Skip to main content
Log in

High-Intensity Ultrasound (HIUS) Treatment of Sunnhemp Protein Isolate (Crotalaria juncea L.): Modification of Functional, Structural, and Microstructural Properties

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effect of ultrasonication treatment on the functional, structural, and microstructural properties of sunnhemp protein isolates (SHPIs) was investigated. The SHPI was extracted and modified ultrasonically (amplitude, 40 and 50%) at different time duration (10, 20, and 30 min). The results revealed improvement in functional attributes of all SHPIs samples after ultrasound treatment as compared to untreated sample. Among all the ultrasound-treated SHPIs, the maximum improvement in functional properties (solubility, emulsifying, foaming, water and oil binding) was observed in US5 (50% ultrasound amplitude for 20 min) sample. The findings of FTIR and fluorescence spectroscopy confirmed modification in the secondary and tertiary structures of SHPI. Circular dichroism results indicated alterations in the secondary structures of sunnhemp proteins. Particle size of all ultrasound treated samples were reduced and their disintegration was also observed by SEM analysis. Surface hydrophobicity was also improved in all ultrasound treated samples. Zeta potential values were found to be increased in all ultrasonically treated samples. SHPI showed enhancement in free and total sulfhydryl (SH) groups. Based on the findings of ultrasound-treatment, SHPI samples may serve as a substitute for animal proteins for a wide range of food applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  • Amiri, A., Sharifian, P., Morakabati, N., Mousakhani-Ganjeh, A., Mirtaheri, M., Nilghaz, A., Guo, Y., & Pratap-Singh, A. (2021). Modification of functional, rheological and structural characteristics of myofibrillar proteins by high-intensity ultrasonic and papain treatment. Innovative Food Science and Emerging Technologies, 72. https://doi.org/10.1016/j.ifset.2021.102748

  • Bolaji, O. T., Kamoru, M. A., & Adeyeye, S. A. O. (2021). Quality evaluation and physico-chemical properties of blends of fermented cassava flour (lafun) and pigeon pea flour. Scientific African, 12, e00833. https://doi.org/10.1016/j.sciaf.2021.e00833

  • Bouzid, H., Rabiller-Baudry, M., Paugam, L., Rousseau, F., Derriche, Z., & Bettahar, N. E. (2008). Impact of zeta potential and size of caseins as precursors of fouling deposit on limiting and critical fluxes in spiral ultrafiltration of modified skim milks. Journal of Membrane Science, 314, 67–75. https://doi.org/10.1016/j.memsci.2008.01.028

  • Byanju, B., Rahman, M. M., Hojilla-Evangelista, M. P., & Lamsal, B. P. (2020). Effect of high-power sonication pretreatment on extraction and some physicochemical properties of proteins from chickpea, kidney bean, and soybean. International Journal of Biological Macromolecules, 145, 712–721. https://doi.org/10.1016/j.ijbiomac.2019.12.118

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Zhang, X., Chen, Y., Zhao, X., Anthony, B., & Xu, X. (2020). Effects of different ultrasound frequencies on the structure, rheological and functional properties of myosin: Significance of quorum sensing. Ultrasonics Sonochemistry, 69(June). https://doi.org/10.1016/j.ultsonch.2020.105268

  • Chen, W., Ma, X., Wang, W., Lv, R., Guo, M., Ding, T., Ye, X., Miao, S., & Liu, D. (2019). Preparation of modified whey protein isolate with gum acacia by ultrasound maillard reaction. Food Hydrocolloids, 95, 298–307. https://doi.org/10.1016/j.foodhyd.2018.10.030

    Article  CAS  Google Scholar 

  • Cui, Q., Wang, L., Wang, G., Zhang, A., Wang, X., & Jiang, L. (2021). Ultrasonication effects on physicochemical and emulsifying properties of Cyperus esculentus seed (tiger nut) proteins. Lwt, 142(10), 110979. https://doi.org/10.1016/j.lwt.2021.110979

  • Dabbour, M., He, R., Mintah, B., Xiang, J., & Ma, H. (2019). Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action. Ultrasonics Sonochemistry, 58(7), 104625. https://doi.org/10.1016/j.ultsonch.2019.104625

  • Dias, P. G. I., Sajiwanie, J. W. A., & Rathnayaka, R. M. U. S. K. (2020). Chemical composition, physicochemical and technological properties of selected fruit peels as a potential food source. International Journal of Fruit Science, 20(S2), S240–S251. https://doi.org/10.1080/15538362.2020.1717402

    Article  Google Scholar 

  • Fadimu, G. J., Gill, H., Farahnaky, A., & Truong, T. (2021). Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food and Bioprocess Technology, 14(11), 2004–2019. https://doi.org/10.1007/s11947-021-02700-4

    Article  CAS  Google Scholar 

  • Fan, X., Chang, H., Lin, Y., Zhao, X., Zhang, A., Li, S., Feng, Z., & Chen, X. (2020). Effects of ultrasound-assisted enzyme hydrolysis on the microstructure and physicochemical properties of okara fibers. Ultrasonics Sonochemistry, 69(2). https://doi.org/10.1016/j.ultsonch.2020.105247

  • Flores-Jiménez, N. T., Ulloa, J. A., Silvas, J. E. U., Ramírez, J. C. R., Ulloa, P. R., Rosales, P. U. B., Carrillo, Y. S., & Leyva, R. G. (2019). Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Research International, 121, 947–956. https://doi.org/10.1016/j.foodres.2019.01.025

    Article  CAS  PubMed  Google Scholar 

  • Fournaise, T., Burgain, J., Perroud-Thomassin, C., & Petit, J. (2021). Impact of the whey protein/casein ratio on the reconstitution and flow properties of spray-dried dairy protein powders. Powder Technology, 391, 275–281. https://doi.org/10.1016/j.powtec.2021.06.026

    Article  CAS  Google Scholar 

  • Gani, A., ul Ashraf, Z., Noor, N., & Ahmed Wani, I. (2022). Ultrasonication as an innovative approach to tailor the apple seed proteins into nanosize: Effect on protein structural and functional properties. Ultrasonics Sonochemistry, 86(4), 106010. https://doi.org/10.1016/j.ultsonch.2022.106010

  • Gao, H., Ma, L., Li, T., Sun, D., Hou, J., Li, A., & Jiang, Z. (2019). Impact of ultrasonic power on the structure and emulsifying properties of whey protein isolate under various pH conditions. Process Biochemistry, 81, 113–122. https://doi.org/10.1016/j.procbio.2019.03.012

    Article  CAS  Google Scholar 

  • Gao, K., Rao, J., & Chen, B. (2022). Unraveling the mechanism by which high intensity ultrasound improves the solubility of commercial pea protein isolates. Food Hydrocolloids, 131(3), 107823. https://doi.org/10.1016/j.foodhyd.2022.107823

  • Gharibzahedi, S. M. T., & Smith, B. (2020). The functional modification of legume proteins by ultrasonication: A review. In Trends in Food Science and Technology, 98, 107–116. https://doi.org/10.1016/j.tifs.2020.02.002

    Article  CAS  Google Scholar 

  • Hassan, M. A., Xavier, M., Gupta, S., Nayak, B. B., & Balange, A. K. (2019). Antioxidant properties and instrumental quality characteristics of spray dried Pangasius visceral protein hydrolysate prepared by chemical and enzymatic methods. Environmental Science and Pollution Research, 26, 8875–8884. https://doi.org/10.1007/s11356-019-04144-y

  • He, R., He, H. Y., Chao, D., Ju, X., & Aluko, R. (2014). Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food and Bioprocess Technology, 7(5), 1344–1353. https://doi.org/10.1007/s11947-013-1139-z

    Article  CAS  Google Scholar 

  • Hu, Y., Wu, Z., Sun, Y., Cao, J., He, J., Dang, Y., ... & Zhou, C. (2022). Insight into ultrasound-assisted phosphorylation on the structural and emulsifying properties of goose liver protein. Food Chemistry373, 131598. https://doi.org/10.1016/j.foodchem.2021.131598

  • Hussain, M., Qayum, A., Zhang, X., Hao, X., Liu, L., Wang, Y., Hussain, K., & Li, X. (2021). Improvement in bioactive, functional, structural and digestibility of potato protein and its fraction patatin via ultra-sonication. Lwt, 148(600), 111747. https://doi.org/10.1016/j.lwt.2021.111747

  • Jhan, F., Gani, A., Noor, N., & Shah, A. (2021). Nanoreduction of millet proteins: effect on structural and functional properties. ACS Food Science & Technology, 1, 1418–1427. https://doi.org/10.1021/acsfoodscitech.1c00132

  • Ji, H., Han, F., Peng, S., Yu, J., Li, L., Liu, Y., Chen, Y., Li, S., & Chen, Y. (2019). Behavioral solubilization of peanut protein isolate by atmospheric pressure cold plasma (ACP) treatment. Food and Bioprocess Technology, 12(12), 2018–2027. https://doi.org/10.1007/s11947-019-02357-0

    Article  CAS  Google Scholar 

  • Ji, J., Cronin, K., Fitzpatrick, J., & Miao, S. (2017). Enhanced wetting behaviours of whey protein isolate powder: The different effects of lecithin addition by fluidised bed agglomeration and coating processes. Food Hydrocolloids, 71, 94–101. https://doi.org/10.1016/j.foodhyd.2017.05.005

    Article  CAS  Google Scholar 

  • Jin, J., Ma, H., Wang, B., Yagoub, A. E. G. A., Wang, K., He, R., & Zhou, C. (2016). Effects and mechanism of dual-frequency power ultrasound on the molecular weight distribution of corn gluten meal hydrolysates. Ultrasonics Sonochemistry, 30, 44–51. https://doi.org/10.1016/j.ultsonch.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  • Jin, J., Okagu, O. D., Yagoub, A. E. G. A., & Udenigwe, C. C. (2021). Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrasonics Sonochemistry, 70. https://doi.org/10.1016/j.ultsonch.2020.105348

  • Jin, H., Zhao, Q., Feng, H., Wang, Y., Wang, J., Liu, Y., & Xu, J. (2019). Changes on the structural and physicochemical properties of conjugates prepared by the Maillard reaction of black bean protein isolates and glucose with ultrasound pretreatment. Polymers, 11, 848. https://doi.org/10.3390/polym11050848

  • Khatkar, A. B., Kaur, A., Khatkar, S. K., & Mehta, N. (2018). Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties. Ultrasonics Sonochemistry, 49(8), 333–342. https://doi.org/10.1016/j.ultsonch.2018.08.026

    Article  CAS  PubMed  Google Scholar 

  • Kudre, T. G., & Benjakul, S. (2014). Effects of bambara groundnut protein isolates and microbial transglutaminase on textural and sensorial properties of surmi gel from sardine (Sardinella albella). Food and Bioprocess Technology, 7(6), 1570–1580. https://doi.org/10.1007/s11947-013-1131-7

    Article  CAS  Google Scholar 

  • Li, K., Fu, L., Zhao, Y. Y., Xue, S. W., Wang, P., Xu, X. L., & Bai, Y. H. (2020a). Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocolloids, 98(7). https://doi.org/10.1016/j.foodhyd.2019.105275

  • Li, K., Kang, Z. L., Zhao, Y. Y., Xu, X. L., & Zhou, G. H. (2014). Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food and Bioprocess Technology, 7(12), 3466–3477. https://doi.org/10.1007/s11947-014-1358-y

    Article  CAS  Google Scholar 

  • Li, L., Zhou, Y., Teng, F., Zhang, S., Qi, B., Wu, C., Tian, T., Wang, Z., & Li, Y. (2020b). Application of ultrasound treatment for modulating the structural, functional and rheological properties of black bean protein isolates. International Journal of Food Science and Technology, 55(4), 1637–1647. https://doi.org/10.1111/ijfs.14428

    Article  CAS  Google Scholar 

  • Li, L., Zhou, Y., Teng, F., Zhang, S., Qi, B., Wu, C., Tian, T., Wang, Z., Li, Y., Tian, R., Feng, J., Huang, G., Tian, B., Zhang, Y., Jiang, L., & Sui, X. (2020c). Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. Ultrasonics Sonochemistry, 68(4), 1637–1647. https://doi.org/10.1111/ijfs.14428

    Article  CAS  Google Scholar 

  • Li, Y., Cheng, Y., Zhang, Z., Wang, Y., Mintah, B. K., Dabbour, M., Jiang, H., He, R., & Ma, H. (2020d). Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrasonics Sonochemistry, 69(6), 105240. https://doi.org/10.1016/j.ultsonch.2020.105240

  • Li, Z., Wang, J., Zheng, B., & Guo, Z. (2020e). Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrasonics Sonochemistry, 65(7), 105063. https://doi.org/10.1016/j.ultsonch.2020.105063

  • Liang, Q., Ren, X., Qu, W., Zhang, X., Cheng, Y., & Ma, H. (2021). The impact of ultrasound duration on the structure of β-lactoglobulin. Journal of Food Engineering, 292(10), 1–7. https://doi.org/10.1016/j.jfoodeng.2020.110365

    Article  CAS  Google Scholar 

  • Ling, B., Ouyang, S., & Wang, S. (2019). Effect of radio frequency treatment on functional, structural and thermal behaviors of protein isolates in rice bran. Food Chemistry, 289, 537–544. https://doi.org/10.1016/j.foodchem.2019.03.072

  • Liu, X., Wang, M., Xue, F., & Adhikari, B. (2022). Application of ultrasound treatment to improve the technofunctional properties of hemp protein isolate. Future Foods6, 100176. https://doi.org/10.1016/j.fufo.2022.100176

  • Ma, S., Yang, X., Zhao, C., & Guo, M. (2018). Ultrasound-induced changes in structural and physicochemical properties of β-lactoglobulin. Food Science and Nutrition, 6(4), 1053–1064. https://doi.org/10.1002/fsn3.646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik, M. A., Sharma, H. K., & Saini, C. S. (2017). High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrasonics Sonochemistry, 39, 511–519. https://doi.org/10.1016/j.ultsonch.2017.05.026

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Velasco, A., Lobato-Calleros, C., Hernández-Rodríguez, B. E., Román-Guerrero, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics Sonochemistry, 44(1), 97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007

  • Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., Li, A., Shao, H., Li, C., & Liu, L. (2021). Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. Lwt, 152(6), 112272. https://doi.org/10.1016/j.lwt.2021.112272

  • Miklavžin, A., Cegnar, M., Kerč, J., & Kristl, J. (2018). Effect of surface hydrophobicity of therapeutic protein loaded in polyelectrolyte nanoparticles on transepithelial permeability. Acta Pharmaceutica, 68(3), 275–293. https://doi.org/10.2478/acph-2018-0032

    Article  CAS  PubMed  Google Scholar 

  • Mintah, B. K., He, R., Dabbour, M., Xiang, J., Jiang, H., Agyekum, A. A., & Ma, H. (2020). Characterization of edible soldier fly protein and hydrolysate altered by multiple-frequency ultrasound: Structural, physical, and functional attributes. Process Biochemistry, 95(5), 157–165. https://doi.org/10.1016/j.procbio.2020.05.021

    Article  CAS  Google Scholar 

  • Mir, N. A., Riar, C. S., & Singh, S. (2019). Structural modification of quinoa seed protein isolates (QPIs) by variable time sonification for improving its physicochemical and functional characteristics. Ultrasonics Sonochemistry, 58. https://doi.org/10.1016/j.ultsonch.2019.104700

  • Morales, R., Martínez, K. D., Ruiz-Henestrosa, V. M. P., & Pilosof, A. M. (2015). Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect. Ultrasonics Sonochemistry, 26, 48–55. https://doi.org/10.1016/j.ultsonch.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  • Nazari, B., Mohammadifar, M. A., Shojaee-Aliabadi, S., Feizollahi, E., & Mirmoghtadaie, L. (2018). Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry, 41, 382–388. https://doi.org/10.1016/j.ultsonch.2017.10.002

  • O’Sullivan, J., Park, M., & Beevers, J. (2016). The effect of ultrasound upon the physicochemical and emulsifying properties of wheat and soy protein isolates. Journal of Cereal Science, 69, 77–84. https://doi.org/10.1016/j.jcs.2016.02.013

    Article  CAS  Google Scholar 

  • Pandey, A., Singh, R., Sharma, S.K., & Bhandari, D.C. (2010). Diversity assessment of useful Crotalaria species in India for plant genetic resources management. Genetic Resources and Crop Evolution, 57, 467–470. https://doi.org/10.1007/s10722-009-9517-0

  • Ruiz, G. A., Xiao, W., Van Boekel, M., Minor, M., & Stieger, M. (2016). Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd). Food Chemistry, 209, 203–210. https://doi.org/10.1016/j.foodchem.2016.04.052

    Article  CAS  PubMed  Google Scholar 

  • Sadhukhan, S., & Sarkar, U. (2016). Production of biodiesel from Crotalaria juncea (Sunn-Hemp) oil using catalytic trans-esterification: Process optimisation using a factorial and Box-Behnken design. Waste and Biomass Valorization, 7(2), 343–355. https://doi.org/10.1007/s12649-015-9454-4

    Article  CAS  Google Scholar 

  • Sengupta, S., & Debnath, S. (2018). Industrial Crops & Products Development of sunnhemp ( Crotalaria juncea ) fibre based unconventional fabric. Industrial Crops & Products, 116(2), 109–115. https://doi.org/10.1016/j.indcrop.2018.02.059

    Article  CAS  Google Scholar 

  • Shen, P., Gao, Z., Xu, M., Ohm, J. B., Rao, J., & Chen, B. (2020). The impact of hempseed dehulling on chemical composition, structure properties and aromatic profile of hemp protein isolate. Food Hydrocolloids, 106(3), 105889. https://doi.org/10.1016/j.foodhyd.2020.105889

  • Stefanović, A. B., Jovanović, J. R., Dojčinović, M. B., Lević, S. M., Nedović, V. A., Bugarski, B. M., & Knežević-Jugović, Z. D. (2017). Effect of the controlled high-intensity ultrasound on improving functionality and structural changes of egg white proteins. Food and Bioprocess Technology, 10(7), 1224–1239. https://doi.org/10.1007/s11947-017-1884-5

    Article  CAS  Google Scholar 

  • Tian, R., Feng, J., Huang, G., Tian, B., Zhang, Y., Jiang, L., & Sui, X. (2020). Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. Ultrasonics sonochemistry, 68, 105202. https://doi.org/10.1016/j.ultsonch.2020.105202

  • Tomé Constantino, A. B., & Garcia-Rojas, E. E. (2020). Modifications of physicochemical and functional properties of amaranth protein isolate (Amaranthus cruentus BRS Alegria) treated with high-intensity ultrasound. Journal of Cereal Science, 95. https://doi.org/10.1016/j.jcs.2020.103076

  • Wang, J. Y., Yang, Y. L., Tang, X. Z., Ni, W. X., & Zhou, L. (2017). Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein. Ultrasonics Sonochemistry, 38, 225–233. https://doi.org/10.1016/j.ultsonch.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Wang, Y., Li, K., Bai, Y., Li, B., & Xu, W. (2020). Effect of high intensity ultrasound on physicochemical, interfacial and gel properties of chickpea protein isolate. LWT, 129. https://doi.org/10.1016/j.lwt.2020.109563

  • Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International, 109, 260–267. https://doi.org/10.1016/j.foodres.2018.04.044

    Article  CAS  PubMed  Google Scholar 

  • Xiong, W., Wang, Y., Zhang, C., Wan, J., Shah, B. R., Pei, Y., & Li, B. (2016). High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties. Ultrasonics Sonochemistry, 31, 302–309. https://doi.org/10.1016/j.ultsonch.2016.01.014

    Article  CAS  PubMed  Google Scholar 

  • Yan, S., Xu, J., Zhang, S., & Li, Y. (2021). Effects of flexibility and surface hydrophobicity on emulsifying properties: Ultrasound-treated soybean protein isolate. Lwt, 142(1), 110881. https://doi.org/10.1016/j.lwt.2021.110881

  • Yan, S., Xu, J., Zhang, S., Li, Y., Zhu, Z., Zhu, W., Yi, J., Liu, N., Cao, Y., Lu, J., Decker, E. A., & McClements, D. J. (2018). Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 106(1), 853–861. https://doi.org/10.1016/j.foodres.2018.01.060

    Article  CAS  Google Scholar 

  • Yang, K., Xu, T. R., Fu, Y. H., Cai, M., Xia, Q. Le, Guan, R. F., Zou, X. G., & Sun, P. L. (2021). Effects of ultrasonic pre-treatment on physicochemical properties of proteins extracted from cold-pressed sesame cake. Food Research International, 139(11), 109907. https://doi.org/10.1016/j.foodres.2020.109907

  • Yu, C., Wu, F., Cha, Y., Qin, Y., & Du, M. (2018). Effects of ultrasound on structure and functional properties of mussel (Mytilus edulis) protein isolates. Journal of Food Processing and Preservation, 42(8). https://doi.org/10.1111/jfpp.13690

  • Yue, J., Gu, Z., Zhu, Z., Yi, J., Ohm, J. B., Chen, B., & Rao, J. (2021). Impact of defatting treatment and oat varieties on structural, functional properties, and aromatic profile of oat protein. Food Hydrocolloids, 112, 106368. https://doi.org/10.1016/j.foodhyd.2020.106368

  • Zhao, Q., Xie, T., Hong, X., Zhou, Y., Fan, L., Liu, Y., & Li, J. (2022). Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion. Food Chemistry, 368(7), 130848. https://doi.org/10.1016/j.foodchem.2021.130848

  • Zhao, Z. K., Mu, T. H., Zhang, M., & Richel, A. (2019). Effects of sulfur-containing amino acids and high hydrostatic pressure on structure and gelation properties of sweet potato protein. Food and Bioprocess Technology, 12(11), 1863–1873. https://doi.org/10.1007/s11947-019-02343-6

    Article  CAS  Google Scholar 

  • Zhu, Z., Zhu, W., Yi, J., Liu, N., Cao, Y., Lu, J., Decker, E. A., & McClements, D. J. (2018). Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 106, 853–861. https://doi.org/10.1016/j.foodres.2018.01.060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Central Research Laboratory, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, Punjab, for providing the necessary research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Rashmi Rawat: formal analysis, data acquisition, data analysis, writing—original draft; C.S. Saini: conceptualization, methodology, supervision, writing—review and editing.

Corresponding author

Correspondence to Rashmi Rawat.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Underutilized sunnhemp seeds contain high protein and most of the essential amino acids.

• Sunnhemp seed proteins showed desirable functional properties.

• The data revealed that sunnhemp seed proteins can be used for various food applications.

• Ultrasound amplitude and sonication time significantly affected the different properties of sunnhemp protein isolates (SHPIs).

• Samples treated with ultrasound amplitude at 50% for 20 min time showed the highest purity and maximum improvement in functional properties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, R., Saini, C.S. High-Intensity Ultrasound (HIUS) Treatment of Sunnhemp Protein Isolate (Crotalaria juncea L.): Modification of Functional, Structural, and Microstructural Properties. Food Bioprocess Technol 16, 1464–1477 (2023). https://doi.org/10.1007/s11947-023-03011-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03011-6

Keywords

Navigation