubio, A, Moll, F, “A Prospect on the Use of Piezoelectric Effect to Supply Power to Wearable Electronic Devices.” In: Fourth Int. Conf. Mater. Eng. Resources, ICMR. pp 202–206 (2001)

  104. Lebrun, L, Guyomar, D, Guiffard, B, Cottinet, P-J, Putson, C, “The Characterisation of the Harvesting Capabilities of an Electrostrictive Polymer Composite.” Sens. Actuators A, 153 251–257. https://doi.org/10.1016/j.sna.2009.05.009 (2009)

    Article  CAS  Google Scholar 

  105. Fukada, E, “New Piezoelectric Polymers.” Jpn. J. Appl. Phys.https://doi.org/10.1143/JJAP.37.2775 (1998)

    Article  Google Scholar 

  106. Morimoto, M, Koshiba, Y, Misaki, M, Ishida, K, “Thermal Stability of Piezoelectric Properties and Infrared Sensor Performance of Spin-Coated Polyurea Thin Films.” Appl. Phys. Expr.https://doi.org/10.7567/APEX.8.101501 (2015)

    Article  Google Scholar 

  107. Park, C, Ounaies, Z, Wise, KE, Harrison, JS, “In Situ Poling and Imidization of Amorphous Piezoelectric Polyimides.” Polymer (Guildf), 45 5417–5425 (2004)

    Article  CAS  Google Scholar 

  108. Frübing, P, Kremmer, A, Gerhard-Multhaupt, R, Spanoudaki, A, Pissis, P, “Relaxation Processes at the Glass Transition in Polyamide 11: From Rigidity to Viscoelasticity.” J. Chem. Phys.https://doi.org/10.1063/12360266 (2006)

    Article  Google Scholar 

  109. Takase, Y, Lee, JW, Scheinbeim, JI, Newman, BA, “High-Temperature Characteristics of Nylon-11 and Nylon-7 Piezoelectrics.” Macromolecules, 24 6644–6652. https://doi.org/10.1021/ma00025a014 (1991)

    Article  CAS  Google Scholar 

  110. Ternovskii, AP, Alekhin, VP, Shorshorov, MK, Khrushchov, MM, Skvortsov, VN, “Micromechanical Testing of Materials by Depression.” Zavod Lab., 39 (10) 1242–1247 (1973)

    CAS  Google Scholar 

  111. Newey, D, Wilkins, MA, Pollock, HM, “An Ultra-Low-Load Penetration Hardness Tester.” J. Phys. E, 15 119–122. https://doi.org/10.1088/0022-3735/15/1/023 (1982)

    Article  CAS  Google Scholar 

  112. Oliver, WC, Pharr, GM, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments.” J. Mater. Res., 7 1564–1583 (1992)

    Article  CAS  Google Scholar 

  113. Oliver, WC, Pharr, GM, “Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology.” J. Mater. Res., 19 3–20 (2004)

    Article  CAS  Google Scholar 

  114. Osho, S, Wu, N, Aramfard, M, Deng, C, Ojo, OA, “Fabrication and Calibration of a Piezoelectric Nanocomposite Paint.” Smart Mater. Struct.https://doi.org/10.1088/1361-665X/aaa797 (2018)

    Article  Google Scholar 

  115. Freeman, A, Łukomski, M, Beltran, V, “Mechanical Characterization of a Cross-Sectional TiO2 Acrylic-Based Paint by Nano-Indentation.” J. Am. Inst. Conserv., 59 27–39. https://doi.org/10.1080/01971360.2019.1603062 (2020)

    Article  Google Scholar 

  116. Wu, Y, Wu, J, Wang, S, Feng, X, Chen, H, Tang, Q, Zhang, H, “Measurement of Mechanical Properties of Multilayer Waterborne Coatings on Wood by Nanoindentation.” Holzforschung, 73 871–877. https://doi.org/10.1515/hf-2018-0193 (2019)

    Article  CAS  Google Scholar 

  117. Das, S, Biswal, AK, Parida, K, Choudhary, RNP, Roy, A, “Electrical and Mechanical Behavior of PMN-PT/CNT Based Polymer Composite Film for Energy Harvesting.” Appl. Surf. Sci., 428 356–363. https://doi.org/10.1016/j.apsusc.2017.09.077 (2018)

    Article  CAS  Google Scholar 

  118. Kholkin, AL, Kalinin, SV, Roelofs, A, Gruverman, A, “Review of Ferroelectric Domain Imaging by Piezoresponse Force Microscopy.” In: Scanning Probe Microscopy, pp. 173–214. Springer, Berlin (2007)

    Chapter  Google Scholar 

  119. Kholkin, AL, Kiselev, D, Heredia, A, “Piezoresponse Force Microscopy.” In: Encycl. Mater. Sci. Technol., pp. 1–8. Elservier, Armsterdam (2011)

    Google Scholar 

  120. Han, DH, Kang, LH, “Piezoelectric Properties of Paint Sensor According to Piezoelectric Materials.” Funct. Compos. Struct.https://doi.org/10.1088/2631-6331/ab90e1 (2020)

    Article  Google Scholar 

  121. Market Report and Forecast 2022-2027. https://www.expertmarketresearch.com/reports/paints-and-coatings-market

  122. Lambourne, R, “Paint Composition and Applications—A General Introduction.” In: Paint and Surface Coatings: Theory and Practice. 1–18 (1999)

  123. Hannert, KA, Safari, A, Newnham, RE, Runt, J, “Thin Film 0–3 Polymer/Piezoelectric Ceramic Composites: Piezoelectric Paints.” Ferroelectrics, 100 255–260. https://doi.org/10.1080/00150198908007920 (1989)

    Article  Google Scholar 

  124. Costa, JGL, Rodrigues, PHF, Paim, LL, Sanches, AO, Malmonge, JA, Da Silva, MJ, “1–3 Castor Oil-Based Polyurethane/PZT Piezoelectric Composite as a Possible Candidate for Structural Health Monitoring.” Mater. Res., 23 1–9. https://doi.org/10.1590/1980-5373-MR-2020-0205 (2020)

    Article  Google Scholar 

  125. Babu, I, de With, G, “Highly Flexible Piezoelectric 0–3 PZT-PDMS Composites with High Filler Content.” Compos. Sci. Technol., 91 91–97. https://doi.org/10.1016/j.compscitech.2013.11.027 (2014)

    Article  CAS  Google Scholar 

  126. White, JR, De Poumeyrol, B, Hale, JM, Stephenson, R, “Piezoelectric Paint: Ceramic-Polymer Composites for Vibration Sensors.” J. Mater. Sci., 39 3105–3114. https://doi.org/10.1023/B:JMSC.0000025839.98785.b9 (2004)

    Article  CAS  Google Scholar 

  127. Abdullah, AM, Sadaf, MUK, Tasnim, F, Vasquez, H, Lozano, K, Uddin, MJ, “KNN Based Piezo-Triboelectric Lead-Free Hybrid Energy Films.” Nano Energy, 86 106133. https://doi.org/10.1016/j.nanoen.2021.106133 (2021)

    Article  CAS  Google Scholar 

  128. Sa-Gong, G, Safari, A, Jang, SJ, Newnham, RE, “Poling Flexible Piezoelectric Composites.” Ferroelectr. Lett. Sect., 5 131–142. https://doi.org/10.1080/07315178608202472 (1986)

    Article  CAS  Google Scholar 

  129. Sakamoto, WK, Edmilson De Souza, Das-Gupta, DK, 柔性压电复合材料的电活性(半导体-Pzt-Pu) . 4:201–204 (2001)

  130. Waller, D, Iqbal, T, Safari, A, “Poling of Lead Zirconate Titanate Ceramics and Flexible Piezoelectric Composites by the Corona Discharge Technique.” J. Am. Ceram Soc., 72 322–324. https://doi.org/10.1111/j.1151-2916.1989.tb06125.x (1989)

    Article  CAS  Google Scholar 

  131. Yun, J, Park, J, Ryoo, M, Kitchamsetti, N, Goh, TS, Kim, D, “Piezo-Triboelectric Hybridized Nanogenerator Embedding MXene Based Bifunctional Conductive Filler in Polymer Matrix for Boosting Electrical Power.” Nano Energy, 105 108018. https://doi.org/10.1016/j.nanoen.2022.108018 (2023)

    Article  CAS  Google Scholar 

  132. Lambourne, R, Strivens, TA, Paint and Surface Coatings: Theory and Practice. Elsevier, Armsterdam (1999)

    Book  Google Scholar 

  133. Goldschmidt, A, Streitberger, H-J, “BASF Handbook on Basics of Coating Technology.” William Andrew (2003)

  134. Zhou, X, Parida, K, Halevi, O, Liu, Y, Xiong, J, Magdassi, S, Lee, PS, “All 3D-Printed Stretchable Piezoelectric Nanogenerator with Non-Protruding Kirigami Structure.” Nano Energy, 72 104676. https://doi.org/10.1016/j.nanoen.2020.104676 (2020)

    Article  CAS  Google Scholar 

  135. Jabbari, M, Bulatova, R, Tok, AIY, Bahl, CRH, Mitsoulis, E, Hattel, JH, “Ceramic Tape Casting: A Review of Current Methods and Trends with Emphasis on Rheological Behaviour and Flow Analysis.” Mater. Sci. Eng. B, 212 39–61. https://doi.org/10.1016/j.mseb.2016.07.011 (2016)

    Article  CAS  Google Scholar 

  136. Nguyen, CH, Hanke, U, Halvorsen, E, “Actuation of Piezoelectric Layered Beams with d31 and d33 Coupling.” IEEE Trans. Ultrason Ferroelectr Freq. Control, 65 815–827. https://doi.org/10.1109/TUFFC.2018.2808239 (2018)

    Article  Google Scholar 

  137. Caudle, BT, Flowers, GT, Baginski, ME, Wentworth, SM, Rao, SM, “Recent Developments in Radar Absorbing Paints and the Zinc Oxide Tetrapod Whisker.” In: 2009 IEEE Int. Conf. Microwaves, Commun. Antennas Electron Syst. COMCAS 2009, pp 5–8. https://doi.org/10.1109/COMCAS.2009.5386029 (2009)

  138. Egusa, S, Iwasawa, N, “Thickness Dependence of the Poling and Current-Voltage Characteristics of Paint Films Made up of Lead Zirconate Titanate Ceramic Powder and Epoxy Resin.” J. Appl. Phys., 78 6060–6070. https://doi.org/10.1063/1.360546 (1995)

    Article  CAS  Google Scholar 

  139. Kowalski, AJ, Watson, S, Wall, K, “Dispersion of Nanoparticle Clusters by Ball Milling.” J. Dispers. Sci. Technol., 29 600–604. https://doi.org/10.1080/01932690701729609 (2008)

    Article  CAS  Google Scholar 

  140. Klein, KA, Safari, A, Newnham, RE, Runt, JP, “Composite Piezoelectric Paints.” (1986)

  141. Hale, JM, Tuck, J, “A Novel Strain Sensor Using Piezoelectric Paint.” Proc. Inst. Mech. Eng. C, 213 613–621 (1999)

    Article  Google Scholar 

  142. Pavlidou, S, Papaspyrides, C, “A Review on Polymer-Layered Silicate Nanocomposites.” Prog. Polym. Sci., 33 1119–1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008 (2008)

    Article  CAS  Google Scholar 

  143. Wang, Q, Cao, ZP, Kuwano, H, “Metal-Based Piezoelectric Energy Harvesters by Direct Deposition of PZT Thick Films on Stainless Steel.” Micro Nano Lett., 7 1158–1161. https://doi.org/10.1049/mnl.2012.0581 (2012)

    Article  CAS  Google Scholar 

  144. Howatt, GN, Breckenridge, RG, Brownlow, JM, “Fabrication of Thin Ceramic Sheets for Capacitors.” J. Am. Ceram. Soc., 30 237–242. https://doi.org/10.1111/j.1151-2916.1947.tb18889.x (1947)

    Article  CAS  Google Scholar 

  145. Hotza, D, Greil, P, “Review: Aqueous Tape Casting of Ceramic Powders.” Mater. Sci. Eng. A, 202 206–217. https://doi.org/10.1016/0921-5093(95)09785-6 (1995)

    Article  Google Scholar 

  146. Mikeska, KR, Cannon, WR, “Non-Aqueous Dispersion Properties of Pure Barium Titanate for Tape Casting.” Coll. Surf., 29 305–321. https://doi.org/10.1016/0166-6622(88)80125-2 (1988)

    Article  CAS  Google Scholar 

  147. Chartier, T, Bruneau, A, “Aqueous Tape Casting of Alumina Substrates.” J. Eur. Ceram. Soc., 12 243–247. https://doi.org/10.1016/0955-2219(93)90098-C (1993)

    Article  CAS  Google Scholar 

  148. Claaßen, T, Claussen, N, “Processing of Ceramic-Matrix/Platelet Composites by Tape Casting and Lamination.” J. Eur. Ceram. Soc., 10 263–271. https://doi.org/10.1016/0955-2219(92)90040-K (1992)

    Article  Google Scholar 

  149. Schwartz, B, “Review of Multilayer Ceramics for Microelectronic Packaging.” J. Phys. Chem. Solids, 45 1051–1068. https://doi.org/10.1016/0022-3697(84)90048-9 (1984)

    Article  CAS  Google Scholar 

  150. Lindqvist, K, Lidén, E, “Preparation of Alumina Membranes by Tape Casting and Dip Coating.” J. Eur. Ceram. Soc., 17 359–366. https://doi.org/10.1016/s0955-2219(96)00107-0 (1997)

    Article  CAS  Google Scholar 

  151. Ren, L, Luo, X, Zhou, H, “The Tape Casting Process for Manufacturing Low-Temperature Co-fired Ceramic Green Sheets: A Review.” J. Am. Ceram Soc., 101 3874–3889. https://doi.org/10.1111/jace.15694 (2018)

    Article  CAS  Google Scholar 

  152. Ponnamma, D, Chamakh, MM, Deshmukh, K, Basheer Ahamed, M, Erturk, A, Sharma, P, Al-Maadeed, MA-A, “Ceramic-Based Polymer Nanocomposites as Piezoelectric Materials.” In: Smart Polymer Nanocomposites, pp. 77–93. Springer, Berlin (2017)

    Chapter  Google Scholar 

  153. Dias, CJ, Das-Gupta, DK, “Poling Behaviour of Ceramic/Polymer Ferroelectric Composites.” Ferroelectrics, 157 405–410. https://doi.org/10.1080/00150199408229540 (1994)

    Article  Google Scholar 

  154. Von Hippel, AR, Dielectrics and Waves. (1954)

  155. Lee, M, Halliyal, A, Newnham, RE, “Poling of Coprecipitated Lead Titanate-Epoxy 0–3 Piezoelectric Composites.” J. Am. Ceram. Soc., 72 986–990 (1989)

    Article  CAS  Google Scholar 

  156. Giacometti, JA, Fedosov, S, Costa, MM, “Corona Charging of Polymers: Recent Advances on Constant Current Charging.” Brazilian J. Phys., 29 269–279 (1999)

    Article  CAS  Google Scholar 

  157. Fedosov, SN, Sergeeva, AE, Revenyuk, TA, Butenko, AF, “Application of Corona Discharge for Poling Ferroelectric and Nonlinear Optical Polymers.” arXiv Prepr arXiv07050177. (2007)

  158. Jones, GD, Assink, RA, Dargaville, TR, Chaplya, PM, Clough, RL, Elliott, JM, Martin, JW, Mowery, DM, Celina, MC, “Characterization, Performance and Optimization of PVDF as a Piezoelectric Film for Advanced Space Mirror Concepts.” Citeseer. (2005)

  159. Khanbareh, H, Hegde, M, Van Der Zwaag, S, Groen, WA, “Advanced Processing of Lead Titanate-Polyimide Composites for High Temperature Piezoelectric Sensing.” 2015 Jt IEEE Int. Symp. Appl. Ferroelectr. Int. Symp. Integr. Funct. Piezoelectric Force Microsc. Work ISAF/ISIF/PFM, 265–267. https://doi.org/10.1109/ISAF.2015.7172722 (2015)

  160. Egusa, S, Iwasawa, N, “Piezoelectric Paints as One Approach to Smart Structural Materials with Health-Monitoring Capabilities.” Smart Mater. Struct., 7 438–445. https://doi.org/10.1088/0964-1726/7/4/002 (1998)

    Article  CAS  Google Scholar 

  161. Glynne-Jones, P, Beeby, SP, White, NM, “A Method to Determine the Ageing Rate of Thick-film PZT Layers.” Meas. Sci. Technol., 12 663–670. https://doi.org/10.1088/0957-0233/12/6/302 (2001)

    Article  CAS  Google Scholar 

  162. Genenko, YA, Glaum, J, Hoffmann, MJ, Albe, K, “Mechanisms of Aging and Fatigue in Ferroelectrics.” Mater. Sci. Eng. B, 192 52–82. https://doi.org/10.1016/j.mseb.2014.10.003 (2015)

    Article  CAS  Google Scholar 

  163. Khaliq, J, Deutz, DB, Frescas, JAC, Vollenberg, P, Hoeks, T, van der Zwaag, S, Groen, P, “Effect of the Piezoelectric Ceramic Filler Dielectric Constant on the Piezoelectric Properties of PZT-Epoxy Composites.” Ceram. Int., 43 2774–2779. https://doi.org/10.1016/j.ceramint.2016.11.108 (2017)

    Article  CAS  Google Scholar 

  164. Jones, DJ, Prasad, SE, Wallace, JB, “Piezoelectric Materials and Their Applications.” Key Eng. Mater., 122–124 71–144 (1996)

    Article  CAS  Google Scholar 

  165. Barzegar, A, Bagheri, R, Karimi Taheri, A, “Aging of Piezoelectric Composite Transducers.” J. Appl. Phys., 89 2322–2326 (2001)

    Article  CAS  Google Scholar 

  166. Egusa, S, Iwasawa, N, “Application of Piezoelectric Paints to Damage Detection in Structural Materials.” J. Reinf. Plast. Compos., 15 806–817. https://doi.org/10.1177/073168449601500804 (1996)

    Article  CAS  Google Scholar 

  167. Du, G, Li, W, Fu, M, Chen, N, Fu, X, Wan, Y, Yan, M, “Synthesis of Tetrapod-Shaped ZnO Whiskers and Microrods in One Crucible by Thermal Evaporation of Zn/C Mixtures.” Trans. Nonferr. Met. Soc. China, 18 155–161. https://doi.org/10.1016/S1003-6326(08)60028-X (2008)

    Article  CAS  Google Scholar 

  168. Li, X, Kang, Q, Zhou, C, “Research on Absorbing Properties of the Concrete Shielding Material at 3 mm Wave Bands.” pp 536–540. (2003)

  169. Zhou, Z, Chu, L, Hu, S, “Microwave Absorption Behaviors of Tetra-Needle-Like ZnO Whiskers.” Mater. Sci. Eng. B, 126 93–96. https://doi.org/10.1016/j.mseb.2005.09.009 (2006)

    Article  CAS  Google Scholar 

  170. Biscaro, RS, Nohara, EL, Peixoto, GG, Faez, R, Rezende, MC, “Performance Evaluation of Conducting Polymer Paints as Radar Absorbing Materials (RAM).” In: SBMO/IEEE MTT-S Int Microw Optoelectron Conf Proc, 355–358. https://doi.org/10.1109/imoc.2003.1244885 (2003)

  171. Yuan, X, Wang, H, Hou, G, Jiang, L, Yao, C, “Nano α-Fe/epoxy Resin Composite Absorber Coatings Fabricated by Thermal Spraying Technique.” Magn IEEE Trans, 42 2115–2120. https://doi.org/10.1109/TMAG.2006.880686 (2006)

    Article  CAS  Google Scholar 

  172. Cheeke, JDN, Wang, Z, “Acoustic Wave Gas Sensors.” Sens. Actuators B, 59 146–153. https://doi.org/10.1016/S0925-4005(99)00212-9 (1999)

    Article  CAS  Google Scholar 

  173. Hoummady, M, Campitelli, A, Wlodarski, W, “Acoustic Wave Sensors: Design, Sensing Mechanisms and Applications.” Smart Mater. Struct., 6 647. https://doi.org/10.1088/0964-1726/6/6/001 (1999)

    Article  Google Scholar 

  174. Devkota, J, Ohodnicki, PR, Greve, DW, “SAW Sensors for Chemical Vapors and Gases.” Sensors (Switzerland), 17 13–15. https://doi.org/10.3390/s17040801 (2017)

    Article  CAS  Google Scholar 

  175. Berring, J, Sielmann, C, Stoeber, B, Walus, K, “VOC Detection Using an All Polymer Flexural Plate Wave Sensor.” 2013 Transducers Eurosensors XXVII 17th Int Conf Solid-State Sensors, Actuators Microsystems, Transducers Eurosensors, 2013:274–277. https://doi.org/10.1109/Transducers.2013.6626755 (2013)

  176. Sriphan, S, Charoonsuk, T, Maluangnont, T, Vittayakorn, N, “High-Performance Hybridized Composited-Based Piezoelectric and Triboelectric Nanogenerators Based on BaTiO3/PDMS Composite Film Modified with Ti0.8O2 Nanosheets and Silver Nanopowders Cofillers.” ACS Appl. Energy Mater., 2 3840–3850. https://doi.org/10.1021/acsaem.9b00513 (2019)

    Article  CAS  Google Scholar 

  177. Lee, YH, Kim, DH, Kim, Y, Shabbir, I, Li, M, Yoo, KH, Kim, TW, “Significant Enhancement of the Output Voltage of Piezoelectric/Triboelectric Hybrid Nanogenerators Based on MAPbBr3 Single Crystals Embedded into a Porous PVDF Matrix.” Nano Energy, 102 107676. https://doi.org/10.1016/j.nanoen.2022.107676 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidya, K., Roy, A. & Das, K. A review of polymer-matrix piezoelectric composite coatings for energy harvesting and smart sensors. J Coat Technol Res 21, 55–85 (2024). https://doi.org/10.1007/s11998-023-00819-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00819-x

Keywords

Navigation