Skip to main content
Log in

Mechanical-induced functionalization of graphene with sodium carboxymethyl cellulose toward enhancing anticorrosion performance of waterborne epoxy coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Non-covalent modification of graphene is prepared by sodium carboxymethyl cellulose via ball milling. Adsorption and thermogravimetric analyzer (TG) indicate interaction of graphene with sodium carboxymethyl cellulose. Particle size and zeta potential results show sodium carboxymethyl cellulose with high DS play more role in assisting stabilization of graphene dispersion. The adsorption of sodium carboxymethyl cellulose onto graphene is inhibited under acidic conditions and the dispersion stability deteriorates sharply. Under neutral and alkaline conditions, the dispersions maintain stable. Embedding a small percentage of well-dispersed graphene nanosheets (CGr1.5%) in waterborne epoxy coating has remarkably improved anticorrosion performance, which is attributed to the synergistic effects of barrier properties of well-dispersed graphene nanosheets and CMC in the epoxy matrix. Open circuit potential (OCP), Tafel and electrochemical impedance spectroscopy (EIS) analysis confirmed that the corrosion rate exhibited by composite coatings with 1.5 wt% graphene is lower than that of neat epoxy coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhong, F, He, Y, Wang, P, Chena, C, Lin, Y, Wu, Y, Chen, J, “Self-Assembled Graphene Oxide-Graphene Hybrids for Enhancing the Corrosion Resistance of Waterborne Epoxy Coating.” Appl. Surf. Sci., 488 801–812 (2019)

    Article  CAS  Google Scholar 

  2. Parviz, D, Das, S, Tanvir Ahmed, HS, Irin, F, Bhattacharia, S, Green, MJ, “Dispersions of Non-Covalently Functionalized Graphene with Minimal Stabilizer.” ACS Nano, 6 (10) 8857–8867 (2012)

    Article  CAS  Google Scholar 

  3. Sarsam, WS, Amiri, A, Kazi, SN, Badarudin, A, “Stability and Thermophysical Properties of Non-Covalently Functionalized Graphene Nanoplatelets Nanofluids.” Energy Convers. Manag., 116 101–111 (2016)

    Article  CAS  Google Scholar 

  4. Cui, M, Ren, S, Chen, J, Liu, S, Zhang, G, Zhao, H, Wang, L, Xue, Q, “Anticorrosive Performance of Waterborne Epoxy Coatings Containing Water-Dispersible Hexagonal Boron Nitride (h-BN) Nanosheets.” Appl. Surf. Sci., 397 77–86 (2017)

    Article  CAS  Google Scholar 

  5. Zhang, M, Zhao, X, Jia, H, Xing, H, Zhang, H, Wang, X, Liu, C, “Anticorrosion Properties of Modified Basalt Powder/Epoxy Resin Coating.” J. Coat. Technol. Res., 19 (5) 1409–1420 (2022)

    Article  CAS  Google Scholar 

  6. Ahangari, M, Johar, MH, Saremi, M, “Hydroxyapatite-Carboxymethyl Cellulose-Graphene Composite Coating Development on AZ31 Magnesium Alloy: Corrosion Behavior and Mechanical Properties.” Ceram. Int., 47 3529–3539 (2021)

    Article  CAS  Google Scholar 

  7. Li, C, Zhang, C, He, Y, Li, H, Zhao, Y, Li, Z, Sun, D, Yin, X, “Benzotriazole Corrosion Inhibitor Loaded Nanocontainer Based on g-C3N4 and Hollow Polyaniline Spheres Towards Enhancing Anticorrosion Performance of Waterborne Epoxy Coatings.” Prog. Org. Coat., 174 107276 (2023)

    Article  CAS  Google Scholar 

  8. Zhang, J, Zhao, J, Wang, J, Tabish, M, Zhang, J, “Enhancing the Corrosion Resistance of Waterborne Epoxy Coating by Fumarate Intercalated LDHs Prepared by High Gravity Technology.” Prog. Org. Coat., 174 107271 (2023)

    Article  CAS  Google Scholar 

  9. Jagtap, A, Wagle, PG, Jagtiani, E, More, AP, “Layered Double Hydroxides (LDHs) for Coating Applications.” J. Coat. Technol. Res., 19 (4) 1009–1032 (2022)

    Article  CAS  Google Scholar 

  10. Liu, S, Gu, L, Zhao, H, Chen, J, Yu, H, “Corrosion Resistance of Graphene-Reinforced Waterborne Epoxy Coatings.” J. Mater. Sci. Technol., 32 425–431 (2016)

    Article  CAS  Google Scholar 

  11. Chilkoor, G, Sarder, R, Islam, J, ArunKumar, KE, Ratnayake, I, Star, S, Jasthi, BK, Sereda, G, Koratkar, N, Meyyappan, M, Gadhamshetty, V, “Maleic Anhydride-Functionalized Graphene Nanofillers Render Epoxy Coatings Highly Resistant to Corrosion And Microbial Attack.” Carbon, 159 586–597 (2020)

    Article  CAS  Google Scholar 

  12. Loh, KP, Bao, Q, Ang, PK, Yang, J, “The Chemistry of Graphene.” J. Mater. Chem., 20 2277–2289 (2010)

    Article  CAS  Google Scholar 

  13. Johnson, DW, Dobson, BP, Coleman, KS, “A Manufacturing Perspective on Graphene Dispersions.” Curr. Opin. Colloid Interface Sci., 20 367–382 (2015)

    Article  CAS  Google Scholar 

  14. Georgakilas, V, Otyepka, M, Bourlinos, AB, Chandra, V, Kim, N, Kemp, KC, Hobza, P, Zboril, R, Kim, KS, “Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications.” Chem. Rev., 112 6156–6214 (2012)

    Article  CAS  Google Scholar 

  15. Qiu, S, Liu, G, Li, W, Zhao, H, Wang, L, “Noncovalent Exfoliation of Graphene and Its Multifunctional Composite Coating with Enhanced Anticorrosion and Tribological Performance.” J. Alloy. Compd., 747 60–70 (2018)

    Article  CAS  Google Scholar 

  16. Gu, L, Liu, S, Zhao, HC, Yu, HB, “Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Carboxylated Oligoanilines and Their Anticorrosion Coatings.” ACS Appl. Mater. Interfaces, 7 17641–17648 (2015)

    Article  CAS  Google Scholar 

  17. Verma, C, Olasunkanmi, LO, Akpan, ED, Quraishi, MA, Dagdag, O, El Gouri, M, Sherif, ESM, Ebenso, EE, “Epoxy Resins as Anticorrosive Polymeric Materials: A Review.” React. Functi. Polym., 156 104741 (2020)

    Article  CAS  Google Scholar 

  18. Lee, JH, Kang, SG, Lee, SG, “Mechanism of Adhesion of the Diglycidyl Ether of Bisphenol A (DGEBA) to the Fe(100) Surface.” Compos. Sci. Technol., 126 9–16 (2016)

    Article  CAS  Google Scholar 

  19. Yang, Q, Pan, XJ, Huang, F, et al. “Fabrication of High-Concentration and Stable Aqueous Suspensions of Graphene Nanosheets by Noncovalent Functionalization with Lignin and Cellulose Derivatives.” J. Phys. Chem. C, 114 (9) 3811–3816 (2010)

    Article  CAS  Google Scholar 

  20. Chen, Y, Li, J, Yang, W, Gao, S, Cao, R, “Enhanced Corrosion Protective Performance of Graphene Oxide-based Composite Films on AZ31 Magnesium Alloys in 3.5 wt% NaCl Solution.” Appl. Surf. Sci., 493 1224–1235 (2019)

    Article  CAS  Google Scholar 

  21. Mousavi, SM, Afra, E, Tajvidi, M, Bousfield, D, Dehghani-Firouzabadi, M, “Cellulose Nanofiber/Carboxymethyl Cellulose Blends as an Efficient Coating to Improve the Structure and Barrier Properties of Paperboard.” Cellulose, 24 3001–3014 (2017)

    Article  Google Scholar 

  22. Rao, Z, Ge, H, Liu, L, Zhu, C, Min, L, Liu, M, Fan, L, Li, D, “Carboxymethyl Cellulose Modified Graphene Oxide as pH-Sensitive Drug Delivery System.” Int. J. Biol. Macromol., 107 1184–1192 (2018)

    Article  CAS  Google Scholar 

  23. Li, M, Lu, X, Jiang, J, Gao, L, Gao, J, Jiang, D, “Green Modification of Graphene Dispersion with High Nanosheet Content, Good Dispersibility, and Long Storage Stability.” RSC Adv., 12 6037 (2022)

    Article  CAS  Google Scholar 

  24. Xu, H, Hu, H, Wang, H, Li, Y, Li, Y, “Corrosion Resistance of Graphene/Waterborne Epoxy Composite Coatings in CO2-Saturated NaCl Solution.” R. Soc. Open Sci., 7 191943 (2020)

    Article  CAS  Google Scholar 

  25. Rahman, MS, Hasan, MS, Nitai, AS, Nam, S, Karmakar, AK, Ahsan, MS, Shiddiky, MJA, Ahmed, MB, “Recent Developments of Carboxymethyl Cellulose.” Polymers, 13 (8) 1345 (2021)

    Article  CAS  Google Scholar 

  26. Mazinani S, Ajji A, Dubois C, "Rheological/Morphological Study of PS/CNT Nanocomposite Electrospun Fibers." The XV International Congress on Rheology: The Society of Rheology 80th Annual Meeting, 2008

  27. Basu, S, Gupta, PCD, “Studies on Polyelectrolytes. I. Sodium Carboxymethylcellulose.” J. Colloid Sci., 7 53–70 (1952)

    Article  CAS  Google Scholar 

  28. Nazaria, B, Ranjbara, Z, Hashjina, RR, Moghaddama, AR, Momenc, G, Ranjbar, B, “Dispersing Graphene in Aqueous Media: Investigating the Effect of Different Surfactants.” Colloids Surf., 582 123870 (2019)

    Article  Google Scholar 

  29. Fadla, AM, Abdoua, MI, Al-Elaab, SA, Hamzac, MA, Sadeek, SA, “Evaluation the Anti-Corrosion Behavior, Impact Resistance, Acids and Alkali Immovability of Nonylphenol Ethoxylate/TiO2 Hybrid Epoxy Nanocomposite Coating Applied on the Carbon Steel Surface.” Prog. Org. Coat., 136 105263 (2019)

    Article  Google Scholar 

  30. Wetzel, B, Haupert, F, Qiu Zhang, M, “Epoxy Nanocomposites with High Mechanical and Tribological Performance.” Compos. Sci. Technol., 63 2055–2067 (2003)

    Article  CAS  Google Scholar 

  31. Ponnuchamy, V, Esakkimuthu, ES, “Density Functional Theory Study of Lignin, Carboxymethylcellulose and Unsustainable Binders with Graphene for Electrodes in Lithium-Ion Batteries.” Appl. Surf. Sci., 573 151461 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongling Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Yi, H. Mechanical-induced functionalization of graphene with sodium carboxymethyl cellulose toward enhancing anticorrosion performance of waterborne epoxy coatings. J Coat Technol Res 20, 2069–2080 (2023). https://doi.org/10.1007/s11998-023-00802-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00802-6

Keywords

Navigation