Skip to main content

Advertisement

Log in

The A2F ICU Liberation Bundle in Neurocritical Care

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

The A2F intensive care unit (ICU) liberation bundle is a multi-component management strategy that has been shown to improve hospital survival and reduce rates of delirium and ICU readmission. In this review, we aim to highlight the potential role of the A2F bundle in neurocritical care settings while further delineating its individual components.

Recent findings

The A2F bundle and its components are supported by a robust evidence base that continues to develop regarding the management of critically ill patients. Recent additions include the DEXACET trial, which found that scheduled intravenous acetaminophen reduced delirium, breakthrough analgesia, and ICU length of stay for post-operative patients. Meanwhile, although previous trials indicated that dexmedetomidine for light sedation reduces delirium when compared with benzodiazepine sedation, the MENDS2 and SPICE-III trials did not find that dexmedetomidine as a first-line sedative for mechanically ventilated ICU patients improved outcomes compared with propofol. Trials of family engagement support more frequent goals of care discussions and improvements in quality of communication and patient-centered care. However, evidence specific to neurocritically ill patients remains limited. A small trial found utility for goals of care decision aids to support shared decision-making in patients with severe acute brain injury. Recent studies have also suggested that delirium may have a unique impact on outcomes in neurocritically ill patients, and new tools may have utility in delirium identification in patients with acute neurological injury. Finally, there is accumulating evidence to suggest that early mobilization is safe and feasible in neurocritically ill patients, even those with external ventricular drains, and that it may improve outcomes.

Summary

Although the A2F bundle in its entirety has not been specifically studied in neurocritically ill patients, many of its goals overlap with contemporary neurocritical care practices. Future studies are needed to determine optimal ICU liberation strategies that can be safely and effectively implemented in patients with acute neurological injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306–16. https://doi.org/10.1056/NEJMoa1301372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iwashyna TJ, Ely E, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):1787–94. https://doi.org/10.1001/jama.2010.1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Parker AM, Sricharoenchai T, Raparla S, Schneck KW, Bienvenu OJ, Needham DM. Posttraumatic stress disorder in critical illness survivors: a metaanalysis*. Crit Care Med. 2015;43(5):1121–9. https://doi.org/10.1097/ccm.0000000000000882.

    Article  PubMed  Google Scholar 

  4. Jackson JC, Pandharipande PP, Girard TD, et al. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir Med. 2014;2(5):369–79. https://doi.org/10.1016/S2213-2600(14)70051-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF bundle in critical care. Crit Care Clin 2017;33(2):225–243. (In eng). https://doi.org/10.1016/j.ccc.2016.12.005.

  6. Balas MC, Vasilevskis EE, Olsen KM, et al. Effectiveness and safety of the awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle*. Crit Care Med. 2014;42(5):1024–36. https://doi.org/10.1097/ccm.0000000000000129.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barnes-Daly MA, Phillips G, Ely EW. Improving hospital survival and reducing brain dysfunction at seven California community hospitals: implementing PAD guidelines via the ABCDEF bundle in 6,064 patients*. Crit Care Med. 2017;45(2):171–8. https://doi.org/10.1097/ccm.0000000000002149.

    Article  PubMed  Google Scholar 

  8. •• Pun BT, Balas MC, Barnes-Daly MA, et al. Caring for critically ill patients with the abcdef bundle: results of the ICU liberation collaborative in over 15,000 adults. Crit Care Med. 2019;47(1):3–14. https://doi.org/10.1097/ccm.0000000000003482. A large prospective multi-center study showing that ABCDEF bundle adherence was associated with improved ICU outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Morandi A, Piva S, Ely EW, et al. Worldwide survey of the “assessing pain, both spontaneous awakening and breathing trials, choice of drugs, delirium monitoring/management, early exercise/mobility, and family empowerment” (ABCDEF) bundle. Crit Care Med. 2017;45(11):e1111–22. https://doi.org/10.1097/ccm.0000000000002640.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chanques G, Sebbane M, Barbotte E, Viel E, Eledjam J-J, Jaber S. A prospective study of pain at rest: incidence and characteristics of an unrecognized symptom in surgical and trauma versus medical intensive care unit patients. Anesthesiology. 2007;107(5):858–60. https://doi.org/10.1097/01.anes.0000287211.98642.51.

    Article  PubMed  Google Scholar 

  11. Gottschalk A, Berkow LC, Stevens RD, et al. Prospective evaluation of pain and analgesic use following major elective intracranial surgery. J Neurosurg. 2007;106(2):210–216. (In English). https://doi.org/10.3171/jns.2007.106.2.210.

  12. Mordhorst C, Latz B, Kerz T, et al. Prospective assessment of postoperative pain after craniotomy. J Neurosurg Anesthesiol. 2010;22(3):202–6. https://doi.org/10.1097/ANA.0b013e3181df0600.

    Article  PubMed  Google Scholar 

  13. Flexman AM, Ng JL, Gelb AW. Acute and chronic pain following craniotomy. Current Opinion in Anesthesiology. 2010;23(5):551–7. https://doi.org/10.1097/ACO.0b013e32833e15b9.

    Article  PubMed  Google Scholar 

  14. Jaffa MN, Podell JE, Smith MC, et al. Association of refractory pain in the acute phase after subarachnoid hemorrhage with continued outpatient opioid use. Neurology. 2021;96(19):e2355–62. https://doi.org/10.1212/wnl.0000000000011906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahta A, Anderson MN, Azher AI, et al. Short- and long-term opioid use in survivors of subarachnoid hemorrhage. Clin Neurol Neurosurg. 2021;207: 106770. https://doi.org/10.1016/j.clineuro.2021.106770.

    Article  PubMed  Google Scholar 

  16. Lin N, Mandel D, Chuck CC, et al. Risk factors for opioid utilization in patients with intracerebral hemorrhage. Neurocrit Care. 2022;36(3):964–73. https://doi.org/10.1007/s12028-021-01404-z.

    Article  CAS  PubMed  Google Scholar 

  17. Chanques G, Viel E, Constantin J-M, et al. The measurement of pain in intensive care unit: Comparison of 5 self-report intensity scales. Pain. 2010;151(3):711–21. https://doi.org/10.1016/j.pain.2010.08.039.

    Article  PubMed  Google Scholar 

  18. Ahlers SJ, van Gulik L, van der Veen AM, et al. Comparison of different pain scoring systems in critically ill patients in a general ICU. Crit Care. 2008;12(1):R15. (In eng). https://doi.org/10.1186/cc6789.

  19. Gélinas C, Arbour C. Behavioral and physiologic indicators during a nociceptive procedure in conscious and unconscious mechanically ventilated adults: similar or different? J Crit Care. 2009;24(4):628.e7-628.e17. https://doi.org/10.1016/j.jcrc.2009.01.013.

    Article  PubMed  Google Scholar 

  20. Payen J-F, Bru O, Bosson J-L, et al. Assessing pain in critically ill sedated patients by using a behavioral pain scale. Crit Care Med. 2001;29(12):2258–2263. https://journals.lww.com/ccmjournal/Fulltext/2001/12000/Assessing_pain_in_critically_ill_sedated_patients.4.aspx.

  21. Gélinas C, Fillion L, Puntillo KA, Viens C, Fortier M. Validation of the critical-care pain observation tool in adult patients. Am J Crit Care. 2006;15(4):420–7 (In eng).

    Article  PubMed  Google Scholar 

  22. Rijkenberg S, Stilma W, Endeman H, Bosman RJ, Oudemans-van Straaten HM. Pain measurement in mechanically ventilated critically ill patients: behavioral pain scale versus critical-care pain observation tool. J Crit Care. 2015;30(1):167–72. https://doi.org/10.1016/j.jcrc.2014.09.007.

    Article  CAS  PubMed  Google Scholar 

  23. Joffe AM, McNulty B, Boitor M, Marsh R, Gélinas C. Validation of the critical-care pain observation tool in brain-injured critically ill adults. J Crit Care. 2016;36:76–80. https://doi.org/10.1016/j.jcrc.2016.05.011.

    Article  PubMed  Google Scholar 

  24. Dehghani H, Tavangar H, Ghandehari A. Validity and reliability of behavioral pain scale in patients with low level of consciousness due to head trauma hospitalized in intensive care unit. Arch Trauma Res 2014;3(1):e18608. (In eng). https://doi.org/10.5812/atr.18608.

  25. Payen J-F, Bosson J-L, Chanques G, Mantz J, Labarere J, Investigators ftD. Pain assessment is associated with decreased duration of mechanical ventilation in the intensive care unit: a post hocanalysis of the DOLOREA study. Anesthesiology. 2009;111(6):1308–1316. https://doi.org/10.1097/ALN.0b013e3181c0d4f0.

  26. Ely EW, Baker AM, Dunagan DP, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335(25):1864–9. https://doi.org/10.1056/nejm199612193352502.

    Article  CAS  PubMed  Google Scholar 

  27. Kress JP, Pohlman AS, O’Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–7. https://doi.org/10.1056/nejm200005183422002.

    Article  CAS  PubMed  Google Scholar 

  28. Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. The Lancet. 2008;371(9607):126–34. https://doi.org/10.1016/S0140-6736(08)60105-1.

    Article  Google Scholar 

  29. Namen AM, Ely EW, Tatter SB, et al. Predictors of successful extubation in neurosurgical patients. Am J Respir Crit Care Med. 2001;163(3):658–64. https://doi.org/10.1164/ajrccm.163.3.2003060.

    Article  CAS  PubMed  Google Scholar 

  30. Asehnoune K, Seguin P, Lasocki S, et al. Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology. 2017;127(2):338–46. https://doi.org/10.1097/aln.0000000000001725.

    Article  PubMed  Google Scholar 

  31. Godet T, Chabanne R, Marin J, et al. Extubation failure in brain-injured patients: risk factors and development of a prediction score in a preliminary prospective cohort study. Anesthesiology. 2017;126(1):104–14. https://doi.org/10.1097/aln.0000000000001379.

    Article  PubMed  Google Scholar 

  32. McCredie VA, Ferguson ND, Pinto RL, et al. Airway management strategies for brain-injured patients meeting standard criteria to consider extubation. A Prospective Cohort Study. Annals Am Thoracic Soc. 2017;14(1):85–93. https://doi.org/10.1513/AnnalsATS.201608-620OC.

  33. Ely E, Truman B, Shintani A, et al. Monitoring sedation status over time in icu patients: reliability and validity of the richmond agitation-sedation scale (rass). JAMA. 2003;289(22):2983–91. https://doi.org/10.1001/jama.289.22.2983.

    Article  PubMed  Google Scholar 

  34. Riker RR, Fraser GL, Simmons LE, Wilkins ML. Validating the Sedation-Agitation Scale with the Bispectral Index and Visual Analog Scale in adult ICU patients after cardiac surgery. Intensive Care Med. 2001;27(5):853–8. https://doi.org/10.1007/s001340100912.

    Article  CAS  PubMed  Google Scholar 

  35. Reade MC, Finfer S. Sedation and delirium in the intensive care unit. N Engl J Med. 2014;370(5):444–54. https://doi.org/10.1056/NEJMra1208705.

    Article  CAS  PubMed  Google Scholar 

  36. Myhren H, Ekeberg O, Tøien K, Karlsson S, Stokland O. Posttraumatic stress, anxiety and depression symptoms in patients during the first year post intensive care unit discharge. Crit Care. 2010;14(1):R14. https://doi.org/10.1186/cc8870.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stein-Parbury J, McKinley S. Patients experiences of being in an intensive care unit: a select literature review. Am J Crit Care. 2000;9(1):20–27. https://www.ncbi.nlm.nih.gov/pubmed/10631387.

  38. Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–73. https://doi.org/10.1097/ccm.0000000000003299.

    Article  PubMed  Google Scholar 

  39. Cook AM, Morgan Jones G, Hawryluk GWJ, et al. Guidelines for the acute treatment of cerebral edema in neurocritical care patients. Neurocrit Care. 2020;32(3):647–66. https://doi.org/10.1007/s12028-020-00959-7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brophy GM, Bell R, Claassen J, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care. 2012;17(1):3–23. https://doi.org/10.1007/s12028-012-9695-z.

    Article  PubMed  Google Scholar 

  41. Vasilevskis EE, Pandharipande PP, Girard TD, Ely EW. A screening, prevention, and restoration model for saving the injured brain in intensive care unit survivors. Crit Care Med. 2010;38(10 Suppl):S683–91. https://doi.org/10.1097/CCM.0b013e3181f245d3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pisani MA, Murphy TE, Araujo KLB, Slattum P, Van Ness PH, Inouye SK. Benzodiazepine and opioid use and the duration of intensive care unit delirium in an older population. Crit Care Med. 2009;37(1):177–83. https://doi.org/10.1097/CCM.0b013e318192fcf9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zaal IJ, Devlin JW, Hazelbag M, et al. Benzodiazepine-associated delirium in critically ill adults. Intensive Care Med. 2015;41(12):2130–7. https://doi.org/10.1007/s00134-015-4063-z.

    Article  CAS  PubMed  Google Scholar 

  44. Pandharipande P, Shintani A, Peterson J, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology. 2006;104(1):21–6. https://doi.org/10.1097/00000542-200601000-00005.

    Article  CAS  PubMed  Google Scholar 

  45. Pandharipande PP, Pun BT, Herr DL, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. The Journal of the American Medical Association. 2007;298(22):2644–53. https://doi.org/10.1001/jama.298.22.2644.

    Article  CAS  PubMed  Google Scholar 

  46. Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. The Journal of the American Medical Association. 2009;301(5):489–99. https://doi.org/10.1001/jama.2009.56.

    Article  CAS  PubMed  Google Scholar 

  47. Jakob SM, Ruokonen E, Grounds RM, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. The Journal of the American Medical Association. 2012;307(11):1151–60. https://doi.org/10.1001/jama.2012.304.

    Article  CAS  PubMed  Google Scholar 

  48. •• Shehabi Y, Howe BD, Bellomo R, et al. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506–17. https://doi.org/10.1056/NEJMoa1904710. The SPICE-III RCT found that mechanically ventilated ICU patients who received early dexmedetomidine had more delirium-and-coma-free days than those receiving other sedatives, though rate of death at 90 days was similar to that in the usual care group.

    Article  CAS  PubMed  Google Scholar 

  49. •• Hughes CG, Mailloux PT, Devlin JW, et al. Dexmedetomidine or propofol for sedation in mechanically ventilated adults with sepsis. N Engl J Med. 2021;384(15):1424–36. https://doi.org/10.1056/NEJMoa2024922. The MENDS2 RCT found that delirium-and-coma-free days, ventilator-free days, and 90-day mortality were similar in mechanically ventilated ICU patients with sepsis who received light sedation with dexmedetomidine compared to those who received propofol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reade MC, Eastwood GM, Bellomo R, et al. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. The Journal of the American Medical Association. 2016;315(14):1460–8. https://doi.org/10.1001/jama.2016.2707.

    Article  CAS  PubMed  Google Scholar 

  51. •• Subramaniam B, Shankar P, Shaefi S, et al. Effect of intravenous acetaminophen vs placebo combined with propofol or dexmedetomidine on postoperative delirium among older patients following cardiac surgery: the DEXACET randomized clinical trial. The Journal of the American Medical Association. 2019;321(7):686–96. https://doi.org/10.1001/jama.2019.0234. The DEXACET RCT found scheduled intravenous acetaminophen was effective in reducing post-operative delirium, breakthrough analgesia, and ICU length of stay, emphasizing the importance of nonopioid analgesia in ICU care.

    Article  CAS  PubMed  Google Scholar 

  52. Finnerup NB. Nonnarcotic methods of pain management. N Engl J Med. 2019;380(25):2440–8. https://doi.org/10.1056/NEJMra1807061.

    Article  CAS  PubMed  Google Scholar 

  53. Hudetz JA, Patterson KM, Iqbal Z, et al. Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23(5):651–7. https://doi.org/10.1053/j.jvca.2008.12.021.

    Article  CAS  PubMed  Google Scholar 

  54. Carin-Levy G, Mead GE, Nicol K, Rush R, van Wijck F. Delirium in acute stroke: screening tools, incidence rates and predictors: a systematic review. J Neurol 2012;259(8):1590–1599. (journal article). https://doi.org/10.1007/s00415-011-6383-4.

  55. Shi Q, Presutti R, Selchen D, Saposnik G. Delirium in acute stroke: a systematic review and meta-analysis. Stroke. 2012;43(3):645–9. https://doi.org/10.1161/strokeaha.111.643726.

    Article  PubMed  Google Scholar 

  56. • Reznik ME, Margolis SA, Mahta A, et al. Impact of delirium on outcomes after intracerebral hemorrhage. Stroke. 2022;53(2):505–13. https://doi.org/10.1161/STROKEAHA.120.034023. A single-center cohort study that found acute delirium resolved in most survivors of intracerebral hemorrhage, and that delirium resolution was associated with better outcomes compared to persistent delirium. However, while post-acute rehabilitation mitigated the impact of delirium on long-term outcomes, delirium was associated with decreased rates of inpatient rehabilitation placement even if it resolved prior to hospital discharge.

    Article  CAS  PubMed  Google Scholar 

  57. Wilson LD, Maiga AW, Lombardo S, et al. Prevalence and risk factors for intensive care unit delirium after traumatic brain injury: a retrospective cohort study. Neurocrit Care 2023 (In eng). https://doi.org/10.1007/s12028-022-01666-1.

  58. van Rijsbergen MWA, Oldenbeuving AW, Nieuwenhuis-Mark RE, et al. Delirium in acute stroke: a predictor of subsequent cognitive impairment?: a two-year follow-up study. J Neurol Sci. 2011;306(1–2):138–42. https://doi.org/10.1016/j.jns.2011.03.024.

    Article  PubMed  Google Scholar 

  59. Reznik ME, Schmidt JM, Mahta A, et al. Agitation after subarachnoid hemorrhage: a frequent omen of hospital complications associated with worse outcomes. Neurocritical Care 2016:1–8. (journal article). https://doi.org/10.1007/s12028-016-0331-1.

  60. • Reznik ME, Moody S, Murray K, et al. The impact of delirium on withdrawal of life-sustaining treatment after intracerebral hemorrhage. Neurology. 2020:https://doi.org/10.1212/WNL.0000000000010738. A single-center cohort study that found delirium was associated with withdrawal of life-sustaining treatment after intracerebral hemorrhage, regardless of whether it occurred earlier or later in a patient’s hospital course.

  61. • Reznik ME, Drake J, Margolis SA, et al. Deconstructing poststroke delirium in a prospective cohort of patients with intracerebral hemorrhage*. Read Online: Soc Crit Care Med. 2020;48(1):111–118. https://doi.org/10.1097/ccm.0000000000004031. A single-center prospective observational cohort study that found severe neurologic deficits may confound the assessment of delirium and lead to underdiagnosis using existing delirium screening tools.

  62. Diagnostic and statistical manual of mental disorders : DSM-5: Fifth edition. Arlington, VA : American Psychiatric Association, [2013], 2013.

  63. Ely EW, Inouye SK, Bernard GR, Gordon S, Francis J, May L. Delirium in mechanically ventilated patients: validity and reliability of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). JAMA 2001;286. https://doi.org/10.1001/jama.286.21.2703.

  64. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27(5):859–64 (In Eng).

    Article  CAS  PubMed  Google Scholar 

  65. Eijk MMv, Boogaard Mvd, Marum RJv, et al. Routine use of the Confusion Assessment Method for the Intensive Care Unit. American Journal of Respiratory and Critical Care Medicine 2011;184(3):340–344. https://doi.org/10.1164/rccm.201101-0065OC.

  66. Frenette AJ, Bebawi ER, Deslauriers LC, et al. Validation and comparison of CAM-ICU and ICDSC in mild and moderate traumatic brain injury patients. Intensive Care Medicine 2016;42(1):122–123. (journal article). https://doi.org/10.1007/s00134-015-3964-1.

  67. •• Reznik ME, Margolis SA, Moody S, et al. A pilot study of the fluctuating mental status evaluation: a novel delirium screening tool for neurocritical care patients. Neurocrit Care. 2022. https://doi.org/10.1007/s12028-022-01612-1. A single-center pilot study of the Fluctuating Mental Status Evaluation, a novel delirium screening tool for patients with neurologic deficits, that found it had high accuracy in detecting delirium in patients with intracerebral hemorrhage when used by clinical nurses.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bannon LM, Jennifer; Verghis, Rejina; Clarke, Mike; McAuley, Daniel F.; Blackwood, Bronagh. The effectiveness of non-pharmacological interventions in reducing the incidence and duration of delirium in critically ill patients: a systematic review and meta-analysis. Intensive Care Med 2018;45(1):1–12.

  69. Litton E, Carnegie V, Elliott R, Webb SAR. The efficacy of earplugs as a sleep hygiene strategy for reducing delirium in the ICU: a systematic review and meta-analysis*. Crit Care Med. 2016;44(5):992–9. https://doi.org/10.1097/ccm.0000000000001557.

    Article  PubMed  Google Scholar 

  70. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. The Lancet. 2009;373(9678):1874–82. https://doi.org/10.1016/S0140-6736(09)60658-9.

    Article  Google Scholar 

  71. Munro CL, Cairns P, Ji M, Calero K, Anderson WM, Liang Z. Delirium prevention in critically ill adults through an automated reorientation intervention; a pilot randomized controlled trial. Heart & Lung: The Journal of Cardiopulmonary and Acute Care. 2017;46(4):234–8. https://doi.org/10.1016/j.hrtlng.2017.05.002.

    Article  Google Scholar 

  72. LaBuzetta JN, Kamdar BB, Malhotra A. Reassessing hourly neurochecks. J Clin Neurosci. 2023;110:71–3. https://doi.org/10.1016/j.jocn.2023.02.009.

    Article  PubMed  Google Scholar 

  73. Kamdar BB, Needham DM, Collop NA. Sleep deprivation in critical illness: its role in physical and psychological recovery. J Intensive Care Med. 2012;27(2):97–111. (In eng). https://doi.org/10.1177/0885066610394322.

  74. van den Boogaard M, Slooter AJC, Brüggemann RJM, et al. Effect of haloperidol on survival among critically ill adults with a high risk of delirium: the REDUCE randomized clinical trial effect of haloperidol on survival among critically ill adults at high risk of delirium effect of haloperidol on survival among critically ill adults at high risk of delirium. JAMA. 2018;319(7):680–90. https://doi.org/10.1001/jama.2018.0160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Girard TD, Exline MC, Carson SS, et al. Haloperidol and ziprasidone for treatment of delirium in critical illness. N Engl J Med. 2018;379(26):2506–16. https://doi.org/10.1056/NEJMoa1808217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •• Andersen-Ranberg NC, Poulsen LM, Perner A, et al. Haloperidol for the treatment of delirium in ICU patients. N Engl J Med. 2022;387(26):2425–35. https://doi.org/10.1056/NEJMoa2211868. The AID-ICU placebo-controlled RCT found haloperidol did not affect hospital-free days or delirium duration, though 90-day mortality was lower in the haloperidol group.

    Article  CAS  PubMed  Google Scholar 

  77. Feeney D, Gonzalez A, Law W. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science. 1982;217(4562):855–7. https://doi.org/10.1126/science.7100929.

    Article  CAS  PubMed  Google Scholar 

  78. Goldstein LB, Bullman S. Differential effects of haloperidol and clozapine on motor recovery after sensorimotor cortex injury in rats. Neurorehabil Neural Repair. 2002;16(4):321–5. https://doi.org/10.1177/154596830201600402.

    Article  PubMed  Google Scholar 

  79. Panel BtAGSBCUE. American Geriatrics Society 2015 Updated beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63(11):2227–46. https://doi.org/10.1111/jgs.13702.

    Article  Google Scholar 

  80. Appleton RT, Kinsella J, Quasim T. The incidence of intensive care unit-acquired weakness syndromes: a systematic review. Journal of the Intensive Care Society. 2015;16(2):126–36. https://doi.org/10.1177/1751143714563016.

    Article  PubMed  Google Scholar 

  81. Tipping CJ, Harrold M, Holland A, Romero L, Nisbet T, Hodgson CL. The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review. Intensive Care Med. 2017;43(2):171–83. https://doi.org/10.1007/s00134-016-4612-0.

    Article  PubMed  Google Scholar 

  82. Schaller SJ, Anstey M, Blobner M, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. The Lancet. 2016;388(10052):1377–88. https://doi.org/10.1016/S0140-6736(16)31637-3.

    Article  Google Scholar 

  83. Álvarez EA, Garrido MA, Tobar EA, et al. Occupational therapy for delirium management in elderly patients without mechanical ventilation in an intensive care unit: a pilot randomized clinical trial. J Crit Care. 2017;37:85–90. https://doi.org/10.1016/j.jcrc.2016.09.002.

    Article  PubMed  Google Scholar 

  84. Dubb R, Nydahl P, Hermes C, et al. Barriers and strategies for early mobilization of patients in intensive care units. Ann Am Thorac Soc. 2016;13(5):724–30. https://doi.org/10.1513/AnnalsATS.201509-586CME.

    Article  PubMed  Google Scholar 

  85. •• Patel BK, Wolfe KS, Patel SB, et al. Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial. Lancet Respir Med. 2023;11(6):563–72. https://doi.org/10.1016/S2213-2600(22)00489-1. A single-center RCT that found ICU patients who received early mobilization had lower rates of long-term cognitive impairment and fewer cases of ICU-acquired weakness than those who received usual care.

    Article  PubMed  Google Scholar 

  86. •• Early active mobilization during mechanical ventilation in the icu. New England J Med. 2022;387(19):1747–1758. https://doi.org/10.1056/NEJMoa2209083. A multi-center RCT that found mechanically ventilated ICU patients who received increased early active mobilization did not have a significantly greater number of days alive and out of the hospital compared to those who received usual care, with similar levels of disability, cognitive function, and quality of life between groups.

  87. Nudo RJ. Postinfarct Cortical Plasticity and Behavioral Recovery. Stroke. 2007;38(2):840–5. https://doi.org/10.1161/01.STR.0000247943.12887.d2.

    Article  PubMed  Google Scholar 

  88. Nudo R. Recovery after brain injury: mechanisms and principles. Front Human Neurosci. 2013;7 (Review) (In English). https://doi.org/10.3389/fnhum.2013.00887.

  89. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344–418. https://doi.org/10.1161/STR.0000000000000211.

    Article  PubMed  Google Scholar 

  90. Greenberg SM, Ziai WC, Cordonnier C, et al. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke. 2022;53(7):e282–361. https://doi.org/10.1161/STR.0000000000000407.

    Article  CAS  PubMed  Google Scholar 

  91. Wang H, Camicia M, DiVita M, Mix J, Niewczyk P. Early Inpatient rehabilitation admission and stroke patient outcomes. Am J Phys Med Rehabil. 2015;94(2):85–100. https://doi.org/10.1097/phm.0000000000000226.

    Article  PubMed  Google Scholar 

  92. Does an early onset and continuous chain of rehabilitation improve the long-term functional outcome of patients with severe traumatic brain injury. J Neurotrauma. 2012;29(1):66–74. https://doi.org/10.1089/neu.2011.1811.

  93. Titsworth WL, Hester J, Correia T, et al. The effect of increased mobility on morbidity in the neurointensive care unit: clinical article. J Neurosurg. 2012;116(6):1379–1388. (In English). https://doi.org/10.3171/2012.2.Jns111881.

  94. Klein K, Mulkey M, Bena JF, Albert NM. Clinical and psychological effects of early mobilization in patients treated in a neurologic ICU: a comparative study*. Crit Care Med. 2015;43(4):865–73. https://doi.org/10.1097/ccm.0000000000000787.

    Article  PubMed  Google Scholar 

  95. Shah SO, Kraft J, Ankam N, et al. Early Ambulation in patients with external ventricular drains:results of a quality improvement project. J Intensive Care Med. 2018;33(6):370–4. https://doi.org/10.1177/0885066616677507.

    Article  PubMed  Google Scholar 

  96. Yataco RA, Arnold SM, Brown SM, et al. Early progressive mobilization of patients with external ventricular drains: safety and feasibility. Neurocrit Care. 2019;30(2):414–20. https://doi.org/10.1007/s12028-018-0632-7.

    Article  CAS  PubMed  Google Scholar 

  97. • Young B, Moyer M, Pino W, Kung D, Zager E, Kumar MA. Safety and feasibility of early mobilization in patients with subarachnoid hemorrhage and external ventricular drain. Neurocrit Care. 2019;31(1):88–96. https://doi.org/10.1007/s12028-019-00670-2. A single-center intervention study that found nurse-driven mobilization for patients with external ventricular drains is safe, feasible, and leads to more frequent ambulation compared to a therapy-driven protocol, while also potentially being associated with improved discharge disposition.

    Article  PubMed  Google Scholar 

  98. Karic T, Røe C, Nordenmark TH, Becker F, Sorteberg W, Sorteberg A. Effect of early mobilization and rehabilitation on complications in aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;126(2):518–526. (In English). https://doi.org/10.3171/2015.12.Jns151744.

  99. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. The Lancet. 2015;386(9988):46–55. https://doi.org/10.1016/S0140-6736(15)60690-0.

  100. Bahouth MN, Power MC, Zink EK, et al. Safety and feasibility of a neuroscience critical care program to mobilize patients with primary intracerebral hemorrhage. Arch Phys Med Rehabil. 2018;99(6):1220–5. https://doi.org/10.1016/j.apmr.2018.01.034.

    Article  PubMed  Google Scholar 

  101. Liu N, Cadilhac DA, Andrew NE, et al. Randomized controlled trial of early rehabilitation after intracerebral hemorrhage stroke. Stroke. 2014;45(12):3502–7. https://doi.org/10.1161/STROKEAHA.114.005661.

    Article  PubMed  Google Scholar 

  102. Wagner AK, Fabio T, Zafonte RD, Goldberg G, Marion DW, Peitzman AB. Physical medicine and rehabilitation consultation: relationships with acute functional outcome, length of stay, and discharge planning after traumatic brain injury. Am J Phys Med Rehabil. 2003;82(7):526–36. https://doi.org/10.1097/01.Phm.0000073825.09942.8f.

    Article  PubMed  Google Scholar 

  103. Goostrey K, Muehlschlegel S. Prognostication and shared decision making in neurocritical care. BMJ. 2022;377: e060154. https://doi.org/10.1136/bmj-2021-060154.

    Article  PubMed  Google Scholar 

  104. Wright AA, Zhang B, Ray A, et al. Associations between end-of-life discussions, patient mental health, medical care near death, and caregiver bereavement adjustment. The Journal of the American Medical Association. 2008;300(14):1665–73. https://doi.org/10.1001/jama.300.14.1665.

    Article  CAS  PubMed  Google Scholar 

  105. Brinkman-Stoppelenburg A, Rietjens JAC, van der Heide A. The effects of advance care planning on end-of-life care: a systematic review. Palliat Med. 2014;28(8):1000–25. https://doi.org/10.1177/0269216314526272.

    Article  PubMed  Google Scholar 

  106. Steinberg A, Abella BS, Gilmore EJ, et al. Frequency of withdrawal of life-sustaining therapy for perceived poor neurologic prognosis. Critical care explorations. 2021;3(7): e0487. https://doi.org/10.1097/CCE.0000000000000487.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lanken PN, Terry PB, Delisser HM, et al. An official American Thoracic Society clinical policy statement: palliative care for patients with respiratory diseases and critical illnesses. Am J Respir Crit Care Med. 2008;177(8):912–27. https://doi.org/10.1164/rccm.200605-587ST.

    Article  PubMed  Google Scholar 

  108. Davidson JE, Powers K, Hedayat KM, et al. Clinical practice guidelines for support of the family in the patient-centered intensive care unit: American College of Critical Care Medicine Task Force 2004–2005. Crit Care Med. 2007;35(2):605–22. https://doi.org/10.1097/01.CCM.0000254067.14607.EB.

    Article  PubMed  Google Scholar 

  109. Carlet J, Thijs LG, Antonelli M, et al. Challenges in end-of-life care in the ICU. Statement of the 5th International Consensus Conference in Critical Care: Brussels, Belgium, April 2003. Intensive Care Medicine 2004;30(5):770–784. https://doi.org/10.1007/s00134-004-2241-5.

  110. Kon AA, Davidson JE, Morrison W, et al. Shared decision making in icus: an american college of critical care medicine and American Thoracic Society policy statement. Crit Care Med. 2016;44(1):188–201. https://doi.org/10.1097/CCM.0000000000001396.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gries CJ, Engelberg RA, Kross EK, et al. Predictors of symptoms of posttraumatic stress and depression in family members after patient death in the ICU. Chest. 2010;137(2):280–7. https://doi.org/10.1378/chest.09-1291.

    Article  PubMed  Google Scholar 

  112. Heyland DK, Cook DJ, Rocker GM, et al. Decision-making in the ICU: perspectives of the substitute decision-maker. Intensive Care Med. 2003;29(1):75–82. https://doi.org/10.1007/s00134-002-1569-y.

    Article  PubMed  Google Scholar 

  113. Bernacki RE, Block SD, American College of Physicians High Value Care Task F. Communication about serious illness care goals: a review and synthesis of best practices. JAMA Intern Med 2014;174(12):1994–2003. https://doi.org/10.1001/jamainternmed.2014.5271.

  114. Quinn T, Moskowitz J, Khan MW, et al. What families need and physicians deliver: contrasting communication preferences between surrogate decision-makers and physicians during outcome prognostication in critically ill TBI patients. Neurocrit Care. 2017;27(2):154–62. https://doi.org/10.1007/s12028-017-0427-2.

    Article  PubMed  PubMed Central  Google Scholar 

  115. White DB, Engelberg RA, Wenrich MD, Lo B, Curtis JR. Prognostication during physician-family discussions about limiting life support in intensive care units. Crit Care Med. 2007;35(2):442–8. https://doi.org/10.1097/01.CCM.0000254723.28270.14.

    Article  PubMed  Google Scholar 

  116. White DB, Engelberg RA, Wenrich MD, Lo B, Curtis JR. The language of prognostication in intensive care units. Med Decis Making. 2010;30(1):76–83. https://doi.org/10.1177/0272989X08317012.

    Article  PubMed  Google Scholar 

  117. • Ge C, Goss AL, Crawford S, et al. Variability of prognostic communication in critically ill neurologic patients: a pilot multicenter mixed-methods study. Crit Care Expl. 2022;4(2): e0640. https://doi.org/10.1097/CCE.0000000000000640. A multi-center study of clinician-family meetings for patients with neurocritical illness that found high variability in clinician prognostication and approach, though different approaches were not significantly associated with withdrawal of life-sustaining treatment decisions.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lee Char SJ, Evans LR, Malvar GL, White DB. A randomized trial of two methods to disclose prognosis to surrogate decision makers in intensive care units. Am J Respir Crit Care Med. 2010;182(7):905–9. https://doi.org/10.1164/rccm.201002-0262OC.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zier LS, Sottile PD, Hong SY, Weissfield LA, White DB. Surrogate decision makers’ interpretation of prognostic information: a mixed-methods study. Ann Intern Med. 2012;156(5):360–6. https://doi.org/10.7326/0003-4819-156-5-201203060-00008.

    Article  PubMed  PubMed Central  Google Scholar 

  120. • Steinberg A, Callaway C, Dezfulian C, Elmer J. Are providers overconfident in predicting outcome after cardiac arrest? Resuscitation. 2020. https://doi.org/10.1016/j.resuscitation.2020.06.004. A single-center prospective cohort study that found significant between-provider variability in prognostication accuracy using clinical data from post-cardiac arrest patients, with most errors being overly optimistic.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Steinberg A, Grayek E, Arnold RM, et al. Physicians’ cognitive approach to prognostication after cardiac arrest. Resuscitation. 2022;173:112–21. https://doi.org/10.1016/j.resuscitation.2022.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hwang DY, Chu SY, Dell CA, et al. Factors considered by clinicians when prognosticating intracerebral hemorrhage outcomes. Neurocrit Care. 2017;27(3):316–25. https://doi.org/10.1007/s12028-017-0430-7.

    Article  PubMed  Google Scholar 

  123. Turgeon AF, Lauzier F, Burns KEA, et al. Determination of neurologic prognosis and clinical decision making in adult patients with severe traumatic brain injury: a survey of Canadian intensivists, neurosurgeons, and neurologists. Crit Care Med. 2013;41(4):1086–93. https://doi.org/10.1097/CCM.0b013e318275d046.

    Article  PubMed  Google Scholar 

  124. Izzy S, Compton R, Carandang R, Hall W, Muehlschlegel S. Self-fulfilling prophecies through withdrawal of care: do they exist in traumatic brain injury, too? Neurocrit Care. 2013;19(3):347–63. https://doi.org/10.1007/s12028-013-9925-z.

    Article  PubMed  Google Scholar 

  125. Wartenberg KE, Hwang DY, Haeusler KG, et al. Gap analysis regarding prognostication in neurocritical care: a joint statement from the German Neurocritical Care Society and the Neurocritical Care Society. Neurocrit Care. 2019;31(2):231–44. https://doi.org/10.1007/s12028-019-00769-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bongiovanni F, Romagnosi F, Barbella G, et al. Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest. Intensive Care Med. 2020;46(5):963–72. https://doi.org/10.1007/s00134-019-05921-6.

    Article  CAS  PubMed  Google Scholar 

  127. • Curtis JR, Lee RY, Brumback LC, et al. Intervention to promote communication about goals of care for hospitalized patients with serious illness: a randomized clinical trial. J A Med Assoc. 2023. https://doi.org/10.1001/jama.2023.8812. A multi-center RCT in hospitalized older adults with serious illness that found a pragmatic clinician-facing communication-priming intervention significantly improved documentation of goals-of-care discussions in the electronic health record.

    Article  PubMed  Google Scholar 

  128. Curtis JR, Treece PD, Nielsen EL, et al. Randomized trial of communication facilitators to reduce family distress and intensity of end-of-life care. Am J Respir Crit Care Med. 2016;193(2):154–62. https://doi.org/10.1164/rccm.201505-0900OC.

    Article  PubMed  PubMed Central  Google Scholar 

  129. White DB, Angus DC, Shields A-M, et al. A randomized trial of a family-support intervention in intensive care units. N Engl J Med. 2018;378(25):2365–75. https://doi.org/10.1056/NEJMoa1802637.

    Article  PubMed  Google Scholar 

  130. October TW, Dizon ZB, Hamilton MF, Madrigal VN, Arnold RM. Communication training for inter-specialty clinicians. Clin Teach. 2018;16(3):242–7. https://doi.org/10.1111/tct.12927.

    Article  PubMed  PubMed Central  Google Scholar 

  131. • Muehlschlegel S, Goostrey K, Flahive J, Zhang Q, Pach JJ, Hwang DY. A pilot randomized clinical trial of a goals-of-care decision aid for surrogates of severe acute brain injury patients. Neurology. 2022. https://doi.org/10.1212/WNL.0000000000200937. A two-center pilot RCT that found a goals-of-care decision aid to support ICU shared decision-making for patients with severe acute brain injury is feasible to deploy and well-perceived by surrogates.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kruser JM, Nabozny MJ, Steffens NM, et al. Best Case/Worst Case: qualitative evaluation of a novel communication tool for difficult in-the-moment surgical decisions. J Am Geriatr Soc. 2015;63(9):1805–11. https://doi.org/10.1111/jgs.13615.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Steinberg A, Hudoba C, Hwang DY, et al. Top ten tips palliative care clinicians should know about disorders of consciousness: a focus on traumatic and anoxic brain injury. J Palliat Med. 2022;25(10):1571–8. https://doi.org/10.1089/jpm.2022.0202.

    Article  PubMed  Google Scholar 

Download references

Funding

MER was supported by NIH grant R24AG054259 (NIDUS Pilot Grant Subaward).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Reznik MD.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznik, M.E., Steinberg, A., Shutter, L.A. et al. The A2F ICU Liberation Bundle in Neurocritical Care. Curr Treat Options Neurol 25, 477–498 (2023). https://doi.org/10.1007/s11940-023-00770-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-023-00770-7

Keywords

Navigation