Skip to main content
Log in

Effect of plasma treatment on the tribological and adhesion performance of a polymer coating deposited on different metallic substrates

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Plasma treatment is a technique accepted universally for improving the adhesion of coatings to substrates because of its ease of use, environmental friendliness, and its adaptability. Hence, this research aims to further explore this technique and specifically investigate the effect of air–plasma treatment of different substrates (stainless steel, copper, brass, titanium, and aluminum) on the adhesion and tribological properties of an ultra-high molecular weight polyethylene polymer coating deposited on them. Several characterization techniques such as X-ray photoelectron spectroscopy, water contact angle, and roughness measurements are conducted to evaluate the surfaces before and after air–plasma treatment. Results showed that UHMWPE coating deposited on the plasma-treated stainless steel substrates demonstrated the best adhesion and tribological properties. This was attributed to the improved oxidation effect and the carbon cleaning effect of the plasma treatment on the stainless steel substrates as compared to other substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Basavaraj, E, Ramaraj, B, Lee, JH, Siddaramaiah, "Polyamide 6/Carbon Black/Molybdenum Disulphide Composites: Friction, Wear and Morphological Characteristics.” Mater. Chem. Phys., 138 658–665. https://doi.org/10.1016/j.matchemphys.2012.12.035 (2013)

    Article  CAS  Google Scholar 

  2. Abdul Samad, M, Satyanarayana, N, Sinha, SK, “Effect of Air-Plasma Pre-treatment of Si Substrate on Adhesion Strength and Tribological Properties of a UHMWPE Film.” J. Adhes. Sci. Technol., 24 2557–2570 (2010). https://doi.org/10.1163/016942410X508181.

  3. Harris, AF, Beevers, A, “Effects of Grit-Blasting on Surface Properties for Adhesion.” Int. J. Adhes. Adhesive., 19 445–452. https://doi.org/10.1016/S0143-7496(98)00061-X (1999)

    Article  CAS  Google Scholar 

  4. Žigon, J, Kovač, J, Zaplotnik, R, Saražin, J, Šernek, M, Petrič, M, Dahle, S, “Enhancement of Strength of Adhesive Bond Between Wood and Metal Using Atmospheric Plasma Treatment.” Cellulose, 27 6411–6424. https://doi.org/10.1007/s10570-020-03212-8 (2020)

    Article  CAS  Google Scholar 

  5. Han, MH, Jegal, JP, Park, KW, Choi, JH, Baik, HK, Noh, JH, Song, KM, Lim, YS, “Surface Modification for Adhesion Enhancement of PET-Laminated Steel Using Atmospheric Pressure Plasma.” Surf. Coat. Technol., 201 4948–4952. https://doi.org/10.1016/j.surfcoat.2006.07.156 (2007)

    Article  CAS  Google Scholar 

  6. Kumar, V, Sinha, SK, Agarwal, AK, “Tribological Studies of Dual-Coating (Intermediate Hard with Top Epoxy-Graphene-Base Oil Composite Layers) on Tool Steel in Dry and Lubricated Conditions.” Tribolol. Int., 127 10–23. https://doi.org/10.1016/j.triboint.2018.05.011 (2018)

    Article  CAS  Google Scholar 

  7. Aliyu, IK, Samad, MA, Al-Qutub, A, “Tribological Characterization of a Bearing Coated with UHMWPE/GNPs Nanocomposite Coating.” Surf. Eng., 37 60–69. https://doi.org/10.1080/02670844.2020.1754624 (2021)

    Article  CAS  Google Scholar 

  8. Aliyu, IK, Madhan Kumar, A, Mohammed, AS, “Wear and Corrosion Resistance Performance of UHMWPE/GNPs Nanocomposite Coatings on AA2028 Al Alloys.” Prog. Org. Coat., 151 106072 (2021). https://doi.org/10.1016/j.porgcoat.2020.106072.

  9. Satheesan, B, Mohammed, AS, “Tribological Characterization of Epoxy Hybrid Nanocomposite Coatings Reinforced with Graphene Oxide and Titania.” Wear, 466–467 203560. https://doi.org/10.1016/j.wear.2020.203560 (2021)

    Article  CAS  Google Scholar 

  10. Wang, L, Zhang, B, Li, X, Wang, W, Tian, M, Fan, Z, Zhang, L, “Enhanced Adhesion Property of Aramid Fibers by Polyphenol-Metal Iron Complexation and Silane Grafting.” J. Adhes., 97 346–360. https://doi.org/10.1080/00218464.2019.1666368 (2021)

    Article  CAS  Google Scholar 

  11. Tang, S, Kwon, OJ, Lu, N, Choi, HS, “Surface Characteristics of AISI 304L Stainless Steel After an Atmospheric Pressure Plasma Treatment.” Surf. Coat. Technol., 195 298–306. https://doi.org/10.1016/j.surfcoat.2004.07.071 (2005)

    Article  CAS  Google Scholar 

  12. Loh, JH, “Plasma Surface Modification in Biomedical Applications.” Med. Dev. Technol., 10 24–30. https://doi.org/10.1557/proc-414-43 (1999)

    Article  CAS  Google Scholar 

  13. Tang, S, Lu, N, Myung, SW, Choi, HS, “Enhancement of Adhesion Strength Between Two AISI 316 L Stainless Steel Plates Through Atmospheric Pressure Plasma Treatment.” Surf. Coat. Technol., 200 5220–5228. https://doi.org/10.1016/j.surfcoat.2005.06.020 (2006)

    Article  CAS  Google Scholar 

  14. Misra, NN, Tiwari, BK, Raghavarao, KSMS, Cullen, PJ, “Nonthermal Plasma Inactivation of Food-Borne Pathogens.” Food Eng. Rev., 3 159–170. https://doi.org/10.1007/s12393-011-9041-9 (2011)

    Article  Google Scholar 

  15. Liu, X, Tang, S, Choi, HK, Choi, HS, “Effect of Plasma-Treated Polymer Substrates on Fabricating Surface Microsystems Through LbL Coating.” Macromol. Res., 18 413–420. https://doi.org/10.1007/s13233-010-0506-0 (2010)

    Article  CAS  Google Scholar 

  16. Gururaj, T, Subasri, R, Raju, KRCS, Padmanabham, G, “Effect of Plasma Pretreatment on Adhesion and Mechanical Properties of UV-Curable Coatings on Plastics.” Appl. Surf. Sci., 257 4360–4364. https://doi.org/10.1016/j.apsusc.2010.12.060 (2011)

    Article  CAS  Google Scholar 

  17. Mounder Kouicem, M, Tomasella, E, Bousquet, A, Batisse, N, Monier, G, Robert-Goumet, C, Dubost, L, “An Investigation of Adhesion Mechanisms Between Plasma-Treated PMMA Support and Aluminum Thin Films Deposited by PVD.” Appl. Surf. Sci., 564 150322 (2021). https://doi.org/10.1016/j.apsusc.2021.150322.

  18. Shepa, I, Mudra, E, Pavlinak, D, Antal, V, Bednarcik, J, Mikovic, O, Kovalcikova, A, Dusza, J, “Surface Plasma Treatment of the Electrospun TiO2/PVP Composite Fibers in Different Atmospheres.” Appl. Surf. Sci., 523 146381. https://doi.org/10.1016/j.apsusc.2020.146381 (2020)

    Article  CAS  Google Scholar 

  19. Ghoreishian, SM, Badii, K, Norouzi, M, Malek, K, “Effect of Cold Plasma Pre-Treatment on Photocatalytic Activity of 3D Fabric Loaded with Nano-Photocatalysts: Response Surface Methodology.” Appl. Surf. Sci., 365 252–262. https://doi.org/10.1016/j.apsusc.2015.12.155 (2016)

    Article  CAS  Google Scholar 

  20. Kyzioł, K, Rajczyk, J, Wolski, K, Kyzioł, A, Handke, B, Kaczmarek, Ł, Grzesik, Z, “Dual-Purpose Surface Functionalization of Ti-6Al-7Nb Involving Oxygen Plasma Treatment and Si-DLC or Chitosan-Based Coatings.” Mater. Sci. Eng. C., 121 111848. https://doi.org/10.1016/j.msec.2020.111848 (2021)

    Article  CAS  Google Scholar 

  21. Rauscher, H, Perucca, M, Buyle, G, “Plasma Technology for Hyperfunctional Surfaces.” Wiley. https://doi.org/10.1002/9783527630455 (2010)

    Article  Google Scholar 

  22. D’Angelo, D, “Plasma-Surface Interaction.” In: Plasma Technology for Hyperfunctional Surfaces, pp. 63–77. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010). https://doi.org/10.1002/9783527630455.ch3

  23. Siow, KS, Britcher, L, Kumar, S, Griesser, HJ, “Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization-A Review.” Plasma Process. Polym., 3 392–418. https://doi.org/10.1002/ppap.200600021 (2006)

    Article  CAS  Google Scholar 

  24. Buyle, G, Schneider, J, Walker, M, Akishev, Y, Napartovich, A, Perucca, M, “Plasma Systems for Surface Treatment.” In: Plasma Technology for Hyperfunctional Surfaces: Food, Biomedical, and Textile Applications, pp. 33–61. Wiley-VCH, (2010). https://doi.org/10.1002/9783527630455.ch2

  25. Azam, MU, Samad, MA, “A Novel Organoclay Reinforced UHMWPE Nanocomposite Coating for Tribological Applications.” Prog. Org. Coat., 118 97–107. https://doi.org/10.1016/j.porgcoat.2018.01.028 (2018)

    Article  CAS  Google Scholar 

  26. Azam, MU, Samad, MA, “Tribological Evaluation of a UHMWPE Hybrid Nanocomposite Coating Reinforced With Nanoclay and Carbon Nanotubes Under Dry Conditions.” J. Tribol., 140 051304. https://doi.org/10.1115/1.4039956 (2018)

    Article  CAS  Google Scholar 

  27. Azam, MU, Samad, MA, “UHMWPE Hybrid Nanocomposite Coating Reinforced with Nanoclay and Carbon Nanotubes for Tribological Applications Under Water With/Without Abrasives.” Tribol. Int., 124 145–155. https://doi.org/10.1016/j.triboint.2018.04.003 (2018)

    Article  CAS  Google Scholar 

  28. Mohammed, A, “UHMWPE Nanocomposite Coatings Reinforced with Alumina (Al2O3) Nanoparticles for Tribological Applications.” Coatings, 8 280. https://doi.org/10.3390/coatings8080280 (2018)

    Article  CAS  Google Scholar 

  29. Campbell, T, Kalia, RK, Nakano, A, Vashishta, P, Ogata, S, Rodgers, S, “Dynamics of Oxidation of Aluminum Nanoclusters Using Variable Charge Molecular-Dynamics Simulations on Parallel Computers.” Phys. Rev. Lett., 82 4866–4869. https://doi.org/10.1103/PhysRevLett.82.4866 (1999)

    Article  CAS  Google Scholar 

  30. Przemeck, K, Zum Gahr, KH, “Microstructure and Tribological Properties of Alumina Ceramic with Laser-Dispersed Tungsten Additions.” J. Mater. Sci.. 33 4531–4541 (1998). https://doi.org/10.1023/A:1004456419252

  31. Rider, AN, Lamb, RN, Koch, MH, “Low-Power R.F. Plasma Oxidation of Aluminium.” Surf. Interface Anal.. 31 302–312 (2001). https://doi.org/10.1002/sia.978.

  32. Lu, FH, Tsai, HD, Chieh, YC, “Plasma Oxidation of Al Thin Films on Si Substrates.” Thin Solid Film., 516 1871–1876. https://doi.org/10.1016/j.tsf.2007.09.049 (2008)

    Article  CAS  Google Scholar 

  33. Minzari, D, Møller, P, Kingshott, P, Christensen, LH, Ambat, R, “Surface Oxide Formation During Corona Discharge Treatment of AA 1050 Aluminium Surfaces.” Corros. Sci., 50 1321–1330. https://doi.org/10.1016/j.corsci.2008.01.023 (2008)

    Article  CAS  Google Scholar 

  34. Yerokhin, AL, Nie, X, Leyland, A, Matthews, A, “Characterisation of Oxide Films Pproduced by Plasma Electrolytic Oxidation of a Ti-6Al-4V Alloy.” Surf. Coat. Technol., 130 195–206. https://doi.org/10.1016/S0257-8972(00)00719-2 (2000)

    Article  CAS  Google Scholar 

  35. Çelik, I, Alsaran, A, Purcek, G, “Effect of Different Surface Oxidation Treatments on Structural, Mechanical and Tribological Properties of Ultrafine-Grained Titanium.” Surf. Coat. Technol., 258 842–848. https://doi.org/10.1016/j.surfcoat.2014.07.073 (2014)

    Article  CAS  Google Scholar 

  36. Cui, CQ, Tay, HL, Chai, TC, Ggopalakrishan, R, Lim, TB, “Surface Treatment of Copper for the Adhesion Improvement to Epoxy Mold Compounds.” In: Proceedings-Electronic Components and Technology Conference, pp. 1162–1166. Institute of Electrical and Electronics Engineers Inc. (1998). https://doi.org/10.1109/ECTC.1998.678863

  37. Wang, C, He, X, “Effect of Atmospheric Pressure Dielectric Barrier Discharge Air Plasma on Electrode Surface.” Appl. Surf. Sci., 253 926–929. https://doi.org/10.1016/j.apsusc.2006.01.032 (2006)

    Article  CAS  Google Scholar 

  38. Chung, PWK, Yuen, MMF, Chan, PCH, Ho, NKC, Lam, DCC, “Effect of Copper Oxide on the Adhesion Behavior of Epoxy Molding Compound-Copper Interface.” In: Proceedings-Electronic Components and Technology Conference, pp. 1665–1670 (2002). https://doi.org/10.1109/ECTC.2002.1008331

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdul Samad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaal, A.F., Samad, M.A., Adesina, A.Y. et al. Effect of plasma treatment on the tribological and adhesion performance of a polymer coating deposited on different metallic substrates. J Coat Technol Res 19, 1673–1686 (2022). https://doi.org/10.1007/s11998-022-00639-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00639-5

Keywords

Navigation