Skip to main content
Log in

Robust superhydrophilic antifogging coatings by a facile sol–gel method

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, a simple one-step sol–gel process was applied to synthesize SiO2-based superhydrophilic antifogging coatings on glass substrates. In this process, Si(OH)4 sol was first prepared and then SiO2 nanoparticles were added to the sol to form coating solutions. The influence of both the Si(OH)4 sol and SiO2 nanoparticle contents on the coating properties was investigated. Their contents have significant effects on the coatings’ properties, including hydrophilicity and surface morphology. The water contact angle of the optimum coating is about 3.4°. Besides, as revealed by the steam test and freeze test, the optimum superhydrophilic coating demonstrates good antifogging properties and an adequate level of mechanical strength as well. Compared to other techniques used to fabricate antifogging coating on glass substrate, the sol–gel-based process developed in this study requires no expensive equipment, and the processing time is largely shortened. Thus, such technique has great potential applications in the field of coating industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gallaway, M, Aimino, J, Scheiman, M, “The Effect of Protective Sports Eyewear on Peripheral Visual Field and a Peripheral Visual Performance Task.” J. Am. Optom. Assoc., 57 (4) 304–310 (1986)

    CAS  Google Scholar 

  2. Crebolder, JM, Sloan, RB, “Determining the Effects of Eyewear Fogging on Visual Task Performance.” Appl. Ergon., 35 (4) 371–381. https://doi.org/10.1016/j.apergo.2004.02.005 (2004)

    Article  Google Scholar 

  3. Awanou, CN, Hazoume, R-P, “Study of Natural Condensation of Atmospheric Humidity.” Renew. Energy, 10 (1) 19–34. https://doi.org/10.1016/0960-1481(96)00022-5 (1997)

    Article  Google Scholar 

  4. Abdul-Fattah, AM, Oeschger, R, Roehl, H, Dauphin, IB, Worgull, M, Kallmeyer, G, Mahler, H-C, “Investigating Factors Leading to Fogging of Glass Vials in Lyophilized Drug Products.” Eur. J. Pharm. Biopharm., 85 (2) 314–326. https://doi.org/10.1016/j.ejpb.2013.06.007 (2013)

    Article  CAS  Google Scholar 

  5. Leriche, M, Weigand, B, Roessner, W, Reister, H, “Numerical Investigation of Droplets Condensation on a Windshield: Prediction of Fogging Behavior.” SAE Int.https://doi.org/10.4271/2015-01-0360 (2015)

    Article  Google Scholar 

  6. Sun, Z, Liao, T, Liu, K, Jiang, L, Kim, JH, Dou, SX, “Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures.” Small, 10 (15) 3001–3006. https://doi.org/10.1002/smll.201400516 (2014)

    Article  CAS  Google Scholar 

  7. Manning, TG, Papa, N, Perera, M, McGrath, S, Christidis, D, Khan, M, O’Beirne, R, Campbell, N, Bolton, D, Lawrentschuk, N, “Laparoscopic lens Fogging: Solving a Common Surgical Problem in Standard and Robotic Laparoscopes via a Scientific Model.” Surg. Endosc., 32 (3) 1600–1606. https://doi.org/10.1007/s00464-017-5772-x (2018)

    Article  Google Scholar 

  8. Jordan, DJ, Pritchard-Jones, R, “Tying a Surgical Mask to Prevent Fogging.” Ann. R. Coll. Surg. Engl., 96 (2) 165–165. https://doi.org/10.1308/rcsann.2014.96.2.165 (2014)

    Article  CAS  Google Scholar 

  9. Davis, LI, Dage, GA, Hoeschele, JD, “Conditions for Incipient Windshield Fogging and Anti-Fog Strategy for Automatic Climate Control.” SAE Trans., 110 537–545 (2001)

    Google Scholar 

  10. Kitada, M, Asano, H, Kataoka, T, Hirayama, S, Maruta, Y, “Numerical Analysis of Transient Defogging Pattern on an Automobile.” SAE Int.https://doi.org/10.4271/2002-01-0223 (2002)

    Article  Google Scholar 

  11. Mouterde, T, Lehoucq, G, Xavier, S, Checco, A, Black, CT, Rahman, A, Midavaine, T, Clanet, C, Quéré, D, “Antifogging Abilities of Model Nanotextures.” Nat. Mater., 16 (6) 658–663. https://doi.org/10.1038/nmat4868 (2017)

    Article  CAS  Google Scholar 

  12. Tzianou, M, Thomopoulos, G, Vourdas, N, Ellinas, K, Gogolides, E, “Tailoring Wetting Properties at Extremes States to Obtain Antifogging Functionality.” Adv. Funct. Mater., 31 (1) 2006687. https://doi.org/10.1002/adfm.202006687 (2021)

    Article  CAS  Google Scholar 

  13. Lee, H, Alcaraz, ML, Rubner, MF, Cohen, RE, “Zwitter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities.” ACS Nano, 7 (3) 2172–2185. https://doi.org/10.1021/nn3057966 (2013)

    Article  CAS  Google Scholar 

  14. Durán, IR, Laroche, G, “Current Trends, Challenges, and Perspectives of Anti-Fogging Technology: Surface and Material Design, Fabrication Strategies, and Beyond.” Prog. Mater. Sci., 99 106–186. https://doi.org/10.1016/j.pmatsci.2018.09.001 (2019)

    Article  Google Scholar 

  15. Qi, H, Zhang, C, Guo, H, Zheng, W, Yang, J, Zhou, X, Zhang, L, “Bioinspired Multifunctional Protein Coating for Antifogging, Self-Cleaning, and Antimicrobial Properties.” ACS Appl. Mater. Interfaces, 11 (27) 24504–24511. https://doi.org/10.1021/acsami.9b03522 (2019)

    Article  CAS  Google Scholar 

  16. Yuan, J, Yan, S, Zhang, X, “Superhydrophilic Antifogging Broadband Antireflective Coatings with Worm-Like Nanostructures Fabricated by One Dip-Coating Method and Calcination.” Appl. Surf. Sci., 506 144795. https://doi.org/10.1016/j.apsusc.2019.144795 (2020)

    Article  CAS  Google Scholar 

  17. Xi, R, Wang, Y, Wang, X, Lv, J, Li, X, Li, T, Zhang, X, Du, X, “Ultrafine Nano-TiO2 Loaded on Dendritic Porous Silica Nanoparticles for Robust Transparent Antifogging Self-Cleaning Nanocoatings.” Ceram. Int., 46 (15) 23651–23661. https://doi.org/10.1016/j.ceramint.2020.06.138 (2020)

    Article  CAS  Google Scholar 

  18. Wang, W, Lu, P, Fan, Y, Tian, L, Niu, S, Zhao, J, Ren, L, “A Facile Antifogging/Frost-Resistant Coating with Self-Healing Ability.” Chem. Eng. J., 378 122173. https://doi.org/10.1016/j.cej.2019.122173 (2019)

    Article  CAS  Google Scholar 

  19. Han, Z, Feng, X, Guo, Z, Niu, S, Ren, L, “Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges.” Adv. Mater., 30 (13) 1704652. https://doi.org/10.1002/adma.201704652 (2018)

    Article  CAS  Google Scholar 

  20. Li, Y, Bai, Q, Yao, C, Zhang, P, Shen, R, Liu, H, Lu, L, Jiang, Y, Yuan, X, Miao, X, Han, W, “Long-Lasting Antifogging Mechanism for Large-Aperture Optical Surface in Low-Pressure Air Plasma In-Situ Treated.” Appl. Surf. Sci., 581 152358. https://doi.org/10.1016/j.apsusc.2021.152358 (2022)

    Article  CAS  Google Scholar 

  21. Ferrara, MC, Pilloni, L, Mazzarelli, S, Tapfer, L, “Hydrophilic and Optical Properties of Nanostructured Titania Prepared By Sol-Gel Dip Coating.” J. Phys. D Appl. Phys., 43 (9) 095301. https://doi.org/10.1088/0022-3727/43/9/095301 (2010)

    Article  CAS  Google Scholar 

  22. Rico, V, Romero, P, Hueso, JL, Espinós, JP, González-Elipe, AR, “Wetting Angles and Photocatalytic Activities of Illuminated TiO2 Thin Films.” Catal. Today, 143 (3–4) 347–354. https://doi.org/10.1016/j.cattod.2008.09.037 (2009)

    Article  CAS  Google Scholar 

  23. Du, X, Xing, Y, Zhou, M, Li, X, Huang, H, Meng, X-M, Wen, Y, Zhang, X, “Broadband Antireflective Superhydrophilic Antifogging Nano-Coatings Based on Three-Layer System.” Microporous Mesoporous Mater., 255 84–93. https://doi.org/10.1016/j.micromeso.2017.07.017 (2018)

    Article  CAS  Google Scholar 

  24. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994. https://doi.org/10.1021/ie50320a024 (1936)

    Article  CAS  Google Scholar 

  25. Vogler, EA, “Structure and Reactivity of Water at Biomaterial Surfaces.” Adv. Colloid Interface Sci., 74 (1) 69–117. https://doi.org/10.1016/S0001-8686(97)00040-7 (1998)

    Article  CAS  Google Scholar 

  26. Çağlar, A, Yıldırım, M, Cengiz, U, Kaya, İ, “Superhydrophobic-Electrochromic PEDOT/PFHP Bilayer Surfaces.” Thin Solid Films, 619 187–194. https://doi.org/10.1016/j.tsf.2016.10.070 (2016)

    Article  CAS  Google Scholar 

  27. Li, S, Huang, J, Chen, Z, Chen, G, Lai, Y, “A Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications.” J. Mater. Chem. A, 5 (1) 31–55. https://doi.org/10.1039/C6TA07984A (2017)

    Article  CAS  Google Scholar 

  28. Garlisi, C, Palmisano, G, “Radiation-Free Superhydrophilic and Antifogging Properties of e-Beam Evaporated TiO2 Films on Glass.” Appl. Surf. Sci., 420 83–93. https://doi.org/10.1016/j.apsusc.2017.05.077 (2017)

    Article  CAS  Google Scholar 

  29. Chen, J, Zhang, L, Zeng, Z, Wang, G, Liu, G, Zhao, W, Ren, T, Xue, Q, “Facile Fabrication of Antifogging Antireflective, and Self-Cleaning Transparent Silica Thin Coatings.” Colloids Surf. A Physicochem. Eng. Asp., 509 149–157. https://doi.org/10.1016/j.colsurfa.2016.08.037 (2016)

    Article  CAS  Google Scholar 

  30. Domke, M, Sonderegger, G, Kostal, E, Matylitsky, V, Stroj, S, “Transparent Laser-Structured Glasses with Superhydrophilic Properties for Anti-Fogging Applications.” Appl. Phys. A, 125 (10) 1–10. https://doi.org/10.1007/s00339-019-2953-6 (2019)

    Article  CAS  Google Scholar 

  31. Xiong, J, Das, SN, Kar, JP, Choi, J-H, Myoung, J-M, “A Multifunctional Nanoporous Layer Created on Glass Through a Simple Alkali Corrosion Process.” J. Mater. Chem., 20 (45) 10246–10252. https://doi.org/10.1039/C0JM01695K (2010)

    Article  CAS  Google Scholar 

  32. Aghaei, R, Eshaghi, A, Aghaei, AA, “Durable Transparent Super-Hydrophilic Hollow SiO2-SiO2 Nanocomposite Thin Film.” Mater. Chem. Phys., 219 347–360. https://doi.org/10.1016/j.matchemphys.2018.08.039 (2018)

    Article  CAS  Google Scholar 

  33. Kaya, AST, Cengiz, U, “Fabrication and Application of Superhydrophilic Antifog Surface by Sol-Gel Method.” Prog. Org. Coat., 126 75–82. https://doi.org/10.1016/j.porgcoat.2018.10.021 (2019)

    Article  CAS  Google Scholar 

  34. Bayer, IS, “On the Durability and Wear Resistance of Transparent Superhydrophobic Coatings.” Coatings, 7 (1) 12. https://doi.org/10.3390/coatings7010012 (2017)

    Article  CAS  Google Scholar 

  35. Varshney, P, Mohapatra, SS, Kumar, A, “Superhydrophobic Coatings for Aluminium Surfaces Synthesized by Chemical Etching Process.” Int. J. Smart Nano Mater., 7 (4) 248–264. https://doi.org/10.1080/19475411.2016.1272502 (2016)

    Article  Google Scholar 

  36. Satapathy, M, Varshney, P, Nanda, D, Mohapatra, SS, Behera, A, Kumar, A, “Fabrication of Durable Porous and Non-Porous Superhydrophobic LLDPE/SiO2 Nanoparticles Coatings with Excellent Self-Cleaning Property.” Surf. Coat. Technol., 341 31–39. https://doi.org/10.1016/j.surfcoat.2017.07.025 (2018)

    Article  CAS  Google Scholar 

  37. Ke, C, Zhang, C, Wu, X, Jiang, Y, “Highly Transparent and Robust Superhydrophobic Coatings Fabricated via a Facile Sol-Gel Process.” Thin Solid Films, 723 138583. https://doi.org/10.1016/j.tsf.2021.138583 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents (2017-16), Dongguan, Guangdong Province, P. R. China; Youth Fund Project (Regional Collaboration Program) of Guangdong Provincial Foundation for Basic and Applied Basic Research (2019A1515110537) and Dongguan Social Development Science Project (Key Project 20211800905472).

Author information

Authors and Affiliations

Authors

Contributions

CK contributes in data curation, investigation, formal analysis, and the writing and editing of the manuscript. CZ contributes in data curation, formal analysis, and investigation for this study. YJ contributes in conceptualization, funding acquisition, project administration, resources, supervision, review, and editing in this study.

Corresponding author

Correspondence to Yongdong Jiang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Written informed consent was obtained from all authors for publication of this manuscript and any accompanying images.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, C., Zhang, C., Chen, H. et al. Robust superhydrophilic antifogging coatings by a facile sol–gel method. J Coat Technol Res 20, 1343–1352 (2023). https://doi.org/10.1007/s11998-022-00748-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00748-1

Keywords

Navigation