Skip to main content

Advertisement

Log in

A review on microencapsulated phase change materials in building materials

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Energy is one of the most critical factors in modern life and its consumption is increasing. Fossil fuels, the main energy sources, are being depleted due to heavy demand, which also contributes to the rising atmospheric temperature, harming both nature and human health. To overcome the energy crisis, improving the energy efficiency of existing technologies is crucial. Phase change materials (PCMs) are promising materials that improve energy efficiency through thermoregulation. By storing thermal energy within a narrow temperature range, PCMs reduce temperature fluctuations, minimizing the energy required to maintain a constant temperature. Buildings consume a large amount of energy for thermoregulation, and the incorporation of microencapsulated PCMs (MPCMs) into building materials can play a crucial role in regulating temperature. This review paper acquaints the reader with PCMs, their types and PCM microencapsulation techniques, which are essential for formulating coatings in the paint industry and other building materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

PCM:

Phase change material

NPCM:

Nanoencapsulated phase change material

MPCM:

Microencapsulated phase change material

TES:

Thermal energy storage

DVB:

Divinylbenzene

MWCNT:

Multi-walled carbon nanotubes

TEOS:

Tetraethoxysilane

EG:

Extended graphene

PEG:

Polyethylene glycol

PMMA:

Polymethyl methacrylate

NPs:

Nanoparticles

References

  1. Peng, G, Dou, G, Yahao, H, Sun, Y, Chen, Z, “Phase Change Material (PCM) Microcapsules for Thermal Energy Storage.” Adv. Polym. Technol., 2020 1–20. https://doi.org/10.1155/2020/9490873 (2020)

    Article  CAS  Google Scholar 

  2. Su, W, Darkwa, J, Kokogiannakis, G, Zhou, T, Li, Y, “Preparation of Microencapsulated Phase Change Materials (MEPCM) for Thermal Energy Storage.” Energy Procedia, 121 95–101. https://doi.org/10.1016/j.egypro.2017.07.485 (2017)

    Article  CAS  Google Scholar 

  3. Lee, KO, Medina, MA, Sun, X, Jin, X, “Thermal Performance of Phase Change Materials (PCM)-Enhanced Cellulose Insulation in Passive Solar Residential Building Walls.” Sol. Energy, 163 113–121. https://doi.org/10.1016/j.solener.2018.01.086 (2018)

    Article  Google Scholar 

  4. Sarı, A, Saleh, TA, Hekimoğlu, G, Tyagi, VV, Sharma, RK, “Microencapsulated Heptadecane with Calcium Carbonate as Thermal Conductivity-Enhanced Phase Change Material for Thermal Energy Storage.” J. Mol. Liq., 328 115508. https://doi.org/10.1016/j.molliq.2021.115508 (2021)

    Article  CAS  Google Scholar 

  5. Ganatra, Y, Ruiz, J, Howarter, JA, Marconnet, A, “Experimental Investigation of Phase Change Materials for Thermal Management of Handheld Devices.” Int. J. Thermal Sci., 129 358–364. https://doi.org/10.1016/j.ijthermalsci.2018.03.012 (2018)

    Article  Google Scholar 

  6. Sarbu, I, Sebarchievici, C, “A Comprehensive Review of Thermal Energy Storage.” Sustainability (Switzerland)., 10 (1) 191. https://doi.org/10.3390/su10010191 (2018)

    Article  CAS  Google Scholar 

  7. Anisur, MR, Mahfuz, MH, Kibria, MA, Saidur, R, Metselaar, IHSC, Mahlia, TMI, “Curbing Global Warming with Phase Change Materials for Energy Storage.” Renew. Sustain. Energy Rev., 18 23–30. https://doi.org/10.1016/j.rser.2012.10.014 (2013)

    Article  Google Scholar 

  8. Verdier, D, Ferrière, A, Falcoz, Q, Siros, F, Couturier, R, “Experimentation of a High Temperature Thermal Energy Storage Prototype Using Phase Change Materials for the Thermal Protection of a Pressurized Air Solar Receiver.” Energy Procedia, 49 1044–1053. https://doi.org/10.1016/j.egypro.2014.03.112 (2014)

    Article  CAS  Google Scholar 

  9. Lin, Y, Jia, Y, Alva, G, Fang, G, “Review on Thermal Conductivity Enhancement, Thermal Properties and Applications of Phase Change Materials in Thermal Energy Storage.” Renew. Sustain. Energy Rev., 82 2730–2742. https://doi.org/10.1016/j.rser.2017.10.002 (2018)

    Article  CAS  Google Scholar 

  10. Giro-Paloma, J, Martínez, M, Cabeza, LF, Fernández, AI, “Types, Methods, Techniques, and Applications for Microencapsulated Phase Change Materials (MPCM): A Review.” Renew. Sustain. Energy Rev., 53 1059–1075. https://doi.org/10.1016/j.rser.2015.09.040 (2016)

    Article  CAS  Google Scholar 

  11. Abhat, A, “Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials.” Solar Energy, 30 313 (1983)

    Article  CAS  Google Scholar 

  12. en Zalba, B, Mar ı ın, JM, Cabeza, LF, Mehling, H, “Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications.” [Online]. Available: www.elsevier.com/locate/apthermeng

  13. Kuznik, F, Virgone, J, Noel, J, “Optimization of a Phase Change Material Wallboard for Building Use.” Appl. Thermal Eng., 28 (11–12) 1291–1298. https://doi.org/10.1016/j.applthermaleng.2007.10.012 (2008)

    Article  CAS  Google Scholar 

  14. Huang, X, Alva, G, Jia, Y, Fang, G, “Morphological Characterization and Applications of Phase Change Materials in Thermal Energy Storage: A Review.” Renew. Sustain. Energy Rev., 72 128–145. https://doi.org/10.1016/j.rser.2017.01.048 (2017)

    Article  CAS  Google Scholar 

  15. Khan, Z, Khan, Z, Ghafoor, A, “A Review of Performance Enhancement of PCM Based Latent Heat Storage System Within the Context of Materials, Thermal Stability and Compatibility.” Energy Convers. Manag., 115 132–158. https://doi.org/10.1016/j.enconman.2016.02.045 (2016)

    Article  CAS  Google Scholar 

  16. Wang, T, Tong, J, Li, X, Wang, S, Deng, J, “Research on Morphological Control and Temperature Regulation of Phase Change Microcapsules with Binary Cores for Electronics Thermal Management.” Thermochim. Acta, 706 179079. https://doi.org/10.1016/j.tca.2021.179079 (2021)

    Article  CAS  Google Scholar 

  17. Alva, G, Huang, X, Liu, L, Fang, G, “Synthesis and Characterization of Microencapsulated Myristic Acid–Palmitic Acid Eutectic Mixture as Phase Change Material for Thermal Energy Storage.” Appl. Energy, 203 677–685. https://doi.org/10.1016/j.apenergy.2017.06.082 (2017)

    Article  CAS  Google Scholar 

  18. Sari, A, Alkan, C, Karaipekli, A, Uzun, O, “Microencapsulated n-Octacosane as Phase Change Material for Thermal Energy Storage.” Solar Energy, 83 (10) 1757–1763. https://doi.org/10.1016/j.solener.2009.05.008 (2009)

    Article  CAS  Google Scholar 

  19. Sami, S, Sadrameli, SM, Etesami, N, “Thermal Properties Optimization of Microencapsulated a Renewable and Non-Toxic Phase Change Material with a Polystyrene Shell for Thermal Energy Storage Systems.” Appl. Thermal Eng., 130 1416–1424. https://doi.org/10.1016/j.applthermaleng.2017.11.119 (2018)

    Article  CAS  Google Scholar 

  20. Zhao, J, et al. “Microencapsulated Phase Change Materials with TiO2-doped PMMA Shell for Thermal Energy Storage and UV-Shielding.” Solar Energy Mater. Solar Cells, 168 62–68. https://doi.org/10.1016/j.solmat.2017.04.014 (2017)

    Article  CAS  Google Scholar 

  21. Agyenim, F, Hewitt, N, Eames, P, Smyth, M, “A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS).” Renew. Sustain. Energy Rev., 14 (2) 615–628. https://doi.org/10.1016/j.rser.2009.10.015 (2010)

    Article  CAS  Google Scholar 

  22. Khadiran, T, Hussein, MZ, Zainal, Z, Rusli, R, “Advanced Energy Storage Materials for Building Applications and their Thermal Performance Characterization: A Review.” Renew. Sustain. Energy Rev., 57 916–928. https://doi.org/10.1016/j.rser.2015.12.081 (2016)

    Article  CAS  Google Scholar 

  23. Tan, FL, Tso, CP, “Cooling of Mobile Electronic Devices Using Phase Change Materials.” Appl. Thermal Eng., 24 (2–3) 159–169. https://doi.org/10.1016/j.applthermaleng.2003.09.005 (2004)

    Article  CAS  Google Scholar 

  24. Mondal, S, “Phase Change Materials for Smart Textiles - An Overview.” Appl. Thermal Eng., 28 (11–12) 1536–1550. https://doi.org/10.1016/j.applthermaleng.2007.08.009 (2008)

    Article  CAS  Google Scholar 

  25. Su, W, Darkwa, J, Kokogiannakis, G, “Review of Solid-Liquid Phase Change Materials and Their Encapsulation Technologies.” Renew. Sustain. Energy Rev., 48 373–391. https://doi.org/10.1016/j.rser.2015.04.044 (2015)

    Article  CAS  Google Scholar 

  26. Milián, YE, Gutiérrez, A, Grágeda, M, Ushak, S, “A Review on Encapsulation Techniques for Inorganic Phase Change Materials and the Influence on Their Thermophysical Properties.” Renew. Sustain. Energy Rev., 73 983–999. https://doi.org/10.1016/j.rser.2017.01.159 (2017)

    Article  CAS  Google Scholar 

  27. Kenisarin, M, Mahkamov, K, “Solar Energy Storage Using Phase Change Materials.” Renew. Sustain. Energy Rev., 11 (9) 1913–1965. https://doi.org/10.1016/j.rser.2006.05.005 (2007)

    Article  CAS  Google Scholar 

  28. Ji, H, et al. “Enhanced Thermal Conductivity of Phase Change Materials with Ultrathin-Graphite Foams for Thermal Energy Storage.” Energy Environ. Sci., 7 (3) 1185–1192. https://doi.org/10.1039/c3ee42573h (2014)

    Article  CAS  Google Scholar 

  29. Hasan, A, Sayigh, AA, “Some Fatty Acids as Phase-Change Thermal Energy Storage Materials.” Renew. Energy, 4 (1) 69–76. https://doi.org/10.1016/0960-1481(94)90066-3 (1994)

    Article  CAS  Google Scholar 

  30. Yuan, Y, Zhang, N, Tao, W, Cao, X, He, Y, “Fatty Acids as Phase Change Materials: A Review.” Renew. Sustain. Energy Rev., 29 482–498. https://doi.org/10.1016/j.rser.2013.08.107 (2014)

    Article  CAS  Google Scholar 

  31. Naikwadi, AT, Samui, AB, Mahanwar, PA, “Melamine-Formaldehyde Microencapsulated n-Tetracosane Phase Change Material for Solar Thermal Energy Storage in Coating.” Solar Energy Mater. Solar Cells., 215 110676. https://doi.org/10.1016/j.solmat.2020.110676 (2020)

    Article  CAS  Google Scholar 

  32. Khudhair, AM, Farid, MM, “A Review on Energy Conservation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials.” Energy Convers. Manag., 45 (2) 263–275. https://doi.org/10.1016/S0196-8904(03)00131-6 (2004)

    Article  CAS  Google Scholar 

  33. Gunasekara, SN, Martin, V, Chiu, JN, “Phase Equilibrium in the Design of Phase Change Materials for Thermal Energy Storage: State-of-the-Art.” Renew. Sustain. Energy Rev., 73 558–581. https://doi.org/10.1016/j.rser.2017.01.108 (2017)

    Article  CAS  Google Scholar 

  34. Zhang, N, Yuan, Y, Cao, X, Du, Y, Zhang, Z, Gui, Y, “Latent Heat Thermal Energy Storage Systems with Solid-Liquid Phase Change Materials: A Review.” Adv. Eng. Mater., 20 (6) 1700753. https://doi.org/10.1002/adem.201700753 (2018)

    Article  CAS  Google Scholar 

  35. Kalnæs, SE, Jelle, BP, “Phase Change Materials and Products for Building Applications: A State-of-the-Art Review and Future Research Opportunities.” Energy Build., 94 150–176. https://doi.org/10.1016/j.enbuild.2015.02.023 (2015)

    Article  Google Scholar 

  36. Salgaonkar CP, Kulkarni RS, and Kulkarni DD, “International Journal of Current Engineering and Technology Eutectic: Phase Change Material for Food Storage.” [Online]. Available: http://inpressco.com/category/ijcet

  37. Sharma, A, Tyagi, VV, Chen, CR, Buddhi, D, “Review on Thermal Energy Storage with Phase Change Materials and Applications.” Renew. Sustain. Energy Rev., 13 (2) 318–345. https://doi.org/10.1016/j.rser.2007.10.005 (2009)

    Article  CAS  Google Scholar 

  38. Cabeza, LF, Castell, A, Barreneche, C, de Gracia, A, Fernández, AI, “Materials used as PCM in Thermal Energy Storage in Buildings: A Review.” Renew. Sustain. Energy Rev., 15 (3) 1675–1695. https://doi.org/10.1016/j.rser.2010.11.018 (2011)

    Article  CAS  Google Scholar 

  39. Dutt Sharma, S, Kitano, H, Sagara, K, “Phase Change Materials for Low Temperature Solar Thermal Applications.” Res. Rep. Fac. Eng. Mie. Univ., 29 31–64 (2004)

    Google Scholar 

  40. Parameshwaran, R, Kalaiselvam, S, “Energy Efficient Hybrid Nanocomposite-Based Cool Thermal Storage Air Conditioning System for Sustainable Buildings.” Energy, 59 194–214. https://doi.org/10.1016/j.energy.2013.06.064 (2013)

    Article  CAS  Google Scholar 

  41. Oró, E, de Gracia, A, Castell, A, Farid, MM, Cabeza, LF, “Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications.” Appl. Energy, 99 513–533. https://doi.org/10.1016/j.apenergy.2012.03.058 (2012)

    Article  CAS  Google Scholar 

  42. Kauranen, P, Peippo, K, Lund, PD, “An Organic PCM Storage System with Adjustable Melting Temperature.” Solar Energy, 46 (5) 275–278. https://doi.org/10.1016/0038-092X(91)90094-D (1991)

    Article  CAS  Google Scholar 

  43. Yu, Q, Chen, X, Yang, H, “Research Progress on Utilization of Phase Change Materials in Photovoltaic/Thermal Systems: A Critical Review.” Renew. Sustain. Energy Rev., 149 111313. https://doi.org/10.1016/j.rser.2021.111313 (2021)

    Article  CAS  Google Scholar 

  44. Farid, MM, Khudhair, AM, Razack, SAK, Al-Hallaj, S, “A Review on Phase Change Energy Storage: Materials and Applications.” Energy Convers. Manag., 45 (9–10) 1597–1615. https://doi.org/10.1016/j.enconman.2003.09.015 (2004)

    Article  CAS  Google Scholar 

  45. Li, M, Wu, Z, Kao, H, “Study on Preparation and Thermal Properties of Binary Fatty Acid/Diatomite Shape-Stabilized Phase Change Materials.” Solar Energy Mater. Solar Cells, 95 (8) 2412–2416. https://doi.org/10.1016/j.solmat.2011.04.017 (2011)

    Article  CAS  Google Scholar 

  46. Karaipekli, A, Sari, A, “Capric-myristic Acid/Expanded Perlite Composite as Form-Stable Phase Change Material for Latent Heat Thermal Energy Storage.” Renew. Energy, 33 (12) 2599–2605. https://doi.org/10.1016/j.renene.2008.02.024 (2008)

    Article  CAS  Google Scholar 

  47. Karaipekli, A, Sari, A, “Preparation, Thermal Properties and Thermal Reliability of Eutectic Mixtures of Fatty Acids/Expanded Vermiculite as Novel Form-Stable Composites for Energy Storage.” J. Industr. Eng. Chem., 16 (5) 767–773. https://doi.org/10.1016/j.jiec.2010.07.003 (2010)

    Article  CAS  Google Scholar 

  48. Sari, A, “Thermal Reliability Test of Some Fatty Acids as PCMs Used for Solar Thermal Latent Heat Storage Applications.” Energy Convers. Manag., 44 (14) 2277–2287. https://doi.org/10.1016/S0196-8904(02)00251-0 (2003)

    Article  CAS  Google Scholar 

  49. Kumar, A, Tiwari, AK, Said, Z, “A Comprehensive Review Analysis on Advances of Evacuated Tube Solar Collector Using Nanofluids and PCM.” Sustain. Energy Technol. Assess., 47 101417. https://doi.org/10.1016/j.seta.2021.101417 (2021)

    Article  Google Scholar 

  50. Lin, X, Zhang, X, Ji, J, Zheng, L, “Research Progress on Preparation, Characterization, and Application of Nanoparticle-Based Microencapsulated Phase Change Materials.” Int. J. Energy Res., 45 (7) 9831–9857. https://doi.org/10.1002/er.6538 (2021)

    Article  CAS  Google Scholar 

  51. Bharadwaj Reddy, P, Gunasekar, C, Mhaske, AS, Vijay Krishna, N, “Enhancement of Thermal Conductivity of PCM Using Filler Graphite Powder Materials.” IOP Conf. Ser. Mater. Sci. Eng., 402 (1) 12173. https://doi.org/10.1088/1757-899X/402/1/012173 (2018)

    Article  Google Scholar 

  52. Singh, R, Sadeghi, S, Shabani, B, “Thermal Conductivity Enhancement of Phase Change Materials for Low-Temperature Thermal Energy Storage Applications.” Energies (Basel), 12 (1) 75. https://doi.org/10.3390/en12010075 (2019)

    Article  CAS  Google Scholar 

  53. Marcos, MA, et al. “PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets.” Nanomaterials, 8 (1) 16. https://doi.org/10.3390/nano8010016 (2018)

    Article  CAS  Google Scholar 

  54. Fukai J, Kanou M, Kodama Y, Miyatake O, “Thermal Conductivity Enhancement of Energy Storage Media Using Carbon Fibers.” [Online]. Available: www.elsevier.com/locate/enconman

  55. Yu, Z, Feng, D, Feng, Y, Zhang, X, “Thermal Conductivity and Energy Storage Capacity Enhancement and Bottleneck of Shape-Stabilized Phase Change Composites with Graphene Foam and Carbon Nanotubes.” Compos. Part A: Appl. Sci. Manufact., 152 106703. https://doi.org/10.1016/j.compositesa.2021.106703 (2022)

    Article  CAS  Google Scholar 

  56. Chinnasamy, V, Cho, H, “Investigation on Thermal Properties Enhancement of Lauryl Alcohol with Multi-Walled Carbon Nanotubes as Phase Change Material for Thermal Energy Storage.” Case Stud. Thermal Eng., 31 101826. https://doi.org/10.1016/j.csite.2022.101826 (2022)

    Article  Google Scholar 

  57. Nomura, T, Tabuchi, K, Zhu, C, Sheng, N, Wang, S, Akiyama, T, “High Thermal Conductivity Phase Change Composite with Percolating Carbon Fiber Network.” Appl. Energy, 154 678–685. https://doi.org/10.1016/j.apenergy.2015.05.042 (2015)

    Article  CAS  Google Scholar 

  58. Ouikhalfan, M, Hekimoğlu, G, Sari, A, Gencel, O, Tyagi, VV, “Metal Oxide Nanoparticle Dispersed-Polyethylene Glycol: Thermal Conductivity and Thermal Energy Storage Properties.” Energy & Fuels, 36 (5) 2821–2832. https://doi.org/10.1021/acs.energyfuels.1c04140 (2022)

    Article  CAS  Google Scholar 

  59. Zhao, CY, Tao, YB, Yu, YS, “Thermal Conductivity Enhancement of Phase Change Material with Charged Nanoparticle: A Molecular Dynamics Simulation.” Energy, 242 123033. https://doi.org/10.1016/j.energy.2021.123033 (2022)

    Article  CAS  Google Scholar 

  60. Mishra, DK, Bhowmik, S, Pandey, KM, “Analysis of Heat Transfer Rate for Different Annulus Shape Properties-Enhanced Beeswax-Based Phase Change Material for Thermal Energy Storage.” Math. Probl. Eng., 2022 1–21. https://doi.org/10.1155/2022/6123472 (2022)

    Article  CAS  Google Scholar 

  61. Raja Jeyaseelan, T, Azhagesan, N, Pethurajan, V, “Thermal Characterization of NaNO3/KNO3 with Different Concentrations of Al2O3 and TiO2 Nanoparticles.” J. Thermal Anal. Calorim., 136 (1) 235–242. https://doi.org/10.1007/s10973-018-7980-6 (2019)

    Article  Google Scholar 

  62. Yu, Q, Romagnoli, A, Al-Duri, B, Xie, D, Ding, Y, Li, Y, “Heat Storage Performance Analysis and Parameter Design for Encapsulated Phase Change Materials.” Energy Convers. Manag., 157 619–630. https://doi.org/10.1016/j.enconman.2017.12.040 (2018)

    Article  CAS  Google Scholar 

  63. Wang, H, Zhao, L, Song, G, Tang, G, Shi, X, “Organic-Inorganic Hybrid Shell Microencapsulated Phase Change Materials Prepared from SiO2/TiC-Stabilized Pickering Emulsion Polymerization.” Solar Energy Mater. Solar Cells, 175 102–110. https://doi.org/10.1016/j.solmat.2017.09.015 (2018)

    Article  CAS  Google Scholar 

  64. Al-Shannaq, R, Kurdi, J, Al-Muhtaseb, S, Farid, M, “Innovative Method of Metal Coating of Microcapsules Containing Phase Change Materials.” Sol. Energy, 129 54–64. https://doi.org/10.1016/j.solener.2016.01.043 (2016)

    Article  CAS  Google Scholar 

  65. Jamekhorshid, A, Sadrameli, SM, Farid, M, “A Review of Microencapsulation Methods of Phase Change Materials (PCMs) as a Thermal Energy Storage (TES) Medium.” Renew. Sustain. Energy Rev., 31 531–542. https://doi.org/10.1016/j.rser.2013.12.033 (2014)

    Article  CAS  Google Scholar 

  66. Regin, AF, Solanki, SC, Saini, JS, “Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review.” Renew. Sustain. Energy Rev., 12 (9) 2438–2458. https://doi.org/10.1016/j.rser.2007.06.009 (2008)

    Article  CAS  Google Scholar 

  67. Umair, MM, Zhang, Y, Iqbal, K, Zhang, S, Tang, B, “Novel Strategies and Supporting Materials Applied to Shape-Stabilize Organic Phase Change Materials for Thermal Energy Storage–A Review.” Appl. Energy, 235 846–873. https://doi.org/10.1016/j.apenergy.2018.11.017 (2019)

    Article  CAS  Google Scholar 

  68. Kaygusuz, K, Alkan, C, Sari, A, Uzun, O, “Encapsulated Fatty Acids in an Acrylic Resin as Shape-Stabilized Phase Change Materials for Latent Heat Thermal Energy Storage.” Energy Sources Part A: Recovery Utilizat. Environ. Effects, 30 (11) 1050–1059. https://doi.org/10.1080/15567030701258212 (2008)

    Article  CAS  Google Scholar 

  69. Su, J, Wang, L, Ren, L, “Fabrication and Thermal Properties of MicroPCMs: Used Melamine-Formaldehyde Resin as Shell Material.” J. Appl. Polym. Sci., 101 (3) 1522–1528. https://doi.org/10.1002/app.23151 (2006)

    Article  CAS  Google Scholar 

  70. Wu, S, Yuan, L, Gu, A, Zhang, Y, Liang, G, “Synthesis and Characterization of Novel Epoxy Resins-Filled Microcapsules with Organic/Inorganic Hybrid Shell for the Self-Healing of High Performance Resins.” Polym. Adv. Technol., 27 (12) 1544–1556. https://doi.org/10.1002/pat.3829 (2016)

    Article  CAS  Google Scholar 

  71. Wang, T, Wang, S, Luo, R, Zhu, C, Akiyama, T, Zhang, Z, “Microencapsulation of Phase Change Materials with Binary Cores and Calcium Carbonate Shell for Thermal Energy Storage.” Appl. Energy, 171 113–119. https://doi.org/10.1016/j.apenergy.2016.03.037 (2016)

    Article  CAS  Google Scholar 

  72. Wang, LY, Tsai, PS, Yang, YM, “Preparation of Silica Microspheres Encapsulating Phase-Change Material by Sol-Gel Method in O/W Emulsion.” J. Microencapsulat., 23 (1) 3–14. https://doi.org/10.1080/02652040500286045 (2006)

    Article  CAS  Google Scholar 

  73. Cao, L, Tang, F, Fang, G, “Preparation and Characteristics of Microencapsulated Palmitic Acid with TiO2 Shell as Shape-Stabilized Thermal Energy Storage Materials.” Solar Energy Mater. Solar Cells, 123 183–188. https://doi.org/10.1016/j.solmat.2014.01.023 (2014)

    Article  CAS  Google Scholar 

  74. Li, F, Wang, X, Wu, D, “Fabrication of Multifunctional Microcapsules Containing n-Eicosane Core and Zinc Oxide Shell for Low-Temperature Energy Storage, Photocatalysis, and Antibiosis.” Energy Convers. Manag., 106 873–885. https://doi.org/10.1016/j.enconman.2015.10.026 (2015)

    Article  CAS  Google Scholar 

  75. Shi, J, Wu, X, Fu, X, Sun, R, “Synthesis and Thermal Properties of a Novel Nanoencapsulated Phase Change Material with PMMA and SiO2 as Hybrid Shell Materials.” Thermochim. Acta, 617 90–94. https://doi.org/10.1016/j.tca.2015.08.022 (2015)

    Article  CAS  Google Scholar 

  76. Kahraman Döğüşcü, D, Damlıoğlu, Y, Alkan, C, “Poly(styrene-Co-Divinylbenzene-Co-Acrylamide)/n-Octadecane Microencapsulated Phase Change Materials for Thermal Energy Storage.” Solar Energy Mater. Solar Cells., 198 5–10. https://doi.org/10.1016/j.solmat.2019.04.008 (2019)

    Article  CAS  Google Scholar 

  77. Chung, SL, Lin, JS, “Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles.” Molecules., 21 (5) 670. https://doi.org/10.3390/molecules21050670 (2016)

    Article  CAS  Google Scholar 

  78. Wondu, E, Lule, Z, Kim, J, “Thermal Conductivity and Mechanical Properties of Thermoplastic Polyurethane-/Silane-Modified Al2O3 Composite Fabricated via Melt Compounding.” Polymers, https://doi.org/10.3390/polym11071103 (2019)

    Article  Google Scholar 

  79. Hassan, A, Laghari, MS, Rashid, Y, “Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics.” Sustainability (Switzerland), 8 (10) 1046. https://doi.org/10.3390/su8101046 (2016)

    Article  CAS  Google Scholar 

  80. Zhang, X, Zhang, Y, Yan, Y, Chen, Z, “Synthesis and Characterization of Hydroxylated Carbon Nanotubes Modified Microencapsulated Phase Change Materials with High Latent Heat and Thermal Conductivity for Solar Energy Storage.” Solar Energy Mater. Solar Cells., 236 111546. https://doi.org/10.1016/j.solmat.2021.111546 (2022)

    Article  CAS  Google Scholar 

  81. Li, CF, Qin, ZX, Liu, Y, Pan, YD, Liu, ML, “Preparation of a Nano-Silica Modified Melamine Formaldehyde Resin.” Int. J. Adhes. Adhes., 113 103076. https://doi.org/10.1016/j.ijadhadh.2021.103076 (2022)

    Article  CAS  Google Scholar 

  82. Parvate, S, Singh, J, Reddy Vennapusa, J, Dixit, P, Chattopadhyay, S, “Copper Nanoparticles Interlocked Phase-Change Microcapsules for Thermal Buffering in Packaging Application.” J. Industr. Eng. Chem., 102 69–85. https://doi.org/10.1016/j.jiec.2021.06.029 (2021)

    Article  CAS  Google Scholar 

  83. Gharsallaoui, A, Roudaut, G, Chambin, O, Voilley, A, Saurel, R, “Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview.” Food Res. Int., 40 (9) 1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004 (2007)

    Article  CAS  Google Scholar 

  84. Lazko, J, Popineau, Y, Legrand, J, “Soy Glycinin Microcapsules by Simple Coacervation Method.” Colloids Surf. B, 37 (1–2) 1–8. https://doi.org/10.1016/J.COLSURFB.2004.06.004 (2004)

    Article  CAS  Google Scholar 

  85. Konuklu, Y, Unal, M, Paksoy, HO, “Microencapsulation of Caprylic Acid with Different Wall Materials as Phase Change Material for Thermal Energy Storage.” Solar Energy Mater. Solar Cells, 120 (1) 536–542. https://doi.org/10.1016/J.SOLMAT.2013.09.035 (2014)

    Article  CAS  Google Scholar 

  86. Onder, E, Sarier, N, Cimen, E, “Encapsulation of Phase Change Materials by Complex Coacervation to Improve Thermal Performances of Woven Fabrics.” Thermochim. Acta, 467 (1–2) 63–72. https://doi.org/10.1016/J.TCA.2007.11.007 (2008)

    Article  CAS  Google Scholar 

  87. He, F, Wang, X, Wu, D, “New Approach for Sol–Gel Synthesis of Microencapsulated n-Octadecane Phase Change Material with Silica Wall Using Sodium Silicate Precursor.” Energy, 67 223–233. https://doi.org/10.1016/J.ENERGY.2013.11.088 (2014)

    Article  CAS  Google Scholar 

  88. Li, M, Wu, Z, Tan, J, “Properties of form-Stable Paraffin/Silicon Dioxide/Expanded Graphite Phase Change Composites Prepared by Sol–Gel Method.” Appl. Energy, 92 456–461. https://doi.org/10.1016/J.APENERGY.2011.11.018 (2012)

    Article  CAS  Google Scholar 

  89. Lu, S, et al. “Preparation and Characterization of Cross-Linked Polyurethane Shell Microencapsulated Phase Change Materials by Interfacial Polymerization.” Mater. Lett., 211 36–39. https://doi.org/10.1016/J.MATLET.2017.09.074 (2018)

    Article  CAS  Google Scholar 

  90. Su, JF, Wang, LX, Ren, L, “Synthesis of Polyurethane microPCMs Containing n-Octadecane by Interfacial Polycondensation: Influence of Styrene-Maleic Anhydride as a Surfactant.” Colloids Surf. A, 299 (1–3) 268–275. https://doi.org/10.1016/J.COLSURFA.2006.11.051 (2007)

    Article  CAS  Google Scholar 

  91. Tang, X, Li, W, Zhang, X, Shi, H, “Fabrication and Characterization of Microencapsulated Phase Change Material with Low Supercooling for Thermal Energy Storage.” Energy, 68 160–166. https://doi.org/10.1016/J.ENERGY.2014.03.002 (2014)

    Article  CAS  Google Scholar 

  92. Qiu, X, Lu, L, Wang, J, Tang, G, Song, G, “Preparation and Characterization of Microencapsulated n-Octadecane as Phase Change Material with Different n-Butyl Methacrylate-Based Copolymer Shells.” Solar Energy Mater. Solar Cells, 128 102–111. https://doi.org/10.1016/J.SOLMAT.2014.05.020 (2014)

    Article  CAS  Google Scholar 

  93. Sánchez, L, Sánchez, P, de Lucas, A, Carmona, M, Rodríguez, JF, “Microencapsulation of PCMs with a Polystyrene Shell.” Colloid Polym. Sci., 285 (12) 1377–1385. https://doi.org/10.1007/s00396-007-1696-7 (2007)

    Article  CAS  Google Scholar 

  94. Sari, A, Alkan, C, Kahraman Döğüşcü, D, Bicer, A, “Micro/nano-Encapsulated n-Heptadecane with Polystyrene Shell for Latent Heat Thermal Energy Storage.” Solar Energy Mater. Solar Cells., 126 42–50. https://doi.org/10.1016/J.SOLMAT.2014.03.023 (2014)

    Article  CAS  Google Scholar 

  95. Sari, A, Alkan, C, Bilgin, C, “Micro/Nano Encapsulation of Some Paraffin Eutectic Mixtures with Poly(methyl methacrylate) Shell: Preparation, Characterization and Latent Heat Thermal Energy Storage Properties.” Appl. Energy, 136 (1) 217–227. https://doi.org/10.1016/J.APENERGY.2014.09.047 (2014)

    Article  CAS  Google Scholar 

  96. Rezvanpour, M, Hasanzadeh, M, Azizi, D, Rezvanpour, A, Alizadeh, M, “Synthesis and Characterization of Micro-Nanoencapsulated n-Eicosane with PMMA Shell as Novel Phase Change Materials for Thermal Energy Storage.” Mater. Chem. Phys., 215 299–304. https://doi.org/10.1016/J.MATCHEMPHYS.2018.05.044 (2018)

    Article  CAS  Google Scholar 

  97. Sari, A, Alkan, C, Karaipekli, A, “Preparation, Characterization and Thermal Properties of PMMA/n-Heptadecane Microcapsules as Novel Solid–Liquid Micropcm for Thermal Energy Storage.” Appl. Energy, 87 (5) 1529–1534. https://doi.org/10.1016/J.APENERGY.2009.10.011 (2010)

    Article  CAS  Google Scholar 

  98. Alay, S, Alkan, C, Göde, F, “Synthesis and Characterization of Poly(methyl methacrylate)/n-Hexadecane Microcapsules Using Different Cross-Linkers and Their Application to Some Fabrics.” Thermochim. Acta, 518 (1–2) 1–8. https://doi.org/10.1016/J.TCA.2011.01.014 (2011)

    Article  CAS  Google Scholar 

  99. Li, F, Wang, X, Wu, D, “Fabrication of Multifunctional Microcapsules Containing n-eicosane Core and Zinc Oxide Shell for Low-Temperature Energy Storage, Photocatalysis, and Antibiosis.” Energy Convers. Manag., 106 873–885. https://doi.org/10.1016/J.ENCONMAN.2015.10.026 (2015)

    Article  CAS  Google Scholar 

  100. Gao, F, Wang, X, Wu, D, “Design and Fabrication of Bifunctional Microcapsules for Solar Thermal Energy Storage and Solar Photocatalysis by Encapsulating Paraffin Phase Change Material into Cuprous Oxide.” Solar Energy Mater. Solar Cells, 168 146–164. https://doi.org/10.1016/J.SOLMAT.2017.04.026 (2017)

    Article  Google Scholar 

  101. Zhang, Y, Wang, X, Wu, D, “Design and Fabrication of Dual-Functional Microcapsules Containing Phase Change Material Core and Zirconium Oxide Shell with Fluorescent Characteristics.” Solar Energy Mater. Solar Cells, 133 56–68. https://doi.org/10.1016/J.SOLMAT.2014.10.035 (2015)

    Article  CAS  Google Scholar 

  102. Zhong, W, et al. “Investigation on Multifunctional Au/TiO2@n-Octadecane Microcapsules Towards Catalytic Photoreforming Hydrogen Production and Photothermal Conversion.” Int. J. Hydrogen Energy, 47 (98) 41540–41552. https://doi.org/10.1016/J.IJHYDENE.2021.12.237 (2022)

    Article  CAS  Google Scholar 

  103. Yataganbaba, A, Ozkahraman, B, Kurtbas, I, “Worldwide Trends on Encapsulation of Phase Change Materials: A Bibliometric Analysis (1990–2015).” Appl. Energy, 185 720–731. https://doi.org/10.1016/j.apenergy.2016.10.107 (2017)

    Article  Google Scholar 

  104. Konuklu, Y, Ostry, M, Paksoy, HO, Charvat, P, “Review on Using Microencapsulated Phase Change Materials (PCM) in Building Applications.” Energy Build., 106 134–155. https://doi.org/10.1016/j.enbuild.2015.07.019 (2015)

    Article  Google Scholar 

  105. Methaapanon, R, Kornbongkotmas, S, Ataboonwongse, C, Soottitantawat, A, “Microencapsulation of n-Octadecane and Methyl Palmitate Phase Change Materials in Silica by Spray Drying Process.” Powder Technol., 361 910–916. https://doi.org/10.1016/j.powtec.2019.10.114 (2020)

    Article  CAS  Google Scholar 

  106. Hawlader MNA, Uddin MS, Khin M, “Microencapsulated PCM Thermal-Energy Storage System.” [Online]. Available: www.elsevier.com/locate/apenergy

  107. Borreguero, AM, Valverde, JL, Rodríguez, JF, Barber, AH, Cubillo, JJ, Carmona, M, “Synthesis and Characterization of Microcapsules Containing Rubitherm®RT27 Obtained by Spray Drying.” Chem. Eng. J., 166 (1) 384–390. https://doi.org/10.1016/j.cej.2010.10.055 (2011)

    Article  CAS  Google Scholar 

  108. Li, M, Rouaud, O, Poncelet, D, “Microencapsulation by Solvent Evaporation: State of the Art for Process Engineering Approaches.” Int. J. Pharm., 363 (1–2) 26–39. https://doi.org/10.1016/j.ijpharm.2008.07.018 (2008)

    Article  CAS  Google Scholar 

  109. Lin, Y, Zhu, C, Alva, G, Fang, G, “Microencapsulation and Thermal Properties of Myristic Acid with Ethyl Cellulose Shell for Thermal Energy Storage.” Appl. Energy, 231 494–501. https://doi.org/10.1016/j.apenergy.2018.09.154 (2018)

    Article  CAS  Google Scholar 

  110. Xing, J, et al. “Microencapsulation of Fatty Acid Eutectic with Polyvinyl Chloride Shell Used for Thermal Energy Storage.” J. Energy Storage, 34 101998. https://doi.org/10.1016/j.est.2020.101998 (2021)

    Article  Google Scholar 

  111. Chang, Z, et al. “Review on the Preparation and Performance of Paraffin-Based Phase Change Microcapsules for Heat Storage.” J. Energy Storage, 46 103840. https://doi.org/10.1016/j.est.2021.103840 (2022)

    Article  Google Scholar 

  112. Lu, S, Xing, J, Zhang, Z, Jia, G, “Preparation and Characterization of Polyurea/Polyurethane Double-shell Microcapsules Containing Butyl Stearate Through Interfacial Polymerization.” J. Appl. Polym. Sci., 121 (6) 3377–3383. https://doi.org/10.1002/app.33994 (2011)

    Article  CAS  Google Scholar 

  113. “Interfacial Miniemulsion Polymerization for High Thermal Energy Storage.”

  114. Yang, X, et al. “Synthesis of High Latent Heat Lauric Acid/Silica Microcapsules by Interfacial Polymerization Method for Thermal Energy Storage.” J. Energy Storage, 33 102059. https://doi.org/10.1016/J.EST.2020.102059 (2021)

    Article  Google Scholar 

  115. Xu, D, Yang, R, “Efficient Preparation and Characterization of Paraffin-Based Microcapsules by Emulsion Polymerization.” J. Appl. Polym. Sci., 136 (21) 47552. https://doi.org/10.1002/APP.47552 (2019)

    Article  Google Scholar 

  116. Baek, KH, Lee, JY, Kim, JH, “Core/Shell Structured PCM Nanocapsules Obtained by Resin Fortified Emulsion Process.” J. Dispers. Sci. Tech., 28 (7) 1059–1065. https://doi.org/10.1080/01932690701524281 (2007)

    Article  CAS  Google Scholar 

  117. Ma, S, Song, G, Li, W, Fan, P, Tang, G, “UV Irradiation-Initiated MMA Polymerization to Prepare Microcapsules Containing Phase Change Paraffin.” Solar Energy Mater. Solar Cells, 94 (10) 1643–1647. https://doi.org/10.1016/J.SOLMAT.2010.05.021 (2010)

    Article  CAS  Google Scholar 

  118. Özkayalar, S, Aksoy, SA, “Production and Characterization of Nanoencapsulated Phase Change Materials (PCMS) and Bicomponent PCM Nanofibers.” Tekstil ve Konfeksiyon, 31 (3) 156–170. https://doi.org/10.32710/TEKSTILVEKONFEKSIYON.761461 (2021)

    Article  Google Scholar 

  119. Najafi, S, Khoshraj, M, “Microencapsulation of Butyl Palmitate in Polystyrene-co-Methyl Methacrylate Shell for Thermal Energy Storage Application.” Iran. J. Chem. Eng., 37 187 (2018)

    Google Scholar 

  120. Wang, H, Luo, J, Yang, Y, Zhao, L, Song, G, Tang, G, “Fabrication and Characterization of Microcapsulated Phase Change Materials with an Additional Function of Thermochromic Performance.” Solar Energy, 139 591–598. https://doi.org/10.1016/J.SOLENER.2016.10.011 (2016)

    Article  CAS  Google Scholar 

  121. Parvate, S, Chattopadhyay, S, “Complex Polymeric Microstructures with Programmable Architecture via Pickering Emulsion-Templated In Situ Polymerization.” Langmuir, 38 (4) 1406–1421. https://doi.org/10.1021/ACS.LANGMUIR.1C02572/SUPPL_FILE/LA1C02572_SI_001.PDF (2022)

    Article  CAS  Google Scholar 

  122. Mu, M, Huang, J, Chen, Y, Li, Y, Yu, HY, Yao, J, “Simultaneously Enhance the Heat Storage Capacity and Shape Stability of Poly(hexadecyl acrylate) by Immobilizing It to Cellulose Nanocrystal via In Situ Free Radical Polymerization.” ACS Appl. Polym. Mater., 4 (2) 899–907. https://doi.org/10.1021/ACSAPM.1C01395/SUPPL_FILE/AP1C01395_SI_001.PDF (2022)

    Article  CAS  Google Scholar 

  123. Jiang, Z, Shu, J, Ge, Z, Jiang, Z, Wang, M, Ge, X, “Preparation and Performance of Magnetic Phase Change Microcapsules with Organic-Inorganic Double Shell.” Solar Energy Mater. Solar Cells., 240 111716. https://doi.org/10.1016/J.SOLMAT.2022.111716 (2022)

    Article  CAS  Google Scholar 

  124. Cheng, J, et al. “The Thermal Behavior and Flame Retardant Performance of Phase Change Material Microcapsules with Modified Carbon Nanotubes.” Energy, 240 122821. https://doi.org/10.1016/J.ENERGY.2021.122821 (2022)

    Article  CAS  Google Scholar 

  125. Lin, X, Zhang, X, Ji, J, Zheng, L, “Research Progress on Preparation, Characterization, and Application of Nanoparticle-Based Microencapsulated Phase Change Materials.” Int. J. Energy Res., 45 (7) 9831–9857. https://doi.org/10.1002/ER.6538 (2021)

    Article  CAS  Google Scholar 

  126. Deveci, SS, Basal, G, “Preparation of PCM Microcapsules by Complex Coacervation of Silk Fibroin and Chitosan.” Colloid Polym. Sci., 287 (12) 1455–1467. https://doi.org/10.1007/S00396-009-2115-Z (2009)

    Article  CAS  Google Scholar 

  127. Malekipirbazari, M, Sadrameli, SM, Dorkoosh, F, Sharifi, H, “Synthetic and Physical Characterization of Phase Change Materials Microencapsulated by Complex Coacervation for Thermal Energy Storage Applications.” Int. J. Energy Res., 38 (11) 1492–1500. https://doi.org/10.1002/ER.3153 (2014)

    Article  CAS  Google Scholar 

  128. Bayés-García, L, Ventolà, L, Cordobilla, R, Benages, R, Calvet, T, Cuevas-Diarte, MA, “Phase Change Materials (PCM) Microcapsules with Different Shell Compositions: Preparation, Characterization and Thermal Stability.” Solar Energy Mater. Solar Cells, 94 (7) 1235–1240. https://doi.org/10.1016/J.SOLMAT.2010.03.014 (2010)

    Article  Google Scholar 

  129. Marske, F, Dasler, J, Haupt, C, Bacia, K, Hahn, T, Enke, D, “Influence of Surfactants and Organic Polymers on Monolithic Shape-Stabilized Phase Change Materials Synthesized via Sol-Gel Route.” J. Energy Storage., 49 104127. https://doi.org/10.1016/J.EST.2022.104127 (2022)

    Article  Google Scholar 

  130. Lu, J, Sheng, N, Zhu, C, “Fabrication of Sn@SiO2 Core-Shell Microcapsules with High Durability for Medium-Temperature Thermal Energy Storage.” Solar Energy Mater. Solar Cells., 239 111652. https://doi.org/10.1016/J.SOLMAT.2022.111652 (2022)

    Article  CAS  Google Scholar 

  131. Jeong, SG, Chang, SJ, Wi, S, Kang, Y, Kim, S, “Development and Performance Evaluation of Heat Storage Paint with MPCM for Applying Roof Materials as Basic Research.” Energy Build., 112 62–68. https://doi.org/10.1016/j.enbuild.2015.12.001 (2016)

    Article  Google Scholar 

  132. Yang, YK, Kim, MY, Chung, MH, Park, JC, “PCM Cool Roof Systems for Mitigating Urban Heat Island - An Experimental and Numerical Analysis.” Energy Build., 205 109537. https://doi.org/10.1016/j.enbuild.2019.109537 (2019)

    Article  Google Scholar 

  133. Naikwadi, AT, Samui, AB, Mahanwar, P, “Experimental Investigation of Nano/Microencapsulated Phase Change Material Emulsion Based Building Wall Paint for Solar Thermal Energy Storage.” J. Polym. Res., 28 (11) 1–6. https://doi.org/10.1007/s10965-021-02808-3 (2021)

    Article  CAS  Google Scholar 

  134. Zhu, X, Sheng, X, Li, J, Chen, Y, “Thermal Comfort and Energy Saving of Novel Heat-Storage Coatings with Microencapsulated PCM and Their Application.” Energy Build.., 251 111349. https://doi.org/10.1016/J.ENBUILD.2021.111349 (2021)

    Article  Google Scholar 

  135. Lei, J, Kumarasamy, K, Zingre, KT, Yang, J, Wan, MP, Yang, EH, “Cool Colored Coating and Phase Change Materials as Complementary Cooling Strategies for Building Cooling Load Reduction in Tropics.” Appl. Energy, 190 57–63. https://doi.org/10.1016/J.APENERGY.2016.12.114 (2017)

    Article  Google Scholar 

  136. Chung, MH, Park, JC, “Development of PCM Cool Roof System to Control Urban Heat Island Considering Temperate Climatic Conditions.” Energy Build., 116 341–348. https://doi.org/10.1016/J.ENBUILD.2015.12.056 (2016)

    Article  Google Scholar 

  137. Ma, E, Wei, Z, Lian, C, Zhou, Y, Gan, S, Xu, B, “Preparation of Colored Microcapsule Phase Change Materials with Colored SiO2 Shell for Thermal Energy Storage and Their Application in Latex Paint Coating.” Materials, 14 (14) 4012. https://doi.org/10.3390/ma14144012 (2021)

    Article  CAS  Google Scholar 

  138. Ren, M, Wen, X, Gao, X, Liu, Y, “Thermal and Mechanical Properties of Ultra-High Performance Concrete Incorporated with Microencapsulated Phase Change Material.” Construct. Build. Mater., 273 121714. https://doi.org/10.1016/J.CONBUILDMAT.2020.121714 (2021)

    Article  CAS  Google Scholar 

  139. Zhu, L, Dang, F, Xue, Y, Ding, W, Jiao, K, “Experimental Investigation of the Thermal and Mechanical Properties of Lightweight Aggregate Concrete Mixed with Microencapsulated Phase Change Materials.” Int. J. Energy Res., 45 (9) 12864–12878. https://doi.org/10.1002/ER.6617 (2021)

    Article  CAS  Google Scholar 

  140. Cao, VD, et al. “Microencapsulated Phase Change Materials for Enhancing the Thermal Performance of Portland Cement Concrete and Geopolymer Concrete for Passive Building Applications.” Energy Convers. Manag., 133 56–66. https://doi.org/10.1016/J.ENCONMAN.2016.11.061 (2017)

    Article  CAS  Google Scholar 

  141. Cao, VD, et al. “Thermal Analysis of Geopolymer Concrete Walls Containing Microencapsulated Phase Change Materials for Building Applications.” Solar Energy, 178 295–307. https://doi.org/10.1016/J.SOLENER.2018.12.039 (2019)

    Article  CAS  Google Scholar 

  142. Pilehvar, S, et al. “Effect of Temperature on Geopolymer and Portland Cement Composites Modified with Micro-Encapsulated Phase Change Materials.” Construct. Buil. Mater., 252 119055. https://doi.org/10.1016/J.CONBUILDMAT.2020.119055 (2020)

    Article  CAS  Google Scholar 

  143. Fraine, Y, Seladji, C, Aït-Mokhtar, A, “Effect of Microencapsulation Phase Change Material and Diatomite Composite Filling on Hygrothermal Performance of Sintered Hollow Bricks.” Build. Environ., 154 145–154. https://doi.org/10.1016/J.BUILDENV.2019.02.036 (2019)

    Article  Google Scholar 

  144. Chen, Z, Qin, M, Yang, J, “Synthesis and Characteristics of Hygroscopic Phase Change Material: Composite Microencapsulated Phase Change Material (MPCM) and Diatomite.” Energy Build., 106 175–182. https://doi.org/10.1016/J.ENBUILD.2015.05.033 (2015)

    Article  CAS  Google Scholar 

  145. Sierra, V, Chejne, F, “Energy Saving Evaluation of Microencapsulated Phase Change Materials Embedded in Building Systems.” J. Energy Storage., 49 104102. https://doi.org/10.1016/J.EST.2022.104102 (2022)

    Article  Google Scholar 

  146. Cui, H, Liao, W, Mi, X, Lo, TY, Chen, D, “Study on Functional and Mechanical Properties of Cement Mortar with Graphite-Modified Microencapsulated Phase-Change Materials.” Energy Build., 105 273–284. https://doi.org/10.1016/J.ENBUILD.2015.07.043 (2015)

    Article  Google Scholar 

  147. Yuan, Z, Liang, K, Xue, Y, Yamada, Y, Isobe, K, Horibe, A, “Experimental Study of Evaluation of Dynamical Utilization of a Microencapsulated Phase Change Material Slurry Based on Temperature Range Matching Analysis.” Int. Commun. Heat Mass Transf., 130 105788. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2021.105788 (2022)

    Article  CAS  Google Scholar 

  148. Yang, G, et al. “Heat Control Effect of Phase Change Microcapsules Upon Cement Slurry Applied to Hydrate-Bearing Sediment.” Energies, 15 (12) 4197. https://doi.org/10.3390/EN15124197 (2022)

    Article  CAS  Google Scholar 

  149. Sonare, SN, Jaiswal, SJ, Mahanwar, PA, “Review on Applications of Microencapsulated Phase Change Material in Buildings for Thermal Storage System.” J. Polymer Res., 29 (9) 1–22. https://doi.org/10.1007/S10965-022-03212-1 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge their supervisor and the Institute of Chemical Technology for assisting them in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soham Sharad Chaudhari.

Ethics declarations

Conflict of interest

The authors proclaim that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, S.S., Patil, N.G. & Mahanwar, P.A. A review on microencapsulated phase change materials in building materials. J Coat Technol Res 21, 173–198 (2024). https://doi.org/10.1007/s11998-023-00814-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00814-2

Keywords

Navigation