Skip to main content
Log in

Fabrication of multifunctional smart polyester fabric via electrochemical deposition of ZnO nano-/microhierarchical structures

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Advanced multifunctional surfaces are widely used due to their unique surface properties and widespread applications. Developing a multifunctional fabric with a low cost, fluorine-free, and easily controllable method is a great challenge. This paper reports a multifunctional fabric with conductive, UV blocking, superhydrophobic and photosensing properties via an electrodeposition method. ZnO nano-/microarchitectures have been electrodeposited on polyester fabric with a carbon black screen-printed conductive layer. The deposition was carried out in various operating parameters. The optimized conditions for the ZnO electrodeposition are at − 1.0 V for 30 min deposition time in 5 mM Zn(NO3)2 in 0.1 M KNO3 at room temperature. The developed fabric showed 100% UV radiation blocking and a water contact angle (WCA) of 156° after self-assembly of stearic acid on the ZnO layer. The modified fabric showed fast photoresponse as a photosensor, which indicates that this can be used as flexible wearable photosensors in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets supporting this article have been uploaded as part of the electronic supplementary material, and any data can be provided upon request by the corresponding author.

References

  1. Pandimurugan, R, Thambidurai, S, “UV Protection and Antibacterial Properties of Seaweed Capped ZnO Nanoparticles Coated Cotton Fabrics.” Int. J. Biol. Macromol., 105 788–795 (2017)

    Article  CAS  Google Scholar 

  2. Ekanayake, UGM, Rathuwadu, N, Mantilaka, MMMGPG, Rajapakse, RMG, “Fabrication of ZnO Nanoarchitectured Fluorine-Free Robust Superhydrophobic and UV Shielding Polyester Fabrics for Umbrella Canopies.” RSC Adv., 8 (55) 31406–31413 (2018)

    Article  CAS  Google Scholar 

  3. Marco, CD, Oldani, V, Bianchi, C, Levi, M, Turri, S, “A Biomimetic Surface Treatment to Obtain Durable Omniphobic Textiles.” J. Appl. Polym. Sci., 132 (32) 42404 (2015). https://doi.org/10.1002/app.42404

    Article  CAS  Google Scholar 

  4. Zhu, T, Li, S, Huang, J, Mihailiasa, M, Lai, Y, “Rational Design of Multi-layered Superhydrophobic Coating on Cotton Fabrics for UV Shielding, Self-Cleaning and Oil-Water Separation.” Mater. Des., 134 342–351 (2017)

    Article  CAS  Google Scholar 

  5. Pahalagedara, LR, Siriwardane, IW, Tissera, ND, Wijesena, RN, de Silva, KMN, “Carbon Black Functionalized Stretchable Conductive Fabrics for Wearable Heating Applications.” RSC Adv., 7 (31) 19174–19180 (2017)

    Article  CAS  Google Scholar 

  6. Textor, T, Mahltig, B, “A Sol–Gel Based Surface Treatment for Preparation of Water Repellent Antistatic Textiles.” Appl. Surf. Sci., 256 (6) 1668–1674 (2010)

    Article  CAS  Google Scholar 

  7. Kim, YK, Hwang, S-H, Kim, S, Park, H, Lim, SK, “ZnO Nanostructure Electrodeposited on Flexible Conductive Fabric: A Flexible Photo-Sensor.” Sens. Actuators B Chem., 240 1106–1113 (2017)

    Article  CAS  Google Scholar 

  8. Stoppa, M, Chiolerio, A, “Wearable Electronics and Smart Textiles: A Critical Review.” Sensors (Basel), 14 (7) 11957–11992 (2014)

    Article  CAS  Google Scholar 

  9. Ahmad, D, van den Boogaert, I, Miller, J, Presswell, R, Jouhara, H, “Hydrophilic and Hydrophobic Materials and Their Applications.” Energy Sources Part A Recovery Util. Environ. Effects, 40 (22) 2686–2725 (2018)

    CAS  Google Scholar 

  10. Ashraf, M, Campagne, C, Perwuelz, A, Champagne, P, Leriche, A, Courtois, C, “Development of Superhydrophilic and Superhydrophobic Polyester Fabric by Growing Zinc Oxide Nanorods.” J. Colloid Interface Sci., 394 545–553 (2013)

    Article  CAS  Google Scholar 

  11. Richard, E, Lakshmi, RV, Aruna, ST, Basu, BJ, “A Simple Cost-Effective and Eco-friendly Wet Chemical Process for the Fabrication of Superhydrophobic Cotton Fabrics.” Appl. Surf. Sci., 277 302–309 (2013)

    Article  CAS  Google Scholar 

  12. Preda, N, Enculescu, M, Zgura, I, Socol, M, Matei, E, Vasilache, V, Enculescu, I, “Superhydrophobic Properties of Cotton Fabrics Functionalized with ZnO by Electroless Deposition.” Mater. Chem. Phys., 138 (1) 253–261 (2013)

    Article  CAS  Google Scholar 

  13. Velayi, E, Norouzbeigi, R, “Synthesis of Hierarchical Superhydrophobic Zinc Oxide Nano-structures for Oil/Water Separation.” Ceram. Int., 44 (12) 14202–14208 (2018)

    Article  Google Scholar 

  14. Xu, B, Cai, Z, “Fabrication of a Superhydrophobic ZnO Nanorod Array Film on Cotton Fabrics via a Wet Chemical Route and Hydrophobic Modification.” Appl. Surf. Sci., 254 (18) 5899–5904 (2008)

    Article  CAS  Google Scholar 

  15. Yu, D, Kang, G, Tian, W, Lin, L, Wang, W, “Preparation of Conductive Silk Fabric with Antibacterial Properties by Electroless Silver Plating.” Appl. Surf. Sci., 357 1157–1162 (2015)

    Article  CAS  Google Scholar 

  16. Xue, C-H, Chen, J, Yin, W, Jia, S-T, Ma, J-Z, “Superhydrophobic Conductive Textiles with Antibacterial Property by Coating Fibers with Silver Nanoparticles.” Appl. Surf. Sci., 258 (7) 2468–2472 (2012)

    Article  CAS  Google Scholar 

  17. El Nahhal, IM, Elmanama, AA, Amara, NM, in “Synthesis of Nanometal Oxide–Coated Cotton Composites.” Cotton Research, Chapter 13 (2016), pp 279–294

  18. Gomes, EC, Oliveira, MAS, “Chemical Polymerization of Aniline in Hydrochloric Acid (HCl) and Formic Acid (HCOOH) Media. Differences Between the Two Synthesized Polyanilines.” Am. J. Polym. Sci., 2 (2) 5–13 (2012)

    Article  Google Scholar 

  19. Hensel, R, Neinhuis, C, Werner, C, “The Springtail Cuticle as a Blueprint for Omniphobic Surfaces.” Chem. Soc. Rev., 45 (2) 323–341 (2016)

    Article  CAS  Google Scholar 

  20. Kumar, M, Sasikumar, C, “Electrodeposition of Nanostructured ZnO Thin Film: A Review.” Am. J. Mater. Sci. Eng., 2 (2) 18–23 (2014)

    CAS  Google Scholar 

  21. Fortunato, M, Chandraiahgari, CR, De Bellis, G, Ballirano, P, Soltani, P, Kaciulis, S, Caneve, L, Sarto F, Sarto, MS, “Piezoelectric Thin Films of ZnO-Nanorods/Nanowalls Grown by Chemical Bath Deposition.” IEEE Trans. Nanotechnol., 17(2) 311–317 (2018)

  22. Oliveira, FF, Proenca, MP, Araújo, JP, Ventura, J, “Electrodeposition of ZnO Thin Films on Conducting Flexible Substrates.” J. Mater. Sci., 51 (12) 5589–5597 (2016)

    Article  CAS  Google Scholar 

  23. Zhang, M, Jin, J, Ogale, A, “Carbon Fibers from UV-Assisted Stabilization of Lignin-Based Precursors.” Fibers, 3 (4) 184–196 (2015)

    Article  CAS  Google Scholar 

  24. Gashti, MP, Gashti, MP, “Effect of Colloidal Dispersion of Clay on Some Properties of Wool Fiber.” J. Dispers. Sci. Technol., 34 (6) 853–858 (2013)

    Article  CAS  Google Scholar 

  25. Noralian, Z, Gashti, MP, Moghaddam, MR, Tayyeb, H, Erfanian, I, “Ultrasonically Developed Silver/Iota-Carrageenan/Cotton Bionanocomposite as an Efficient Material for Biomedical Applications.” Int. J. Biol. Macromol., 180 439–457 (2021)

    Article  CAS  Google Scholar 

  26. Alimohammadi, F, Gashti, MP, Mozaffari, A, “Polyvinylpyrrolidone/Carbon Nanotube/Cotton Functional Nanocomposite: Preparation and Characterization of Properties.” Fibers Polym., 19 (9) 1940–1947 (2018)

    Article  CAS  Google Scholar 

  27. Bhattacharya, SS, Chaudhari, S, “Study on Structural, Mechanical and Functional Properties of Polyester Silica Nanocomposite Fabric.” Int. J. Pure Appl. Sci. Technol., 21 (1) 43–52 (2014)

    Google Scholar 

  28. Gashti, MP, Eslami, S, “A Robust Method for Producing Electromagnetic Shielding Cellulose via Iron Oxide Pillared Clay Coating Under Ultraviolet Irradiation.” Funct. Mater. Lett., 8 (6) 1–4 (2015)

    Article  Google Scholar 

  29. Ko, YH, Kim, MS, Park, W, Yu, JS, “Well-Integrated ZnO Nanorod Arrays on Conductive Textiles by Electrochemical Synthesis and Their Physical Properties.” Nanoscale Res. Lett., 8 (1) 28 (2013)

    Article  Google Scholar 

  30. Abu-Thabit, NY, “Thermochemistry of Acrylamide Polymerization: An Illustration of Auto-acceleration and Gel Effect.” World J. Chem. Educ., 5 (3) 94–101 (2017)

  31. David, NC, Anavi, D, Milanovich, M, Popowski, Y, Frid, L, Amir, E, “Preparation and Properties of Electro-conductive Fabrics Based on Polypyrrole: Covalent vs. Non-covalent Attachment.” IOP Conf. Ser.: Mater. Sci. Eng., 254 032002 (2017)

  32. Molina, J, Esteves, MF, Fernández, J, Bonastre, J, Cases, F, “Polyaniline Coated Conducting Fabrics. Chemical and Electrochemical Characterization.” Eur. Polym. J. 47 2003–2015 (2011)

    Article  CAS  Google Scholar 

  33. Shen, W, Dong, Y, Cui, G, Li, B, “Optimized Preparation of Electrically Conductive Cotton Fabric by an Industrialized Exhaustion Dyeing with Reduced Graphene Oxide.” Cellulose, 23 (5) 3291–3300 (2016)

    Article  CAS  Google Scholar 

  34. Montazer, M, Nia, ZK, “Conductive Nylon Fabric Through In Situ Synthesis of Nano-silver: Preparation and Characterization.” Mater. Sci. Eng. C Mater. Biol. Appl., 56 341–347 (2015)

    Article  CAS  Google Scholar 

  35. Nasirizadeh, N, Dehghani, M, Yazdanshenas, ME, “Preparation of Hydrophobic and Conductive Cotton Fabrics Using Multi-wall Carbon Nanotubes by the Sol–Gel Method.” J. Sol–Gel Sci. Technol., 73 (1) 14–21 (2014)

    Article  Google Scholar 

  36. Dai, SX, Li, YY, Du, ZL, Carter, KR, “Electrochemical Deposition of ZnO Hierarchical Nanostructures from Hydrogel Coated Electrodes.” J. Electrochem. Soc., 160 (4) D156–D162 (2013)

    Article  CAS  Google Scholar 

  37. Kelly, JJ, West, AC, “Copper Deposition in the Presence of Polyethylene Glycol: II. Electrochemical Impedance Spectroscopy.” J. Electrochem. Soc., 145 (10) 3477 (1998)

    Article  CAS  Google Scholar 

  38. Izaki, M, Omi, T, “Transparent Zinc Oxide Films Prepared by Electrochemical Reaction.” Appl. Phys. Lett., 68 (17) 2439–2440 (1996)

    Article  CAS  Google Scholar 

  39. Yoshida, T, Komatsu, D, Shimokawa, N, Minoura, H, “Mechanism of Cathodic Electrodeposition of Zinc Oxide Thin Films from Aqueous Zinc Nitrate Baths.” Thin Solid Films, 451–452 166–169 (2004)

    Article  CAS  Google Scholar 

  40. Wei, S, Lian, J, Chen, X, Jiang, Q, “Effects of Seed Layer on the Structure and Property of Zinc Oxide Thin Films Electrochemically Deposited on ITO-Coated Glass.” Appl. Surf. Sci., 254 (20) 6605–6610 (2008)

  41. Sun, S, Jiao, S, Zhang, K, Wang, D, Gao, S, Li, H, Wang, J, Yu, Q, Guo, F, Zhao, L, “Nucleation Effect and Growth Mechanism of ZnO Nanostructures by Electrodeposition from Aqueous Zinc Nitrate Baths.” J. Cryst. Growth, 359 15–19 (2012)

    Article  CAS  Google Scholar 

  42. Zhou, R, Wang, X, Zhou, R, Weerasinghe, J, Zhang, T, Xin, Y, Wang, H, Cullen, P, Wang, H, Ostrikov, K, “Non-thermal Plasma Enhances Performances of Biochar in Wastewater Treatment and Energy Storage Applications.” Front. Chem. Sci. Eng., (2021). https://doi.org/10.1007/s11705-021-2070-x

    Article  Google Scholar 

  43. Gültekin, ND, “Investigation of Thermal and Electrical Conductivity Properties of Carbon Black Coated Cotton Fabrics.” Marmara Univ. J. Sci., 27 (3) 91–94 (2015)

    Google Scholar 

  44. Xue, CH, Yin, W, Zhang, P, Ji, PT, Jia, ST, “UV-Durable Superhydrophobic Textiles with UV-Shielding Properties by Introduction of ZnO/SiO2 Core/Shell Nanorods on PET Fibers and Hydrophobization.” Colloids Surf. A Physiochem. Eng. Asp., 427 7–12 (2013)

    Article  CAS  Google Scholar 

  45. Miyachi, M, Yamanoi, Y, Shibata, Y, Matsumoto, H, Nakazato, K, Konno, M, Inoue, Y, Nishihara, H, “Surfactant-Enhanced Performance of a Bio-conjugated Photodetecto Composed of Photosystem I Coupled to a Gold Nanoparticles.” Chem. Commun., 46 2557–2559 (2010)

    Article  CAS  Google Scholar 

  46. Shelke, NT, Karche, BR, “Ultraviolet Photosensor Based on Few Layered Reduced Graphene Oxide Nanosheets.” Appl. Surf. Sci., 418 374–379 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ms. A. Senthilnathan, Mr. Sandun Dissanayake, and Ms. D. Chandrakumara for their kind support during this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MMMGPGM and NR conceived the idea and designed the project. UGME carried out the experiments with different contributions and wrote the first draft of the manuscript. KEDYTD edited and reviewed the manuscript.

Corresponding author

Correspondence to M. M. M. G. Prasanga G. Mantilaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4137 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekanayake, U.G.M., Dayananda, K.E.D.Y.T., Rathuwadu, N. et al. Fabrication of multifunctional smart polyester fabric via electrochemical deposition of ZnO nano-/microhierarchical structures. J Coat Technol Res 19, 1243–1253 (2022). https://doi.org/10.1007/s11998-021-00606-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00606-6

Keywords

Navigation