Skip to main content
Log in

Stretchable strain sensors based on conductive coating cracks with improved interfacial adhesion by wet phase separation treatment

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Stretchable strain sensors have drawn plenty of attention due to their importance and necessity in high-technology areas. In this study, we fabricated a series of thermoplastic polyurethane (TPU) film-based stretchable strain sensors with a conductive hybrid sensing layer of reduced graphene oxide (RGO) and multiwalled carbon nanotubes (CNT) by simple coating methods. Meanwhile, we developed a kind of roughening method based on wet phase separation to form interpenetrating micropores on the surface of the TPU film, which overcomes the sliding and overlapping of the RGO/CNT sensing layer by improving the mechanical interlocking between the hybrid sensing layer and the elastic substrate. Owing to the improved adhesion between the sensing layer and the elastomeric substrate, the stretchable sensor shows good sensitivity (gauge factor (GF) = 75 at 50% strain), linearity (logarithmic GF = 10 during 0–50% strain), and stability (more than 1000 stretching–releasing cycles at a strain of 50%). These high performances suggest the potential application of our strain sensor in the detection of human body movements, personal health monitoring, and other kinds of human–machine interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amjadi, M, Pichitpajongkit, A, Lee, S, Ryu, S, Park, I, “Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite.” ACS Nano, 8 (5) 5154–5163 (2014)

    Article  CAS  Google Scholar 

  2. Liu, Q, Chen, J, Li, YR, Shi, GQ, “High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions.” ACS Nano, 10 (8) 7901–7906 (2016)

    Article  CAS  Google Scholar 

  3. Park, JJ, Hyun, WJ, Mun, SC, Park, YT, Park, OO, “Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring.” ACS Appl. Mater. Interfaces, 7 (11) 6317–6324 (2015)

    Article  CAS  Google Scholar 

  4. Jeong, YR, Park, H, Jin, SW, Hong, SY, Lee, SS, Ha, JS, “Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam.” Adv. Funct. Mater., 25 (27) 4228–4236 (2015)

    Article  CAS  Google Scholar 

  5. Shi, G, Zhao, ZH, Pai, JH, Lee, I, Zhang, LQ, Stevenson, C, Ishara, K, Zhang, RJ, Zhu, HW, Ma, J, “Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using Graphene/Silicon Rubber Composites.” Adv. Funct. Mater., 26 (42) 7614–7625 (2016)

    Article  CAS  Google Scholar 

  6. Yan, CY, Wang, JX, Kang, WB, Cui, MQ, Wang, X, Foo, CY, Chee, KJ, Lee, PS, “Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors.” Adv. Mater., 26 (13) 2022–2027 (2014)

    Article  CAS  Google Scholar 

  7. Lu, NS, Lu, C, Yang, SX, Rogers, J, “Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers.” Adv. Funct. Mater., 22 (19) 4044–4050 (2012)

    Article  CAS  Google Scholar 

  8. Majidi, C, “Soft Robotics: A Perspective-Current Trends and Prospects for the Future.” Soft Robot., 1 (1) 5–11 (2014)

    Article  Google Scholar 

  9. McEvoy, MA, Correll, N, “Materials That Couple Sensing, Actuation, Computation, and Communication.” Science, 347 (6228) 1261689 (2015)

    Article  CAS  Google Scholar 

  10. Cho, G, Jeong, K, Paik, MJ, Kwun, Y, Sung, M, “Performance Evaluation of Textile-Based Electrodes and Motion Sensors for Smart Clothing.” IEEE Sens. J., 11 (12) 3183–3193 (2011)

    Article  Google Scholar 

  11. Wang, F, Zhu, B, Shu, L, Tao, XM, “Flexible Pressure Sensors for Smart Protective Clothing Against Impact Loading.” Smart Mater. Struct., 23 (1) 015001 (2014)

    Article  Google Scholar 

  12. Barick, AK, Tripathy, DK, “Preparation, Characterization and Properties of Acid Functionalized Multi-walled Carbon Nanotube Reinforced Thermoplastic Polyurethane Nanocomposites.” Mater. Sci. Eng. B Adv., 176 (18) 1435–1447 (2011)

    Article  CAS  Google Scholar 

  13. Toprakci, HAK, Kalanadhabhatla, SK, Spontak, RJ, Ghosh, TK, “Polymer Nanocomposites Containing Carbon Nanofibers as Soft Printable Sensors Exhibiting Strain-Reversible Piezoresistivity.” Adv. Funct. Mater., 23 (44) 5536–5542 (2013)

    Article  CAS  Google Scholar 

  14. Zhang, R, Deng, H, Valenca, R, Jin, JH, Fu, Q, Bilotti, E, Peijs, T, “Strain Sensing Behaviour of Elastomeric Composite Films Containing Carbon Nanotubes Under Cyclic Loading.” Compos. Sci. Technol., 74 1–5 (2013)

    Article  CAS  Google Scholar 

  15. Liu, H, Gao, JC, Huang, WJ, Dai, K, Zheng, GQ, Liu, CT, Shen, CY, Yan, XR, Guo, J, Guo, ZH, “Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers.” Nanoscale, 8 (26) 12977–12989 (2016)

    Article  CAS  Google Scholar 

  16. Choi, G, Lee, JW, Cha, JY, Kim, YJ, Choi, YS, Schulz, MJ, Moon, CK, Lim, KT, Kim, SY, Kang, I, “A Spray-on Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring.” Sensors, 16 (8) 1171 (2016)

    Article  Google Scholar 

  17. Kang, IP, Schulz, MJ, Kim, JH, Shanov, V, Shi, DL, “A Carbon Nanotube Strain Sensor for Structural Health Monitoring.” Smart Mater. Struct., 15 (3) 737–748 (2006)

    Article  CAS  Google Scholar 

  18. Mates, JE, Bayer, IS, Palumbo, JM, Carroll, PJ, Megaridis, CM, “Extremely Stretchable and Conductive Water-Repellent Coatings for Low-Cost Ultra-Flexible Electronics.” Nat. Commun., 6 (8874) 1–8 (2015)

    Google Scholar 

  19. Wu, SY, Zhang, J, Ladani, RB, Rayindran, AR, Mouritz, AP, Kinloch, AJ, Wang, CH, “Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors.” ACS Appl. Mater. Interfaces, 9 (16) 14207–14215 (2017)

    Article  CAS  Google Scholar 

  20. Li, X, Zhang, RJ, Yu, WJ, Wang, KL, Wei, JQ, Wu, DH, Cao, AY, Li, ZH, Cheng, Y, Zheng, QS, Ruoff, RS, Zhu, HW, “Stretchable and Highly Sensitive Graphene-On-Polymer Strain Sensors.” Sci. Rep., 2 (6109) 870 (2012)

    Article  Google Scholar 

  21. Yao, HB, Ge, J, Wang, CF, Wang, X, Hu, W, Zheng, ZJ, Ni, Y, Yu, SH, “A Flexible and Highly Pressure-Sensitive Graphene-Polyurethane Sponge Based on Fractured Microstructure Design.” Adv. Mater., 25 (46) 6692–6698 (2013)

    Article  CAS  Google Scholar 

  22. Huang, WP, Li, JH, Zhao, SF, Han, F, Zhang, GP, Sun, R, Wong, CP, “Highly Electrically Conductive and Stretchable Copper Nanowires-Based Composite for Flexible and Printable Electronics.” Compos. Sci. Technol., 146 (7) 169–176 (2017)

    Article  CAS  Google Scholar 

  23. Wei, Y, Chen, S, Dong, XC, Lin, Y, Liu, L, “Flexible Piezoresistive Sensors Based on “Dynamic Bridging Effect” of Silver Nanowires Toward Graphene.” Carbon, 113 (3) 395–403 (2017)

    Article  CAS  Google Scholar 

  24. Shi, JD, Li, XM, Cheng, HY, Liu, ZJ, Zhao, LY, Yang, TT, Dai, ZH, Cheng, ZG, Shi, EZ, Yang, L, Zhang, Z, Cao, AY, Zhu, HW, Fang, Y, “Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors.” Adv. Funct. Mater., 26 (13) 2078–2084 (2016)

    Article  CAS  Google Scholar 

  25. Amjadi, M, Kim, MS, Park, I, “Flexible and Sensitive Foot Pad for Sole Distributed Force Detection”. 2014 IEEE 14th International Conference on Nanotechnology (IEEE-Nano) 2014, pp. 764–767.

  26. Lee, J, Kim, W, Kim, W, “Stretchable Carbon Nanotube/Ion-Gel Supercapacitors with High Durability Realized through Interfacial Microroughness.” ACS Appl. Mater. Interfaces, 6 (16) 13578–13586 (2014)

    Article  CAS  Google Scholar 

  27. Akter, T, Kim, WS, “Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires.” ACS Appl. Mater. Interfaces, 4 (4) 1855–1859 (2012)

    Article  CAS  Google Scholar 

  28. Stropnik, C, Kaiser, V, “Polymeric Membranes Preparation by Wet Phase Separation: Mechanisms and Elementary Processes.” Desalination, 145 (1–3) 1–10 (2002)

    Article  CAS  Google Scholar 

  29. Lei, Q, Li, ZC, Xu, R, Wang, YZ, Li, HS, Wang, Y, Liu, ML, Yang, SS, Zhan, RX, Zhao, J, Liu, B, Hu, XH, Zhang, XR, He, WF, Wu, J, Xia, HS, Luo, GX, “Biomimetic Thermoplastic Polyurethane Porous Membrane with Hierarchical Structure Accelerates Wound Healing by Enhancing Granulation Tissue Formation and Angiogenesis.” RSC Adv., 6 (101) 99595–99603 (2016)

    Article  CAS  Google Scholar 

  30. Luo, W, Zhang, B, Zou, HW, Liang, M, Chen, Y, “Enhanced Interfacial Adhesion Between Polypropylene and Carbon Fiber by Graphene Oxide/Polyethyleneimine Coating.” J. Ind. Eng. Chem., 51 129–139 (2017)

    Article  CAS  Google Scholar 

  31. Osorio, AG, Silveira, ICL, Bueno, VL, Bergmann, CP, “H2SO4/HNO3/HCl-Functionalization and Its Effect on Dispersion of Carbon Nanotubes in Aqueous Media.” Appl. Surf. Sci., 255 (5) 2485–2489 (2008)

    Article  CAS  Google Scholar 

  32. Khorasani, MT, Shorgashti, S, “Fabrication of Microporous Thermoplastic Polyurethane for Use as Small-Diameter Vascular Graft Material. I. Phase-Inversion Method.” J. Biomed. Mater. Res. B, 76b (1) 41–48 (2006)

    Article  CAS  Google Scholar 

  33. Yao, X, Tuo, XL, “Nonsolvent Effect on The Fabrication of Microporous Polyurethane Membranes by Solvent Induced Phase Inversion.” J. Funct. Polym., 22 (2) 114–118 (2009)

    CAS  Google Scholar 

  34. Huang, ZD, Zhang, BA, Oh, SW, Zheng, QB, Lin, XY, Yousefi, N, Kim, JK, “Self-assembled Reduced Graphene Oxide/Carbon Nanotube Thin Films as Electrodes for Supercapacitors.” J. Mater. Chem., 22 (8) 3591–3599 (2012)

    Article  CAS  Google Scholar 

  35. Yadav, S, Kumar, V, Arora, S, Singh, S, Bhatnagar, D, Kaur, I, “Fabrication of Ultrathin, Free-Standing, Transparent and Conductive Graphene/Multiwalled Carbon Nanotube Film with Superior Optoelectronic Properties.” Thin Solid Films, 595 193–199 (2015)

    Article  CAS  Google Scholar 

  36. Sun, X, Sun, H, Li, H, Peng, H, “Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?” Adv. Mater., 25 (37) 5153–5176 (2013)

    Article  CAS  Google Scholar 

  37. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 988–994 (1936)

    Article  CAS  Google Scholar 

  38. Chen, KS, Yu, TL, Chen, YS, Lin, TL, Liu, WJ, “Soft-and Hard-Segment Phase Segregation of Polyester-based Polyurethane.” J. Polym. Res., 8 (2) 99–109 (2001)

    Article  CAS  Google Scholar 

  39. Zhang, J, Tu, W, Dai, Z, “Synthesis and Characterization of Transparent and High Impact Resistance Polyurethane Coatings Based on Polyester Polyols and Isocyanate Trimers.” Prog. Org. Coat., 75 (4) 579–583 (2012)

    Article  CAS  Google Scholar 

  40. Layek, RK, Das, AK, Min, JP, Kim, NH, Lee, JH, “Enhancement of Physical, Mechanical, and Gas Barrier Properties in Noncovalently Functionalized Graphene Oxide/Poly(vinylidene fluoride) Composites.” Carbon, 81 (1) 329–338 (2015)

    Article  CAS  Google Scholar 

  41. Amjadi, M, Turan, M, Clementson, CP, Sitti, M, “Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors.” ACS Appl. Mater. Interfaces, 8 (8) 5618–5626 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Science & Technology Program of Sichuan Province (2019YFG0381, China) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Fei, W., Yang, L. et al. Stretchable strain sensors based on conductive coating cracks with improved interfacial adhesion by wet phase separation treatment. J Coat Technol Res 17, 1157–1169 (2020). https://doi.org/10.1007/s11998-020-00336-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00336-1

Keywords

Navigation