Skip to main content
Log in

Constructing robust and magnetic PU sponges modified with Fe3O4/GO nanohybrids for efficient oil/water separation

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Metal oxides, due to their low cost, environmental friendliness and wide sources, have attracted great attention. We chose iron oxide/graphene oxide (Fe3O4/GO) nanohybrids to modify a PU sponge to increase the surface roughness of the sponge without damaging its inherent structural properties. The composite was then treated with octadecane thiol to reduce the surface energy and produce a superhydrophobic and oleophilic absorption material with a water contact angle of 157°. From the absorption experiment with simulated oily water (including diesel oil, lubricating oil, rapeseed oil, chloroform, N,N-dimethyl formamide, tetrahydrofuran, ethanol and acetone), it was found that the Fe3O4/GO-modified PU sponge could absorb up to 80–170 times its own weight while showing outstanding recyclability achieved by squeeze/absorption cycles. Moreover, the composite absorption material exhibited weak magnetic properties, suggesting its recycling practicability. These results provide a quick and simple strategy to deal with oil spills and chemical leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, G, Li, A, Li, K, Zhao, Y, Ma, Y, He, Q, “A fluorine-free superhydrophobic silicone rubber surface has excellent self-cleaning and bouncing properties.” J. Colloid Interface Sci., 588 175–183. https://doi.org/10.1016/j.jcis.2020.12.059 (2021)

    Article  CAS  Google Scholar 

  2. Qing, Y, Long, C, An, K, Hu, C, Liu, C, “Sandpaper as template for a robust superhydrophobic surface with self-cleaning and anti-snow/icing performances.” J. Colloid Interface Sci., 548 224–232. https://doi.org/10.1016/j.jcis.2019.04.040 (2019)

    Article  CAS  Google Scholar 

  3. Fu, H, Liu, S, Yi, L, Jiang, H, Li, C, Chen, Y, “A durable and self-cleaning superhydrophobic surface prepared by precipitating flower-like crystals on a glass-ceramic surface.” Materials, 13 (7) 1642. https://doi.org/10.3390/ma13071642 (2020)

    Article  CAS  Google Scholar 

  4. Yang, T, Wang, M, Wang, X, Di, X, Wang, C, Li, Y, “Fabrication of a waterborne, superhydrophobic, self-cleaning, highly transparent and stable surface.” Soft Matter, 16 (15) 3678–3685. https://doi.org/10.1039/C9SM02473E (2020)

    Article  CAS  Google Scholar 

  5. Geyer, F, D’Acunzi, M, Sharifi-Aghili, A, Saal, A, Gao, N, Kaltbeitzel, A, Sloot, TF, Berger, R, Butt, HJ, Vollmer, D, “When and how self-cleaning of superhydrophobic surfaces works.” Sci. Adv., 6 eaaw272. https://doi.org/10.1126/sciadv.aaw9727 (2020)

    Article  CAS  Google Scholar 

  6. Jiang, G, Chen, L, Zhang, S, Huang, H, “Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties.” ACS Appl. Mater. Interfaces, 10 (42) 36505–36511. https://doi.org/10.1021/acsami.8b11201 (2018)

    Article  CAS  Google Scholar 

  7. Han, Y, Liu, Z, Pan, W, Sun, J, “Electrochemically etched superhydrophobic surface on aeronautic steel with anti-icing, self-cleaning and durability property.” J. Phys: Conf. Ser., 2021 012212. https://doi.org/10.1088/1742-6596/1948/1/012212 (1948)

    Article  CAS  Google Scholar 

  8. Zhang, S, Huang, J, Cheng, Y, Yang, H, Chen, Z, Lai, Y, “Bioinspired surfaces with super wettability for anti-icing and Ice-phobic application: concept, mechanism, and design.” Small., 13 (48) 1701867. https://doi.org/10.1002/smll.201701867 (2017)

    Article  CAS  Google Scholar 

  9. Li, Y, Li, B, Zhao, X, Tian, N, Zhang, J, “Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing.” ACS Appl. Mater. Interfaces, 10 (45) 39391–39399. https://doi.org/10.1021/acsami.8b15061 (2018)

    Article  CAS  Google Scholar 

  10. Song, J, Li, Y, Xu, W, Liu, H, Lu, Y, “Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion.” J. Colloid Interface Sci., 541 86–92. https://doi.org/10.1016/j.jcis.2019.01.014 (2019)

    Article  CAS  Google Scholar 

  11. Syed, JA, Tang, S, Meng, X, “Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application.” Sci. Rep., 7 (1) 4403. https://doi.org/10.1038/s41598-017-04651-3 (2017)

    Article  CAS  Google Scholar 

  12. Yuan, J, Li, P, Yuan, R, Mao, D, “Fabrication and corrosion resistance of a superhydrophobic Ni-P/Ni3(NO3)2(OH)4 multilayer protective coating on magnesium alloy.” ACS Omega, 5 (38) 24247–24255. https://doi.org/10.1021/acsomega.0c02196 (2020)

    Article  CAS  Google Scholar 

  13. Chen, X, Wang, P, Zhang, D, “Designing a superhydrophobic surface for enhanced atmospheric corrosion resistance based on coalescence-induced droplet jumping behavior.” ACS Appl. Mater. Interfaces, 11 (41) 38276–38284. https://doi.org/10.1021/acsami.9b11415 (2019)

    Article  CAS  Google Scholar 

  14. Tong, W, Karthik, N, Li, J, Wang, N, Xiong, D, “Superhydrophobic surface with stepwise multilayered micro- and nanostructure and an investigation of its corrosion resistance.” Langmuir, 35 (47) 15078–15085. https://doi.org/10.1021/acs.langmuir.9b02910 (2019)

    Article  CAS  Google Scholar 

  15. Sam, EK, Liu, J, Lv, X, “Surface engineering materials of superhydrophobic sponges for oil/water separation: a review.” Ind. Eng. Chem. Res., 60 (6) 2353–2364. https://doi.org/10.1021/acs.iecr.0c05906 (2021)

    Article  CAS  Google Scholar 

  16. Sam, EK, Ge, Y, Liu, J, Lv, X, “Robust, self-healing, superhydrophobic fabric for efficient oil/water emulsion separation.” Colloids Surf. A, 625 126860. https://doi.org/10.1016/j.colsurfa.2021.126860 (2021)

    Article  CAS  Google Scholar 

  17. Kang, H, Zhao, B, Li, L, Zhang, J, “Durable superhydrophobic glass wool@polydopamine @PDMS for highly efficient oil/water separation.” J. Colloid Interface Sci., 544 257–265. https://doi.org/10.1016/j.jcis.2019.02.096 (2019)

    Article  CAS  Google Scholar 

  18. Du, B, Chen, F, Luo, R, Li, H, Zhou, S, Liu, S, Hu, J, “Superhydrophobic surfaces with pH-Induced switchable wettability for oil-water separation.” ACS Omega, 4 (15) 16508–16516. https://doi.org/10.1021/acsomega.9b02150 (2019)

    Article  CAS  Google Scholar 

  19. Zulfiqar, U, Thomas, AG, Matthews, A, Lewis, DJ, “Surface engineering of ceramic nanomaterials for separation of oil/water mixtures.” Front. Chem., 8 578. https://doi.org/10.3389/fchem.2020.00578 (2020)

    Article  CAS  Google Scholar 

  20. Liu, Y, Xue, J, Luo, D, Wang, H, Gong, X, Han, Z, Ren, L, “One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.” J. Colloid Interface Sci., 491 313–320. https://doi.org/10.1016/j.jcis.2016.12.022 (2017)

    Article  CAS  Google Scholar 

  21. Tuo, Y, Zhang, H, Rong, W, Jiang, S, Chen, W, Liu, X, “Drag reduction of anisotropic superhydrophobic surfaces prepared by laser etching.” Langmuir, 35 (34) 11016–11022. https://doi.org/10.1021/acs.langmuir.9b01040 (2019)

    Article  CAS  Google Scholar 

  22. Xue, CH, Guo, XJ, Ma, JZ, Jia, ST, “Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization.” ACS Appl. Mater. Interfaces, 7 (15) 8251–8259. https://doi.org/10.1021/acsami.5b01426 (2015)

    Article  CAS  Google Scholar 

  23. Abu-Thabit, NY, Uwaezuoke, OJ, Abu Elella, MH, “Superhydrophobic nanohybrid sponges for separation of oil/water mixtures.” Chemosphere, 294 133644. https://doi.org/10.1016/j.chemosphere.2022.133644 (2022)

    Article  CAS  Google Scholar 

  24. Kwon, Y, Patankar, N, Choi, J, Lee, J, “Design of surface hierarchy for extreme hydrophobicity.” Langmuir, 25 (11) 6129–6136. https://doi.org/10.1021/la803249t (2009)

    Article  CAS  Google Scholar 

  25. Cha, SC, Her, EK, Ko, TJ, Kim, SJ, Roh, H, Lee, KR, Moon, MW, “Thermal stability of superhydrophobic, nanostructured surfaces.” J. Colloid Interface Sci., 391 152–157. https://doi.org/10.1016/j.jcis.2012.09.052 (2013)

    Article  CAS  Google Scholar 

  26. Shirtcliffe, NJ, McHale, G, Newton, MI, Perry, CC, “Intrinsically superhydrophobic organosilica sol–gel foams.” Langmuir, 19 5626–5631. https://doi.org/10.1021/la034204f (2003)

    Article  CAS  Google Scholar 

  27. Zhu, Y, Zhang, J, Zheng, Y, Huang, Z, Feng, L, Jiang, L, “Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments.” Adv. Funct. Mater., 16 (4) 568–574. https://doi.org/10.1002/adfm.200500624 (2006)

    Article  CAS  Google Scholar 

  28. Li, J, Shi, L, Chen, Y, Zhang, Y, Guo, Z, Su, B.-l, Liu, W, “Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation.” J. Mater. Chem., 22 (19). https://doi.org/10.1039/c2jm30931a (2012)

  29. Selim, MS, El-Safty, SA, Abbas, A, Shenashen, MA, “Facile design of graphene oxide-ZnO nanorod-based ternary nanocomposite as a superhydrophobic and corrosion-barrier coating.” Colloids Surf. A, 611 1125793. https://doi.org/10.1016/j.colsurfa.2020.125793 (2021)

    Article  CAS  Google Scholar 

  30. Bao, X-M, Cui, J-F, Sun, H-X, Liang, W-D, Zhu, Z-Q, An, J, Yang, P, La, PQ, Li, A, “Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles.” Appl. Surf. Sci., 303 473–480. https://doi.org/10.1016/j.apsusc.2014.03.029 (2014)

    Article  CAS  Google Scholar 

  31. Ekanayake, UGM, Dayananda, KEDYT, Rathuwadu, N, Mantilaka, MMMGP, “Fabrication of multifunctional smart polyester fabric via electrochemical deposition of ZnO nano-/microhierarchical structures.” J. Coat. Technol. Res. https://doi.org/10.1007/s11998-021-00606-6 (2022)

    Article  Google Scholar 

  32. Zong, L, Wu, Y, Jiang, B, “The preparation of superhydrophobic photocatalytic fluorosilicone/SiO2–TiO2 coating and its self-cleaning performance.” J. Coat. Technol. Res., 18 1245–1259. https://doi.org/10.1007/s11998-021-00485-x (2021)

    Article  CAS  Google Scholar 

  33. Yang, X, Yang, N, Gong, Z, Peng, F, Jiang, B, Sun, Y, Zhang, L, “The superhydrophobic sponge decorated with Ni–Co double layered oxides with thiol modification for continuous oil/water separation.” Chin. J. Chem. Eng.. https://doi.org/10.1016/j.cjche.2022.03.023 (2022)

    Article  Google Scholar 

  34. Liu, M, Wen, T, Wu, X, Chen, C, Hu, J, Li, J, Wang, X, “Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr (VI) removal.” Dalton Trans., 42 (41) 14710–14717. https://doi.org/10.1039/c3dt50955a (2013)

    Article  CAS  Google Scholar 

  35. Sui, D, Wu, M, Liu, Y, Yang, Y, Zhang, H, Ma, Y, Chen, Y, “High performance Li-ion capacitor fabricated with dual graphene-based materials.” Nanotechnology, 32 (1) 015403. https://doi.org/10.1088/1361-6528/abb9d8 (2021)

    Article  CAS  Google Scholar 

  36. Sui, D, Xu, L, Zhang, H, Sun, Z, Kan, B, Ma, Y, Chen, Y, “A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries.” Carbon, 157 656–662. https://doi.org/10.1016/j.carbon.2019.10.106 (2020)

    Article  CAS  Google Scholar 

  37. An, Z, Kong, S, Zhang, W, Yuan, M, An, Z, Chen, D, “Synthesis and adsorption performance of a hierarchical micro-mesoporous carbon for toluene removal under ambient conditions.” Materials, 13 (3) 13894–13901. https://doi.org/10.3390/ma13030716 (2020)

    Article  CAS  Google Scholar 

  38. Rozi, SKM, Shahabuddin, S, Manan, NSA, Mohamad, S, Kamal, SAA, Rahman, SA, “Palm fatty acid functionalized Fe3O4 nanoparticles as highly selective oil adsorption material.” J. Nanosci. Nanotechnol., 18 (5) 3248–3256. https://doi.org/10.1166/jnn.2018.14699 (2018)

    Article  CAS  Google Scholar 

  39. Shin, Y, Han, KS, Arey, BW, Bonheyo, GT, “Cotton fiber-based sorbents for treating crude oil spills.” ACS Omega, 5 (23) 13894–13901. https://doi.org/10.1021/acsomega.0c01290 (2020)

    Article  CAS  Google Scholar 

  40. Xiao, Z, Zhang, M, Fan, W, Qian, Y, Yang, Z, Xu, B, Kang, Z, Wang, R, Sun, D, “Highly efficient oil/water separation and trace organic contaminants removal based on superhydrophobic conjugated microporous polymer coated devices.” Chem. Eng. J., 326 640–646. https://doi.org/10.1016/j.cej.2017.06.023 (2017)

    Article  CAS  Google Scholar 

  41. Scheverin, N, Fossati, A, Horst, F, Lassalle, V, Jacobo, S, “Magnetic hybrid gels for emulsified oil adsorption: an overview of their potential to solve environmental problems associated to petroleum spills.” Environ. Sci. Pollut. Res. Int., 27 (1) 861–872. https://doi.org/10.1007/s11356-019-06752-0 (2020)

    Article  CAS  Google Scholar 

  42. Korhonen, JT, Kettunen, M, Ras, RH, Ikkala, O, “Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents.” ACS Appl. Mater. Interfaces, 3 (6) 1813–1816. https://doi.org/10.1021/am200475b (2011)

    Article  CAS  Google Scholar 

  43. Zhu, Y, Du, Y, Su, J, Mo, Y, Yu, S, Wang, Z, “Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation.” Sep. Purif. Technol., 275 119130. https://doi.org/10.1016/j.seppur.2021.119130 (2021)

    Article  CAS  Google Scholar 

  44. Lozano-Navarro, JI, Díaz-Zavala, NP, Melo-Banda, JA, Velasco-Santos, C, Paraguay-Delgado, F, Peréz-Sánchez, JF, Domínguez-Esquivel, JM, Suárez-Domínguez, EJ, Sosa-Sevilla, JE, “Chitosan–starch films modified with natural extracts to remove heavy oil from water.” Water, 12 (1) 17. https://doi.org/10.3390/w12010017 (2019)

    Article  CAS  Google Scholar 

  45. Annunciado, TR, Sydenstricker, T, Amico, SC, “Experimental investigation of various vegetable fibers as sorbent materials for oil spills.” Mar Pollut Bull., 50 (11) 1340–1346. https://doi.org/10.1016/j.marpolbul.2005.04.043 (2005)

    Article  CAS  Google Scholar 

  46. Guan, H, Cheng, Z, Wang, X, “Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents.” ACS Nano., 12 (10) 10365–10373. https://doi.org/10.1021/acsnano.8b05763 (2018)

    Article  CAS  Google Scholar 

  47. Duan, B, Gao, H, He, M, Zhang, L, “Hydrophobic modification on surface of chitin sponges for highly effective separation of oil.” ACS Appl. Mater. Interfaces, 6 (22) 19933–19942. https://doi.org/10.1021/am505414y (2014)

    Article  CAS  Google Scholar 

  48. Zhang, Z, Sèbe, G, Rentsch, D, Zimmermann, T, Tingaut, P, “Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water.” Chem. Mater., 26 (8) 2659–2668. https://doi.org/10.1021/cm5004164 (2014)

    Article  CAS  Google Scholar 

  49. Wang, Q, Qin, Y, Xue, C, Yu, H, Li, Y, “Facile fabrication of bubbles-enhanced flexible bioaerogels for efficient and recyclable oil adsorption.” Chem. Eng. J., 402 126240. https://doi.org/10.1016/j.cej.2020.126240 (2020)

    Article  CAS  Google Scholar 

  50. Zhang, H, Lyu, S, Zhou, X, Gu, H, Ma, C, Wang, C, Ding, T, Shao, Q, Liu, H, Guo, Z, “Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption.” J. Colloid Interface Sci., 536 245–251. https://doi.org/10.1016/j.jcis.2018.10.038 (2019)

    Article  CAS  Google Scholar 

  51. Li, Z, Zhong, L, Zhang, T, Qiu, F, Yue, X, Yang, D, “Sustainable, flexible, and superhydrophobic functionalized cellulose aerogel for selective and versatile oil/water separation.” ACS Sustain. Chem. Eng., 7 (11) 9984–9994. https://doi.org/10.1021/acssuschemeng.9b01122 (2019)

    Article  CAS  Google Scholar 

  52. Song, P, Cui, J, Di, J, Liu, D, Xu, M, Tang, B, Zeng, Q, Xiong, J, Wang, C, He, Q, Kang, L, Zhou, J, Duan, R, Chen, B, Guo, S, Liu, F, Shen, J, Liu, Z, “Carbon microtube aerogel derived from kapok fiber: An efficient and recyclable sorbent for oils and organic solvents.” ACS Nano, 14 (1) 595–602. https://doi.org/10.1021/acsnano.9b07063 (2020)

    Article  CAS  Google Scholar 

  53. Shi, L, Chen, K, Du, R, Bachmatiuk, A, Ruemmeli, MH, Xie, K, Huang, Y, Zhang, Y, Liu, Z, “Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation.” J. Am. Chem. Soc., 138 (20) 6360. https://doi.org/10.1021/jacs.6b02262 (2016)

    Article  CAS  Google Scholar 

  54. Chen, J, Shen, X, Pan, Y, Liu, C, Hwang, SY, Xu, Q, Peng, Z, “Synthesis of freestanding amorphous giant carbon tubes with outstanding oil sorption and water oxidation properties.” J. Mater. Chem. A, 6 (9) 3996–4002. https://doi.org/10.1039/c7ta09822g (2018)

    Article  CAS  Google Scholar 

  55. Lü, X, Cui, Z, Wei, W, Xie, J, Jiang, L, Huang, J, Liu, J, “Constructing PU sponge modified with silica/graphene oxide nanohybrids as a ternary sorbent.” Chem Eng. J., 284 478–486. https://doi.org/10.1016/j.cej.2015.09.002 (2016)

    Article  CAS  Google Scholar 

  56. Sun, H, Xu, Z, Gao, C, “Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels.” Adv. Mater., 25 (18) 2554–2560. https://doi.org/10.1002/adma.201204576 (2013)

    Article  CAS  Google Scholar 

  57. Zhao, Y, Hu, C, Hu, Y, Cheng, H, Shi, G, Qu, L, “A versatile, ultralight, nitrogen-doped graphene framework.” Angew. Chem. Int. Ed., 124 11533–11537. https://doi.org/10.1002/ange.201206554 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The research work is funded by the Zhenjiang Key Research and Development Program (GY2021004), the Opening Project of Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology (CJSP2021006), Jiangsu Collaborative Innovation Center for Water Treatment Technology and Materials, and Innovation and Practice fund of Jiangsu University Industrial Center (ZXJG2021072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Liu or Xiaomeng Lv.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, D., Zhang, Y., Cui, Z. et al. Constructing robust and magnetic PU sponges modified with Fe3O4/GO nanohybrids for efficient oil/water separation. J Coat Technol Res 20, 661–670 (2023). https://doi.org/10.1007/s11998-022-00699-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00699-7

Keywords

Navigation