Skip to main content

Advertisement

Log in

A review of microencapsulated thermochromic coatings for sustainable building applications

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The review covers microencapsulation methods for encapsulating thermochromic leuco dyes, and the incorporation of these microencapsulated thermochromic dyes in smart coatings has been developed, which helps in creating sustainable buildings that use less power for heating and cooling applications. The thermochromic mechanism of leuco dye developer–solvent systems has been elaborated, and the role of each component for the functioning of thermochromic dyes is discussed. The future scope of these dyes in applications involving smart windows and smart coatings for sustainable buildings is consolidated, and their impact on energy consumption has been studied.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2012, Cambridge University Press

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Copyright 2008 Elsevier

Fig. 7
Fig. 8

Copyright 2018 Elsevier

Fig. 9

Copyright 2007 Chinese Journal of Polymer Science

Fig. 10
Fig. 11

Copyright 2018 Elsevier

Fig. 12

Copyright 2016 Elsevier

Fig. 13

Copyright 2018 Elsevier

Fig. 14

Copyright 2017, Royal Society of Chemistry

Similar content being viewed by others

References

  1. Santamouris, M, “Green Commercial Buildings Save Energy.” Nat. Sustain., 1 613–614 (2018). https://doi.org/10.1038/s41893-018-0177-y

    Article  Google Scholar 

  2. Urge-Vorsatz, D, Petrichenko, K, Staniec, M, Eom, J, “Energy Use in Buildings in a Long-Term Perspective.” Curr. Opin. Environ. Sustain., 5 141–151 (2013). https://doi.org/10.1016/j.cosust.2013.05.004

    Article  Google Scholar 

  3. Prajapati, DG, Kandasubramanian, B, “Biodegradable Polymeric Solid Framework-Based Organic Phase-Change Materials for Thermal Energy Storage.” Ind. Eng. Chem. Res., 58 10652–10677 (2019). https://doi.org/10.1021/acs.iecr.9b01693

    Article  CAS  Google Scholar 

  4. Prajapati, DG, Kandasubramanian, B, “A Review on Polymeric-Based Phase Change Material for Thermo-Regulating Fabric Application.” Polym. Rev., (2019). https://doi.org/10.1080/15583724.2019.1677709

    Article  Google Scholar 

  5. Gore, PM, Balakrishnan, S, Kandasubramanian, B, “Superhydrophobic Corrosion Inhibition Polymer Coatings.” Superhydrophobic Polym. Coat., (2019). https://doi.org/10.1016/B978-0-12-816671-0.00011-4

    Article  Google Scholar 

  6. Gore, PM, Zachariah, S, Gupta, P, Balasubramanian, K, “Multifunctional Nano-Engineered and Bio-Mimicking Smart Superhydrophobic Reticulated ABS/Fumed Silica Composite Thin Films with Heat-Sinking Applications.” RSC Adv., 6 105180–105191 (2016). https://doi.org/10.1039/c6ra16781k

    Article  CAS  Google Scholar 

  7. Tahalyani, J, Datar, S, Balasubramanian, K, “Investigation of Dielectric Properties of Free Standing Electrospun Nonwoven Mat.” J. Appl. Polym. Sci., 135 46121 (2018). https://doi.org/10.1002/app.46121

    Article  CAS  Google Scholar 

  8. Tahalyani, J, Rahangdale, KK, Balasubramanian, K, “The Dielectric Properties and Charge Transport Mechanism of π-Conjugated Segments Decorated with Intrinsic Conducting Polymer.” RSC Adv., 6 69733–69742 (2016). https://doi.org/10.1039/C6RA09554B

    Article  CAS  Google Scholar 

  9. Tahalyani, J, Rahangdale, KK, Aepuru, R, Kandasubramanian, B, Datar, S, “Dielectric Investigation of a Conducting Fibrous Nonwoven Porous Mat Fabricated by a One-Step Facile Electrospinning Process.” RSC Adv., 6 36588–36598 (2016). https://doi.org/10.1039/c5ra23012h

    Article  CAS  Google Scholar 

  10. Malik, A, Kandasubramanian, B, “Flexible Polymeric Substrates for Electronic Applications.” Polym. Rev., 58 630–667 (2018). https://doi.org/10.1080/15583724.2018.1473424

    Article  CAS  Google Scholar 

  11. Malik, A, Magisetty, R, Kumar, V, Shukla, A, Kandasubramanian, B, “Dielectric and Conductivity Investigation of Polycarbonate-Copper Phthalocyanine Electrospun Nonwoven Fibres for Electrical and Electronic Application.” Polym. Technol. Mater., (2019). https://doi.org/10.1080/25740881.2019.1625390

    Article  Google Scholar 

  12. Magisetty, R, Kumar, P, Gore, PM, Ganivada, M, Shukla, A, Kandasubramanian, B, Shunmugam, R, “Electronic Properties of Poly(1,6-heptadiynes) Electrospun Fibrous Non-woven Mat.” Mater. Chem. Phys., 223 343–352 (2019). https://doi.org/10.1016/j.matchemphys.2018.11.020

    Article  CAS  Google Scholar 

  13. Magisetty, R, Kumar, P, Kumar, V, Shukla, A, Kandasubramanian, B, Shunmugam, R, “NiFe2O4/Poly(1,6-heptadiyne) Nanocomposite Energy-Storage Device for Electrical and Electronic Applications.” ACS Omega, 3 15256–15266 (2018). https://doi.org/10.1021/acsomega.8b02306

    Article  CAS  Google Scholar 

  14. Magisetty, R, Shukla, A, Kandasubramanian, B, “Terpolymer (ABS) Cermet (Ni–NiFe2O4) Hybrid Nanocomposite Engineered 3D-Carbon Fabric Mat as a X-Band Electromagnetic Interference Shielding Material.” Mater. Lett., 238 214–217 (2019). https://doi.org/10.1016/J.MATLET.2018.12.023

    Article  CAS  Google Scholar 

  15. Prajapati, DG, Kandasubramanian, B, “Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors.” Macromol. Chem. Phys., 220 1800561 (2019). https://doi.org/10.1002/macp.201800561

    Article  CAS  Google Scholar 

  16. Revaiah, RG, Kotresh, TM, Kandasubramanian, B, “Technical Textiles for Military Applications.” J. Text. Inst., (2019). https://doi.org/10.1080/00405000.2019.1627987

    Article  Google Scholar 

  17. Lonkar, CM, Kharat, DK, Kumar, HH, Prasad, S, Balasubramanian, K, “Effect of La on Piezoelectric Properties of Pb(Ni1/3Sb2/3)O3–Pb(ZrTi)O3 Ferroelectric Ceramics.” J. Mater. Sci. Mater. Electron., 24 411–417 (2013). https://doi.org/10.1007/s10854-012-0765-y

    Article  CAS  Google Scholar 

  18. Lonkar, CM, Kharat, DK, Prasad, S, Kandasubramanian, B, “Synthesis, Characterization, and Development of PZT-Based Composition for Power Harvesting and Sensors Application.” Handb. Nanoceram. Nanocompos. Coat. Mater., (2015). https://doi.org/10.1016/B978-0-12-799947-0.00025-0

    Article  Google Scholar 

  19. Kumar, HH, Lonkar, CM, Balasubramanian, K, “Structure-Property Correlation and Harvesting Power from Vibrations of Aerospace Vehicles by Nanocrystalline La–Pb(Ni1/3Sb2/3)-PbZrTiO3 Ferroelectric Ceramics Synthesized by Mechanical Activation.” J. Am. Ceram. Soc., 100 215–223 (2017). https://doi.org/10.1111/jace.14557

    Article  CAS  Google Scholar 

  20. Magisetty, R, Prajapati, D, Ambekar, R, Shukla, A, Kandasubramanian, B, “β-Phase Cu-Phthalocyanine/Acrylonitrile Butadiene Styrene Terpolymer Nanocomposite Film Technology for Organoelectronic Applications.” J. Phys. Chem. C, 123 28081–28092 (2019). https://doi.org/10.1021/acs.jpcc.9b08878

    Article  CAS  Google Scholar 

  21. Rastogi, P, Njuguna, J, Kandasubramanian, B, “Exploration of Elastomeric and Polymeric Liquid Crystals with Photothermal Actuation: A Review.” Eur. Polym. J., 121 109287 (2019). https://doi.org/10.1016/j.eurpolymj.2019.109287

    Article  CAS  Google Scholar 

  22. Rastogi, P, Kandasubramanian, B, “Breakthrough in the Printing Tactics for Stimuli-Responsive Materials: 4D Printing.” Chem. Eng. J., 366 264–304 (2019). https://doi.org/10.1016/j.cej.2019.02.085

    Article  CAS  Google Scholar 

  23. Gore, PM, Dhanshetty, M, Balasubramanian, K, “Bionic Creation of Nano-Engineered Janus Fabric for Selective Oil/Organic Solvent Absorption.” RSC Adv., 6 111250–111260 (2016). https://doi.org/10.1039/C6RA24106A

    Article  CAS  Google Scholar 

  24. Gore, PM, Kandasubramanian, B, “Heterogeneous Wettable Cotton Based Superhydrophobic Janus Biofabric Engineered with PLA/Functionalized-Organoclay Microfibers for Efficient Oil–Water Separation.” J. Mater. Chem. A, 6 7457–7479 (2018). https://doi.org/10.1039/C7TA11260B

    Article  CAS  Google Scholar 

  25. Gore, PM, Purushothaman, A, Naebe, M, Wang, X, Kandasubramanian, B, “Nanotechnology for Oil-Water Separation.” In: Prasad, R, Karchiyappan, T (eds.) Advanced Research in Nanosciences for Water Technology, pp. 299–339. Springer, New York, NY (2019). https://doi.org/10.1007/978-3-030-02381-2_14

    Chapter  Google Scholar 

  26. Gore, PM, Kandasubramanian, B, “Functionalized Aramid Fibers and Composites for Protective Applications: A Review.” Ind. Eng. Chem. Res., 57 16537–16563 (2018). https://doi.org/10.1021/acs.iecr.8b04903

    Article  CAS  Google Scholar 

  27. Ürge-Vorsatz, D, Cabeza, LF, Serrano, S, Barreneche, C, Petrichenko, K, “Heating and Cooling Energy Trends and Drivers in Buildings.” Renew. Sustain. Energy Rev., 41 85–98 (2015). https://doi.org/10.1016/j.rser.2014.08.039

    Article  Google Scholar 

  28. Ürge-Vorsatz, D, Eyre, N, Graham, P, Harvey, D, Hertwich, E, Jiang, Y, Kornevall, C, Majumdar, M, McMahon, JE, Mirasgedis, S, Murakami, S, Jochem, E, “Energy End-Use: Buildings.” In: Johansson, TB, Patwardhan, AP, Nakićenović, N, Gomez-Echeverri, L (eds.) Global Energy Assessment Writing Team (Author) GEAT a SF, pp. 649–760. Cambridge University Press, Cambridge (2012) https://doi.org/10.1017/CBO9780511793677

    Chapter  Google Scholar 

  29. MacLaren, DC, White, MA, “Dye-Developer Interactions in the Crystal Violet Lactone-Lauryl Gallate Binary System: Implications for Thermochromism.” J. Mater. Chem., 13 1695–1700 (2003). https://doi.org/10.1039/b302249h

    Article  CAS  Google Scholar 

  30. Ecker, M, Pretsch, T, “Novel Design Approaches for Multifunctional Information Carriers.” RSC Adv., 4 46680–46688 (2014). https://doi.org/10.1039/c4ra08977d

    Article  CAS  Google Scholar 

  31. Liu, P, Zhou, D, Wei, Y, Jiang, K, Wang, J, Zhang, L, Li, Q, Fan, S, “Load Characteristics of a Suspended Carbon Nanotube Film Heater and the Fabrication of a Fast-Response Thermochromic Display Prototype.” ACS Nano, 9 3753–3759 (2015). https://doi.org/10.1021/nn506410y

    Article  CAS  Google Scholar 

  32. Kim, H, Lee, H, Ha, I, Jung, J, Won, P, Cho, H, Yeo, J, Hong, S, Han, S, Kwon, J, Cho, K-J, Ko, SH, “Biomimetic Color Changing Anisotropic Soft Actuators with Integrated Metal Nanowire Percolation Network Transparent Heaters for Soft Robotics.” Adv. Funct. Mater., 28 1801847 (2018). https://doi.org/10.1002/adfm.201801847

    Article  CAS  Google Scholar 

  33. Wang, H, Luo, J, Yang, Y, Zhao, L, Song, G, Tang, G, “Fabrication and Characterization of Microcapsulated Phase Change Materials with an Additional Function of Thermochromic Performance.” Sol. Energy, 139 591–598 (2016). https://doi.org/10.1016/j.solener.2016.10.011

    Article  CAS  Google Scholar 

  34. Karlessi, T, Santamouris, M, Apostolakis, K, Synnefa, A, Livada, I, “Development and Testing of Thermochromic Coatings for Buildings and Urban Structures.” Sol. Energy, 83 538–551 (2009). https://doi.org/10.1016/j.solener.2008.10.005

    Article  CAS  Google Scholar 

  35. Up Market Research, “Colour-Shifting Materials Market.” In: Up Mark. Res. India, 2019. https://www.upmarketresearch.com/reports/color-shifting-materials-market. Accessed 19 Jul 2020

  36. Thies, C, “Microencapsulation.” In: Matyjaszewski, K (ed.) Encyclopedia of Polymer Science and Technology 1st, pp. 1–29. Wiley, Hoboken, 2004

    Google Scholar 

  37. Wang, W, Liu, X, Xie, Y, Zhang, H, Yu, W, Xiong, Y, Xie, W, Ma, X, “Microencapsulation Using Natural Polysaccharides for Drug Delivery and Cell Implantation.” J. Mater. Chem., 16 3252–3267 (2006). https://doi.org/10.1039/b603595g

    Article  CAS  Google Scholar 

  38. Gouin, S, “Microencapsulation: Industrial Appraisal of Existing Technologies and Trends.” Trends Food Sci. Technol., 15 330–347 (2004). https://doi.org/10.1016/j.tifs.2003.10.005

    Article  CAS  Google Scholar 

  39. Li, DM, Shen, LP, “Particle Size Study of Thermochromic Microcapsule.” Adv. Mater. Res., 332–334 1443–1446 (2011). https://doi.org/10.4028/www.scientific.net/amr.332-334.1443

    Article  Google Scholar 

  40. Bamfield, P, Hutchings, M, “Chromic Phenomena: Technology Applications of Colour Chemistry.” Chromic Phenom. Technol. Appl. Colour Chem., (2010). https://doi.org/10.1039/9781849731034-00141

    Article  Google Scholar 

  41. Seeboth, A, Lötzsch, D, Ruhmann, R, Muehling, O, “Thermochromic Polymers—Function by Design.” Chem. Rev., 114 3037–3068 (2014). https://doi.org/10.1021/cr400462e

    Article  CAS  Google Scholar 

  42. Fujita, K, Senga, K, “Thermochromic Micro Encapsulated Pigments.” (US 6,494,950 B1), vol. 1, pp. 1–16, 2002

  43. Clayton, TS, Owen, TJ, Small, L, “Small Scale Micro Encapsulated Pigments and Uses Thereof.” (US 8,883,049 B2), vol. 2, pp. 1–24, 2014

  44. White, MA, LeBlanc, M, “Thermochromism in Commercial Products.” J. Chem. Educ., 76 1201 (2009). https://doi.org/10.1021/ed076p1201

    Article  Google Scholar 

  45. Aitken, D, Burkinshaw, SM, Griffiths, J, Towns, AD, “Textile Applications of Thennochromic Systems.” Rev. Prog. Color. Relat. Top., 26 1–8 (2008). https://doi.org/10.1111/j.1478-4408.1996.tb00105.x

    Article  Google Scholar 

  46. Rochester, JR, “Bisphenol A and Human Health: A Review of the Literature.” Reprod. Toxicol., 42 132–155 (2013). https://doi.org/10.1016/j.reprotox.2013.08.008

    Article  CAS  Google Scholar 

  47. Hejmej, A, Kotula-Balak, M, Bilinsk, B, “Antiandrogenic and Estrogenic Compounds: Effect on Development and Function of Male Reproductive System.” In: Abduljabbar, H (ed.) Steroids - Clinical Aspect. InTech, London, pp. 51–82 (2011). https://doi.org/10.5772/28538

    Chapter  Google Scholar 

  48. Welshons, WV, Nagel, SC, Saal, FS, “Large Effects from Small Exposures. III. Endocrine Mechanisms Mediating Effects of Bisphenol A at Levels of Human Exposure.” Endocrinology, 147 56–69 (2014). https://doi.org/10.1210/en.2005-1159

    Article  CAS  Google Scholar 

  49. Towns, AD, “Thermochromic Composite Materials Formulated From Spirolactone Formers.” In: ChemiChromics, ChemiChromics USA’99 Conference, pp. 1171–1182. ChemiChromics, Spring Innovations Ltd., New Orleans, LA (1999)

  50. Chowdhury, MA, Joshi, M, Butola, BS, “Photochromic and Thermochromic Colorants in Textile Applications.” J. Eng. Fibers Fabr., 9 155892501400900 (2018). https://doi.org/10.1177/155892501400900113

    Article  Google Scholar 

  51. Burkinshaw, SM, Griffiths, J, Towns, AD, “Reversibly Thermochromic Systems Based on pH-Sensitive Functional Dyes.” J. Mater. Chem., (1998). https://doi.org/10.1039/A805994B

    Article  Google Scholar 

  52. Luthern, J, Peredes, A, “Determination of the Stoichiometry of a Thermochromic Color Complex via the Method of Continuous Variation.” J. Mater. Sci. Lett., 22 881–884 (2003). https://doi.org/10.1023/A:1024410703372

    Article  CAS  Google Scholar 

  53. MacLaren, DC, White, MA, “Competition Between Dye-Developer and Solvent-Developer Interactions in a Reversible Thermochromic System.” J. Mater. Chem., 13 1701–1704 (2003). https://doi.org/10.1039/b302250a

    Article  CAS  Google Scholar 

  54. Horiguchi, T, Koshiba, Y, Ueda, Y, Origuchi, C, Tsutsui, K, “Reversible Coloring/Decoloring Reaction Of Leuco Dye Controlled by Long-Chain Molecule.” Thin Solid Films, 516 2591–2594 (2008). https://doi.org/10.1016/j.tsf.2007.04.085

    Article  CAS  Google Scholar 

  55. Tang, H, MacLaren, DC, White, MA, “New Insights Concerning the Mechanism of Reversible Thermochromic Mixtures.” Can. J. Chem., 88 1063–1070 (2010). https://doi.org/10.1139/v10-069

    Article  CAS  Google Scholar 

  56. Ma, Y, Zhang, X, Zhu, B, Wu, K, “Research on Reversible Effects and Mechanism Between The Energy-Absorbing and Energy-Reflecting States of Chameleon-Type Building Coatings.” Sol. Energy, 72 511–520 (2002). https://doi.org/10.1016/S0038-092X(02)00029-4

    Article  CAS  Google Scholar 

  57. Ma, Y, Zhu, B, Wu, K, “Preparation and Solar Reflectance Spectra of Chameleon-Type Building Coatings.” Sol. Energy, 70 417–422 (2001). https://doi.org/10.1016/S0038-092X(00)00160-2

    Article  CAS  Google Scholar 

  58. Geng, X, Li, W, Wang, Y, Lu, J, Wang, J, Wang, N, Li, J, Zhang, X, “Reversible Thermochromic Microencapsulated Phase Change Materials for Thermal Energy Storage Application in Thermal Protective Clothing.” Appl. Energy, 217 281–294 (2018). https://doi.org/10.1016/j.apenergy.2018.02.150

    Article  CAS  Google Scholar 

  59. Perez, G, Allegro, VR, Corroto, M, Pons, A, Guerrero, A, “Smart Reversible Thermochromic Mortar for Improvement of Energy Efficiency in Buildings.” Constr. Build. Mater., 186 884–891 (2018). https://doi.org/10.1016/j.conbuildmat.2018.07.246

    Article  CAS  Google Scholar 

  60. Giro-Paloma, J, Al-Shannaq, R, Fernández, AI, Farid, MM, “Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications.” Materials, (2015). https://doi.org/10.3390/ma9010011

    Article  Google Scholar 

  61. Sharma, M, Whaley, M, Chamberlain, J, Oswald, T, Schroden, R, Graham, A, Barger, M, Richey, B, “Evaluation of Thermochromic Elastomeric Roof Coatings for Low-Slope Roofs.” Energy Build., 155 459–466 (2017). https://doi.org/10.1016/j.enbuild.2017.09.030

    Article  Google Scholar 

  62. Arshady, R, “Microspheres and Microcapsules: A Survey of Manufacturing Techniques. Part 1: Suspension Cross-linking.” Polym. Eng. Sci., 29 1746–1758 (1989). https://doi.org/10.1002/pen.760292404

    Article  CAS  Google Scholar 

  63. Seeboth, A, Klukowska, A, Ruhmann, R, Lötzsch, D, “Thermochromic Polymer Materials.” Chin. J. Polym. Sci., 25 123–135 (2007)

    Article  CAS  Google Scholar 

  64. Song, Y, Fan, JB, Wang, S, “Recent Progress in Interfacial Polymerization.” Mater. Chem. Front., 1 1028–1040 (2017). https://doi.org/10.1039/c6qm00325g

    Article  CAS  Google Scholar 

  65. Kage, H, Kawahara, H, Hamada, N, Kotake, T, Ogura, H, “Operating Conditions and Microcapsules Generated by In Situ Polymerization.” Adv. Powder Technol., 13 265–285 (2002). https://doi.org/10.1163/156855202320252444

    Article  CAS  Google Scholar 

  66. Dalali, N, “Cadmium Separation by Liquid Membranes.” In: Drioli, E, Giorno, L (eds.) Encyclopedia of Membranes, pp. 285–286. Springer, Berlin (2016)

    Chapter  Google Scholar 

  67. Kizilay, E, Kayitmazer, AB, Dubin, PL, “Complexation and Coacervation of Polyelectrolytes with Oppositely Charged Colloids.” Adv. Colloid Interface Sci., 167 24–37 (2011). https://doi.org/10.1016/j.cis.2011.06.006

    Article  CAS  Google Scholar 

  68. Tyagi, VV, Kaushik, SC, Tyagi, SK, Akiyama, T, “Development of Phase Change Materials Based Microencapsulated Technology for Buildings: A Review.” Renew. Sustain. Energy Rev., 15 1373–1391 (2011). https://doi.org/10.1016/j.rser.2010.10.006

    Article  CAS  Google Scholar 

  69. Prajapati, DG, Kandasubramanian, B, “Biodegradable Polymeric Solid Framework-Based Organic Phase Change Materials for Thermal Energy Storage.” Ind. Eng. Chem. Res.58 10652–10677 (2019). https://doi.org/10.1021/acs.iecr.9b01693

    Article  CAS  Google Scholar 

  70. Su, JF, Wang, LX, Ren, L, “Synthesis of Polyurethane MicroPCMs Containing n-Octadecane by Interfacial Polycondensation: Influence of Styrene-Maleic Anhydride as a Surfactant.” Colloids Surf. A Physicochem. Eng. Asp., 299 268–275 (2007). https://doi.org/10.1016/j.colsurfa.2006.11.051

    Article  CAS  Google Scholar 

  71. Yang, Y, Ye, X, Luo, J, Song, G, Liu, Y, Tang, G, “Polymethyl Methacrylate Based Phase Change Microencapsulation for Solar Energy Storage with Silicon Nitride.” Sol. Energy, 115 289–296 (2015). https://doi.org/10.1016/j.solener.2015.02.036

    Article  CAS  Google Scholar 

  72. Aydin, AA, “In Situ Preparation and Characterization of Encapsulated High-Chain Fatty Acid Ester-Based Phase Change Material (PCM) in Poly(urethane-urea) by Using Poly-Functional Amino Alcohol.” Chem. Eng. J., 231 477–483 (2013). https://doi.org/10.1016/j.cej.2013.07.026

    Article  CAS  Google Scholar 

  73. Deveci, SS, Basal, G, “Preparation of PCM Microcapsules by Complex Coacervation of Silk Fibroin and Chitosan.” Colloid Polym. Sci., 287 1455–1467 (2009). https://doi.org/10.1007/s00396-009-2115-z

    Article  CAS  Google Scholar 

  74. Geng, X, Li, W, Yin, Q, Wang, Y, Han, N, Wang, N, Bian, J, Wang, J, Zhang, X, Design and Fabrication of Reversible Thermochromic Microencapsulated Phase Change Materials for Thermal Energy Storage and its Antibacterial Activity. Elsevier, Amsterdam (2018)

    Book  Google Scholar 

  75. Zheng, S, Xu, Y, Shen, Q, Yang, H, “Preparation of Thermochromic Coatings and Their Energy Saving Analysis.” Sol. Energy, 112 263–271 (2015). https://doi.org/10.1016/j.solener.2014.09.049

    Article  CAS  Google Scholar 

  76. Hu, J, Yu, XB, “Adaptive Thermochromic Roof System: Assessment of Performance Under Different Climates.” Energy Build., 192 1–14 (2019). https://doi.org/10.1016/j.enbuild.2019.02.040

    Article  Google Scholar 

  77. Berdahl, P, Akbari, H, Levinson, R, Miller, WA, “Weathering of Roofing Materials—An Overview.” Constr. Build. Mater., 22 423–433 (2008). https://doi.org/10.1016/j.conbuildmat.2006.10.015

    Article  Google Scholar 

  78. Kumar, V, Balasubramanian, K, “Progress Update on Failure Mechanisms of Advanced Thermal Barrier Coatings: A Review.” Prog. Org. Coat., 90 54–82 (2016). https://doi.org/10.1016/j.porgcoat.2015.09.019

    Article  CAS  Google Scholar 

  79. Karlessi, T, Santamouris, M, “Improving the Performance of Thermochromic Coatings with the Use of UV and Optical Filters Tested Under Accelerated Aging Conditions.” Int. J. Low-Carbon Technol., 10 45–61 (2015). https://doi.org/10.1093/ijlct/ctt027

    Article  CAS  Google Scholar 

  80. Garshasbi, S, Santamouris, M, “Using Advanced Thermochromic Technologies in the Built Environment: Recent Development and Potential to Decrease the Energy Consumption and Fight Urban Overheating.” Sol. Energy Mater. Sol. Cells, 191 21–32 (2019). https://doi.org/10.1016/j.solmat.2018.10.023

    Article  CAS  Google Scholar 

  81. Zhou, Y, Cai, Y, Hu, X, Long, Y, “Temperature-Responsive Hydrogel with Ultra-Large Solar Modulation and High Luminous Transmission for “Smart Window” Applications.” J. Mater. Chem. A, 2 13550–13555 (2014). https://doi.org/10.1039/c4ta02287d

    Article  CAS  Google Scholar 

  82. Long, L, Ye, H, “How to Be Smart and Energy Efficient: A General Discussion on Thermochromic Windows.” Sci. Rep., 4 1–10 (2014). https://doi.org/10.1038/srep06427

    Article  CAS  Google Scholar 

  83. Singh, AK, Kiruthika, S, Mondal, I, Kulkarni, GU, “Fabrication of Solar and Electrically Adjustable Large Area Smart Windows for Indoor Light and Heat Modulation.” J. Mater. Chem. C, 5 5917–5922 (2017). https://doi.org/10.1039/c7tc01489a

    Article  CAS  Google Scholar 

  84. Pacheco Torgal, F, “Introduction to Nano- and Biotech-Based Materials for Energy Building Efficiency.” In: Pacheco Torgal, F, Buratti, C, Kalaiselvam, S, Granqvist, C-G, Ivanov, V (eds.) Nano and Biotech Based Materials for Energy Building Efficiency, pp. 1–16. Springer, Cham (2016)

    Chapter  Google Scholar 

  85. Ji, Y-X, Boman, M, Niklasson, GA, Granqvist, C-G, “Thermochromics for Energy-Efficient Buildings: Thin Surface Coatings and Nanoparticle Composites.” In: Pacheco Torgal, F, Buratti, C, Kalaiselvam, S, Granqvist, C-G, Ivanov, V, (eds.) Nano and Biotech Based Materials for Energy Building Efficiency, pp. 71–96. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27505-5_4

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. C. P. Ramanarayanan, Vice-Chancellor of DIAT (DU), Pune, and Prof. S. T. Mhaske, Head of Department of Polymer and Surface Engineering, ICT Mumbai, for constant encouragement and support. The authors would also like to acknowledge Mr. Swaroop Gharde, Mr. Prakash Gore, Mr. Jay Korde, Mr. Nihar Sakhadeo, Mr. Nikhil Patil, Mr. Shivanand Aklujkar, and Mrs. Uma Aklujkar for technical discussion and support. The authors are thankful to all anonymous Reviewers and the Editor for improving the quality of the revised manuscript by their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aklujkar, P.S., Kandasubramanian, B. A review of microencapsulated thermochromic coatings for sustainable building applications. J Coat Technol Res 18, 19–37 (2021). https://doi.org/10.1007/s11998-020-00396-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00396-3

Keywords

Navigation