Skip to main content
Log in

Effect of humidity on curing of alkoxysilane-functionalized alkyd coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The effect of relative humidity on the curing of alkoxysilane functional alkyds and reactive diluents was evaluated. Alkoxysilane functional alkyds and tung oil-based reactive diluents were synthesized and used as additives in varying amounts in alkyd coatings. Looking at modified alkyd versus modified reactive diluent allows for the comparison of the humidity effect on high and low molecular weight alkoxysilane functional additives. The coatings were cured at 25 and 75% relative humidity and evaluated for drying time, coating and tensile properties, and gel content. It was found that at higher humidity, the alkoxysilane-containing samples improved properties significantly when compared to the control alkyd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Weiss, KD, Paint and Coatings: A Mature Industry in Transition. Prog. Polym. Sci. 22 (2) 203–245. https://doi.org/10.1016/S0079-6700(96)00019-6 (1997)

    Article  CAS  Google Scholar 

  2. Ren, X, Meng, L, Soucek, M, Environmentally Friendly Coatings. In: Tiwari, A, Galanis, A, Soucek, MD (eds.) Biobased and Environmental Benign Coatings, Wiley, Hoboken, pp. 183–223. https://doi.org/10.1002/9781119185055.ch8 (2016)

    Chapter  Google Scholar 

  3. Hofland, A, Alkyd Resins: From Down and Out to Alive and Kicking. Prog. Org. Coat. 73 (4) 274–282. https://doi.org/10.1016/j.porgcoat.2011.01.014 (2012)

    Article  CAS  Google Scholar 

  4. Kobayashi, S, Müllen, K (eds) Encyclopedia of Polymeric Nanomaterials. Springer Berlin Heidelberg, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29648-2 (2015)

    Book  Google Scholar 

  5. Holmberg, K, High Solids Alkyd Resins. Marcel Dekker Inc, New York. (1987)

    Google Scholar 

  6. Wicks, ZW (ed) Organic Coatings: Science and Technology, 3rd edn. Wiley-Interscience, Hoboken, NJ (2007)

    Google Scholar 

  7. Sailer, RA, Soucek, MD, Oxidizing Alkyd Ceramers. Prog. Org. Coat. 33 (1) 36–43. https://doi.org/10.1016/S0300-9440(98)00005-8 (1998)

    Article  CAS  Google Scholar 

  8. Sailer, RA, Soucek, MD, Viscoelastic Properties of Alkyd Ceramers. J. Appl. Polym. Sci. 73 (10) 2017–2028. https://doi.org/10.1002/(SICI)1097-4628(19990906)73:10%3c2017::AID-APP20%3e3.0.CO;2-1 (1999)

    Article  CAS  Google Scholar 

  9. Pathan, S, Ahmad, S, Synergistic Effects of Linseed Oil Based Waterborne Alkyd and 3-Isocynatopropyl Triethoxysilane: Highly Transparent, Mechanically Robust, Thermally Stable, Hydrophobic Anticorrosive Coatings. ACS Sustain. Chem. Eng. 4 (6) 3062–3075. https://doi.org/10.1021/acssuschemeng.6b00024 (2016)

    Article  CAS  Google Scholar 

  10. Wen, J, Wilkes, GL, Organic/Inorganic Hybrid Network Materials by the Sol−Gel Approach. Chem. Mater. 8 (8) 1667–1681. https://doi.org/10.1021/cm9601143 (1996)

    Article  CAS  Google Scholar 

  11. Zvonkina, I, Soucek, M, Inorganic-Organic Hybrid Coatings: Common and New Approaches. Curr. Opin. Chem. Eng. 11, 123–127. https://doi.org/10.1016/j.coche.2016.01.008 (2016)

    Article  Google Scholar 

  12. Wang, D, Bierwagen, GP, Sol–Gel Coatings on Metals for Corrosion Protection. Prog. Org. Coat. 64 (4) 327–338. https://doi.org/10.1016/j.porgcoat.2008.08.010 (2009)

    Article  CAS  Google Scholar 

  13. Tohge, N, “Formation of SiO2-Based Coatings by the Sol–Gel Method and Their Effects on Water Vapour Permeability of Polyimide Films.” 3.

  14. Teng, G, Soucek, MD, Epoxidized Soybean Oil-Based Ceramer Coatings. J. Am. Oil Chem. Soc. 77 (4) 381–387. https://doi.org/10.1007/s11746-000-0062-0 (2000)

    Article  CAS  Google Scholar 

  15. Zou, K, Soucek, MD, UV-Curable Organic-Inorganic Hybrid Film Coatings Based on Epoxidized Cyclohexene Derivatized Linseed Oil. Macromol. Chem. Phys. 205 (15) 2032–2039. https://doi.org/10.1002/macp.200400115 (2004)

    Article  CAS  Google Scholar 

  16. Ni, H, Skaja, AD, Sailer, RA, Soucek, MD, Moisture-Curing Alkoxysilane-Functionalized Isocyanurate Coatings. Macromol. Chem. Phys. 201 (6) 722–732. https://doi.org/10.1002/(SICI)1521-3935(20000301)201:6%3c722::AID-MACP722%3e3.0.CO;2-D (2000)

    Article  CAS  Google Scholar 

  17. Gilberts, J., Tinnemans, AHA, Hogerheide, MP, Koster, TPM, “UV Curable Hard Transparent Hybrid Coating Materials on Polycarbonate Prepared by the Sol–Gel Method”. 7.

  18. Danks, AE, Hall, SR, Schnepp, Z, The Evolution of ‘Sol–Gel’ Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 3 (2) 91–112. https://doi.org/10.1039/C5MH00260E (2016)

    Article  CAS  Google Scholar 

  19. Hench, LL, West, JK, The Sol–Gel Process. Chem. Rev. 90 (1) 33–72. https://doi.org/10.1021/cr00099a003 (1990)

    Article  CAS  Google Scholar 

  20. Brinker, CJ, Scherer, GW, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing. Academic Press. (2013)

    Google Scholar 

  21. Young, SK, Overview of Sol–Gel Science and Technology. ARL-TR-2650; Army Research Laboratory (2002)

  22. Brinker, CJ, Hydrolysis and Condensation of Silicates: Effects on Structure. J. Non-Cryst. Solids 100 (1–3) 31–50. https://doi.org/10.1016/0022-3093(88)90005-1 (1988)

    Article  CAS  Google Scholar 

  23. Brinker, C, Frye, G, Ashley, C, Smith, D, Davis, P, Hietala, S, “Sol–Gel Routes to Controlled Pore-Size Amorphous Oxides.” In: Abstracts of Papers of the American Chemical Society; Amer. Chemical Soc, Washington, DC 20036, Vol. 201, pp 348–INOR (1991)

  24. Brinker, CJ, Hurd, AJ, Schunk, PR, Frye, GC, Ashley, CS, Review of Sol–Gel Thin Film Formation. J. Non-Cryst. Solids 147–148, 424–436. https://doi.org/10.1016/S0022-3093(05)80653-2 (1992)

    Article  Google Scholar 

  25. Wold, CR, Soucek, MD, Viscoelastic and Thermal Properties of Linseed Oil-Based Ceramer Coatings. Macromol. Chem. Phys. 201 (3) 382–392. https://doi.org/10.1002/(SICI)1521-3935(20000201)201:3%3c382::AID-MACP382%3e3.0.CO;2-9 (2000)

    Article  CAS  Google Scholar 

  26. Teng, G, Wegner, JR, Hurtt, GJ, Soucek, MD, Novel Inorganic/Organic Hybrid Materials Based on Blown Soybean Oil with Sol–Gel Precursors. Prog. Org. Coat. 42 (1–2) 29–37. https://doi.org/10.1016/S0300-9440(01)00126-6 (2001)

    Article  CAS  Google Scholar 

  27. Tuman, SJ, Soucek, MD, Novel Inorganic/Organic Coatings Based on Linseed Oil and Sunflower Oil with Sol–Gel Precursors. JCT J. Coat. Technol. 68, 854 (1996)

    Google Scholar 

  28. Wold, CR, Soucek, MD, Mixed Metal Oxide Inorganic/Organic Coatings. J. Coat. Technol. 70 (7) 43–51. https://doi.org/10.1007/BF02720514 (1998)

    Article  CAS  Google Scholar 

  29. Baghdachi, J, Li, D, LaForest, J, Isocyanate-Free Moisture Cure Coatings. J. Coat. Technol. 74 (9) 81–87. https://doi.org/10.1007/BF02697977 (2002)

    Article  CAS  Google Scholar 

  30. Chang, W-H, Hartman, ME, Scriven, RL, “Ambient Temperature, Moisture-Curable Acrylic-Silane Coating Compositions Having Improved Potlife.” US Patent 4,043,953, August 23, 1977

  31. Emmerling, W, Padola, T, Unger, L, Majolo, M, “Moisture-Curing Alkoxysilane-Terminated Polyurethanes.” US Patent 5,554,709, September 10, 1996

  32. Ni, H, Skaja, AD, Soucek, MD, Acid-Catalyzed Moisture-Curing Polyurea/Polysiloxane Ceramer Coatings. Prog. Org. Coat. 40 (1–4) 175–184. https://doi.org/10.1016/S0300-9440(00)00116-8 (2000)

    Article  CAS  Google Scholar 

  33. D01 Committee. Test Methods for Acid Value of Organic Coating Materials; D 1639-90; ASTM International (1996)

  34. D01 Committee. Test Methods for Hydroxyl Value of Fatty Oils and Acids; D 1957-86; ASTM International (2001)

  35. D01 Committee. Test Methods for Hardness of Organic Coatings by Pendulum Damping Tests; D 4366-16; ASTM International. https://doi.org/10.1520/D4366-16

  36. D01 Committee. Test Method for Film Hardness by Pencil Test; D 3363-05; ASTM International. https://doi.org/10.1520/D3363-05R11E02

  37. D01 Committee. Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers; D 4541-17; ASTM International. https://doi.org/10.1520/D4541-17

  38. Salata, RR, Pellegrene, B, Soucek, MD, "Synthesis and Properties of a High Solids Triethoxysilane-Modified Alkyd Coatings." Prog. Org. Coat., 133 340–349 (2019)

    Article  CAS  Google Scholar 

  39. Wutticharoenwong, K, Soucek, MD, Synthesis of Tung-Oil-Based Reactive Diluents. Macromol. Mater. Eng. 295 (12) 1097–1106. https://doi.org/10.1002/mame.201000099 (2010)

    Article  CAS  Google Scholar 

  40. Wutticharoenwong, K, Dziczkowski, J, Soucek, MD, Tung Based Reactive Diluents for Alkyd Systems: Film Properties. Prog. Org. Coat. 73 (4) 283–290. https://doi.org/10.1016/j.porgcoat.2011.03.017 (2012)

    Article  CAS  Google Scholar 

  41. Schmidt, H, Scholze, H, Kaiser, A, Principles of Hydrolysis and Condensation Reaction of Alkoxysilanes. J. Non-Cryst. Solids 63, 1–11 (1984)

    Article  CAS  Google Scholar 

  42. Greenbank, GR, Holm, GE, Some Factors Concerned in the Autoxidation of Fats. Ind. Eng. Chem. 16 (6) 598–601. https://doi.org/10.1021/ie50174a024 (1924)

    Article  CAS  Google Scholar 

  43. Minemoto, Y, Adachi, S, Matsuno, R, "Effect of Relative Humidity During Storage on the Autoxidation of Linoleic Acid Encapsulated with a Polysaccharide by Hot-Air-Drying and Freeze-Drying." Food Sci. Technol. Res., 7 (1) 91–93. https://doi.org/10.3136/fstr.7.91 (2001)

    Article  CAS  Google Scholar 

  44. Sinha, A, Islam Khan, N, Das, S, Zhang, J, Halder, S, Effect of Reactive and Non-Reactive Diluents on Thermal and Mechanical Properties of Epoxy Resin. High Perform. Polym. 30 (10) 1159–1168. https://doi.org/10.1177/0954008317743307 (2018)

    Article  CAS  Google Scholar 

  45. Wool, RP, “Properties of Triglyceride-Based Thermosets.” In: Bio-Based Polymers and Composites

  46. DiMarzio, EA, The Entropy Theory of Glass Formation after 40 Years. Comput. Mater. Sci. 4, 317–324 (1995)

    Article  CAS  Google Scholar 

  47. DiMarzio, EA, The Glass Temperature of Polymer Blends. Polymer 31, 2294–2298 (1990)

    Article  CAS  Google Scholar 

  48. DiMarzio, EA, On the Second-Order Transition of a Rubber. J. Res. Natl. Bur. Stand. Phys. Chem. 68A (6) 611–617 (1964)

    Article  CAS  Google Scholar 

  49. DiMarzio, EA, Guttman, CM, The Glass Temperature of Polymer Rings. Macromolecules 20, 1403–1407 (1987)

    Article  CAS  Google Scholar 

  50. Hale, A, Macosko, CW, Bair, HE, Glass Transition Temperature as a Function of Conversion in Thermosetting Polymers. Macromolecules 24 (9) 2610–2621. https://doi.org/10.1021/ma00009a072 (1991)

    Article  CAS  Google Scholar 

  51. Arkles, B, Commercial Applications of Sol–Gel-Derived Hybrid Materials. MRS Bull. 26 (05) 402–408. https://doi.org/10.1557/mrs2001.94 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Soucek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrene, B., Soucek, M.D. Effect of humidity on curing of alkoxysilane-functionalized alkyd coatings. J Coat Technol Res 18, 1543–1555 (2021). https://doi.org/10.1007/s11998-021-00494-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00494-w

Keywords

Navigation