Skip to main content

Advertisement

Log in

Heart Failure in Adult Congenital Heart Disease

  • Adult Congenital Heart Disease (A Bhatt and K Niwa, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Adult congenital heart disease (ACHD) patients represent a special population in modern cardiology: though their numbers are growing, and they represent a high-resource utilization subgroup, a robust evidence-base of randomized trials is lacking. Much of the standard therapy is adapted from the treatment of ischemic and idiopathic left ventricle systolic failure, with a small, but growing body of evidence on medical therapy in select ACHD diagnoses. At our institution, for instance, there is a long tradition of using angiotensin antagonists in patients with a systemic right ventricle to prevent deleterious remodeling. The effects of beta-blockers on functional class in ACHD are yet unproven, but there is promising data on pulmonary vasodilators. Control of coronary risk factors and aerobic exercise should be considered for all. Prevention of arrhythmias is important, and multi-site pacing is an emerging therapy. New prognostic tools including natriuretic peptides and CPET are increasingly used to guide earlier initiation of these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACEI:

Angiotensin converting enzyme inhibitor

ACHD:

Adult congenital heart disease

ARB:

Angiotensin II receptor blocker

ASD:

Atrial septal defect

AVSD:

Atrioventricular septal defect

BAV:

Bicuspid aortic valve

BNP:

Brain natriuretic peptide

CAD:

Coronary artery disease

cCTA:

Cardiac computed tomography angiogram

CI:

confidence interval; cardiac index

cMRI:

Cardiac magnetic resonance imaging

CoA:

Coarctation of the aorta

CPET:

Cardiopulmonary exercise test

EF:

Ejection fraction

HF:

Heart failure

LV:

Left ventricle

NO:

Nitric oxide

NP:

Natriuretic peptide

NT-proBNP:

N-terminal pro brain natriuretic peptide

NYHA:

New York Heart Association

PDA:

Patent ductus arteriosus

pVO2 :

Peak oxygen consumption

RV:

Right ventricle

SHFM:

Seattle Heart Failure Model

SV:

Single ventricle

TAPSE:

Tricuspid annular plane systolic excursion

TOF:

Tetralogy of Fallot

TGA:

Transposition of the great arteries

TTE:

Transthoracic echocardiogram

VSD:

Ventricular septal defect

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.

    Article  PubMed  Google Scholar 

  2. Bernier PL, Stefanescu A, Samoukovic G, Tchervenkov CI. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13:26–34.

    Article  PubMed  Google Scholar 

  3. van der Linde D, Konings EEM, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.

    Article  PubMed  Google Scholar 

  4. Verheugt CL, Uiterwaal CS, van der Velde ET, et al. Mortality in adult congenital heart disease. Eur Heart J. 2010;31:1220–9.Analysis from the Dutch CONCOR registry of incidence of mortality in ACHD patients and comparisons to the general population, providing insight into risk factors.

  5. O’Leary JM, Siddiqi OK, de Ferranti S, Landzberg MJ, Opotowsky AR. The changing demographics of congenital heart disease hospitalizations in the United States, 1998 through 2010. JAMA. 2013;309:984–6.

    Article  PubMed  Google Scholar 

  6. Zomer AC, Vaartjes I, van der Velde ET, et al. Heart failure admissions in adults with congenital heart disease; risk factors and prognosis. Int J Cardiol. 2013;168:2487–93.

    Article  CAS  PubMed  Google Scholar 

  7. Vaartjes I, van Dis I, Visseren FLJ, Bots ML. Cardiovascular diseases in the Netherlands in women and men. Cardiovascular diseases in the Netherlands in 2011 facts on lifestyle and risk factors. Den Haag: Dutch Heart Foundation; 2011.

    Google Scholar 

  8. Norozi K, Wessel A, Alpers V, et al. Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery. Am J Cardiol. 2006;97:1238–43.

    Article  PubMed  Google Scholar 

  9. Rodriguez 3rd FH, Marelli AJ. The epidemiology of heart failure in adults with congenital heart disease. Heart Fail Clin. 2014;10:1–7.

    Article  PubMed  Google Scholar 

  10. Rodriguez 3rd FH, Moodie DS, Parekh DR, et al. Outcomes of heart failure-related hospitalization in adults with congenital heart disease in the United States. Congenit Heart Dis. 2013;8:513–9.

    Article  PubMed  Google Scholar 

  11. Piran S, Veldtman G, Siu S, Webb GD, Liu PP. Heart failure and ventricular dysfunction in patients with single or systemic right ventricles. Circulation. 2002;105:1189–94.

    Article  PubMed  Google Scholar 

  12. Joshi AV, D’Souza AO, Madhavan SS. Differences in hospital length-of-stay, charges, and mortality in congestive heart failure patients. Congest Heart Fail. 2004;10:76–84.

    Article  PubMed  Google Scholar 

  13. Stewart S, Jenkins A, Buchan S, McGuire A, Capewell S, McMurray JJJV. The current cost of heart failure to the National Health Service in the UK. Eur J Heart Fail. 2002;4:361–71.

    Article  PubMed  Google Scholar 

  14. Wier LM, Andrews RM. The National Hospital Bill: The Most Expensive Conditions by Payer, 2008: Statistical Brief # 107. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD) 2011.

  15. Opotowsky AR, Siddiqi OK, Webb GD. Trends in hospitalizations for adults with congenital heart disease in the U.S. J Am Coll Cardiol. 2009;54:460–7. This analysis is a comprehensive description of the number of and reason for hospital admission of patients with ACHD in the US. The data on prevalence of CHF and relative number of hospitalizations by different diagnoses had not previously been published.

    Article  PubMed  Google Scholar 

  16. Giannakoulas G, Dimopoulos K, Engel R, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol. 2009;103:1445–50.

    Article  PubMed  Google Scholar 

  17. Afilalo J, Therrien J, Pilote L, Ionescu-Ittu R, Martucci G, Marelli AJ. Geriatric congenital heart disease: burden of disease and predictors of mortality. J Am Coll Cardiol. 2011;58:1509–15.

    Article  PubMed  Google Scholar 

  18. Enriquez-Sarano M, Klodas E, Garratt KN, Bailey KR, Tajik AJ, Holmes DR. Secular trends in coronary atherosclerosis–analysis in patients with valvular regurgitation. N Engl J Med. 1996;335:316–22.

    Article  CAS  PubMed  Google Scholar 

  19. Bozbaş H, Yildirir A, Küçük MA, et al. Prevalence of coronary artery disease in patients undergoing valvular operation due to rheumatic involvement. Anadolu Kardiyol Derg. 2004;4:223–6.

    PubMed  Google Scholar 

  20. Enbergs A, Bürger R, Reinecke H, Borggrefe M, Breithardt G, Kerber S. Prevalence of coronary artery disease in a general population without suspicion of coronary artery disease: angiographic analysis of subjects aged 40 to 70 years referred for catheter ablation therapy. Eur Heart J. 2000;21:45–52.

    Article  CAS  PubMed  Google Scholar 

  21. Tutarel O, Kempny A, Alonso-Gonzalez R, et al. Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur Heart J. 2014;35:725--732.

  22. Roos-Hesselink JW, Ruys TP, Stein JI, et al. Outcome of pregnancy in patients with structural or ischaemic heart disease: results of a registry of the European Society of Cardiology. Eur Heart J. 2013;34:657–65.

    Article  PubMed  Google Scholar 

  23. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation. 2008;118:e714–833. American guidelines for management of patients with ACHD.

  24. Giannakoulas G, Dimopoulos K, Bolger AP, et al. Usefulness of natriuretic Peptide levels to predict mortality in adults with congenital heart disease. Am J Cardiol. 2010;105:869–73.

    Article  CAS  PubMed  Google Scholar 

  25. Dimopoulos K, Diller GP, Petraco R, et al. Hyponatraemia: a strong predictor of mortality in adults with congenital heart disease. Eur Heart J. 2010;31:595–601.

    Article  CAS  PubMed  Google Scholar 

  26. Dimopoulos K, Diller GP, Giannakoulas G, et al. Anemia in adults with congenital heart disease relates to adverse outcome. J Am Coll Cardiol. 2009;54:2093–100.

    Article  PubMed  Google Scholar 

  27. Diller GP, Dimopoulos K, Okonko D, et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation. 2005;112:828–35.

    Article  PubMed  Google Scholar 

  28. Diller GP, Giardini A, Dimopoulos K, et al. Predictors of morbidity and mortality in contemporary Fontan patients: results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur Heart J. 2010;31:3073–83.

    Article  PubMed  Google Scholar 

  29. Alonso-Gonzalez R, Borgia F, Diller GP, et al. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 2013;127:882–90.

    Article  PubMed  Google Scholar 

  30. Stefanescu A, Macklin EA, Lin E, et al. Usefulness of the seattle heart failure model to identify adults with congenital heart disease at high risk of poor outcome. Am J Cardiol. 2014;113(5):865--70

  31. Alonso-Gonzalez R, Dimopoulos K. Biomarkers in congenital heart disease: do natriuretic peptides hold the key? Expert Rev Cardiovasc Ther. 2013;11:773–84.

    Article  CAS  PubMed  Google Scholar 

  32. Bolger AP, Sharma R, Li W, et al. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation. 2002;106:92–9.

    Article  CAS  PubMed  Google Scholar 

  33. Eindhoven JA, van den Bosch AE, Ruys TP, et al. N-terminal Pro-B-type natriuretic peptide and its relationship with cardiac function in adults with congenital heart disease. J Am Coll Cardiol. 2013;62:1203–12.

    Article  CAS  PubMed  Google Scholar 

  34. Ozhan H, Albayrak S, Uzun H, Ordu S, Kaya A, Yazici M. Correlation of plasma B-type natriuretic peptide with shunt severity in patients with atrial or ventricular septal defect. Pediatr Cardiol. 2007;28:272–5.

    Article  CAS  PubMed  Google Scholar 

  35. Trojnarska O, Gwizdala A, Katarzynski S, et al. The BNP concentrations and exercise capacity assessment with cardiopulmonary stress test in cyanotic adult patients with congenital heart diseases. Int J Cardiol. 2010;139(3):241--7

  36. Holmgren D, Westerlind A, Berggren H, Lundberg PA, Wåhlander H. Increased natriuretic peptide type B level after the second palliative step in children with univentricular hearts with right ventricular morphology but not left ventricular morphology. Pediatr Cardiol. 2008;29:786–92.

    Article  PubMed  Google Scholar 

  37. Atz AM, Zak V, Breitbart RE, et al. Factors associated with serum brain natriuretic peptide levels after the Fontan procedure. Congenit Heart Dis. 2011;6:313–21.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Law YM, Ettedgui J, Beerman L, Maisel A, Tofovic S. Comparison of plasma B-type natriuretic peptide levels in single ventricle patients with systemic ventricle heart failure versus isolated cavopulmonary failure. Am J Cardiol. 2006;98:520–4.

    Article  CAS  PubMed  Google Scholar 

  39. Man BL, Cheung YF. Plasma brain natriuretic peptide and systemic ventricular function in asymptomatic patients late after the Fontan procedure. Heart Vessels. 2007;22:398–403.

    Article  PubMed  Google Scholar 

  40. Ohuchi H, Takasugi H, Ohashi H, et al. Abnormalities of neurohormonal and cardiac autonomic nervous activities relate poorly to functional status in fontan patients. Circulation. 2004;110:2601–8.

    Article  PubMed  Google Scholar 

  41. Wåhlander H, Westerlind A, Lindstedt G, Lundberg PA, Holmgren D. Increased levels of brain and atrial natriuretic peptides after the first palliative operation, but not after a bidirectional glenn anastomosis, in children with functionally univentricular hearts. Cardiol Young. 2003;13:268–74.

    PubMed  Google Scholar 

  42. Eindhoven JA, van den Bosch AE, Jansen PR, Boersma E, Roos-Hesselink JW. The usefulness of brain natriuretic peptide in complex congenital heart disease: a systematic review. J Am Coll Cardiol. 2012;60:2140–9. Diagnosis-specific data on NTproBNP levels in ACHD which establishes a useful baseline.

  43. Norozi K, Buchhorn R, Kaiser C, et al. Plasma N-terminal pro-brain natriuretic peptide as a marker of right ventricular dysfunction in patients with tetralogy of Fallot after surgical repair. Chest. 2005;128:2563–70.

    Article  CAS  PubMed  Google Scholar 

  44. Berger R, Moertl D, Peter S, et al. N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol. 2010;55:645–53.

    Article  CAS  PubMed  Google Scholar 

  45. Januzzi Jr JL, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58:1881–9.

    Article  CAS  PubMed  Google Scholar 

  46. Silversides CK, Salehian O, Oechslin E, et al. Canadian Cardiovascular Society 2009 Consensus Conference on the management of adults with congenital heart disease: complex congenital cardiac lesions. Can J Cardiol. 2010;26:e98–117. Canadian guidelines on management of patients with ACHD, in particular focusing on complex lesions.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kempny A, Dimopoulos K, Alonso-Gonzalez R, et al. Six-minute walk test distance and resting oxygen saturations but not functional class predict outcome in adult patients with Eisenmenger syndrome. Int J Cardiol. 2013;168(5):4784--9.

  48. Inuzuka R, Diller GP, Borgia F, et al. Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation. 2012;125:250–9.

    Article  PubMed  Google Scholar 

  49. Kempny A, Dimopoulos K, Uebing A, et al. Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life—single centre experience and review of published data. Eur Heart J. 2012;33:1386–96. Detailed and unique review of current data on CPET results in patients with ACHD which establishes diagnosis and gender-specific curves for peak oxygen consumption.

  50. Mehra MR, Kobashigawa J, Starling R, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates–2006. J Heart Lung Transplant. 2006;25:1024–42.

    Article  PubMed  Google Scholar 

  51. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    Article  PubMed  Google Scholar 

  52. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2010;23:685–713.

  53. Orwat S, Diller GP, Baumgartner H. Imaging of congenital heart disease in adults: choice of modalities. Eur Heart J Cardiovasc Imaging. 2014;15:6–17.

    Article  PubMed  Google Scholar 

  54. Shaddy RE, Boucek MM, Hsu DT, et al. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA. 2007;298:1171–9.

    Article  PubMed  Google Scholar 

  55. Bruns LA, Chrisant MK, Lamour JM, et al. Carvedilol as therapy in pediatric heart failure: an initial multicenter experience. J Pediatr. 2001;138:505–11.

    Article  CAS  PubMed  Google Scholar 

  56. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–319.

    Article  PubMed  Google Scholar 

  57. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316:1429–35.

    Article  Google Scholar 

  58. SOLVD Investigators Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. New Engl J Med. 1992;327:685–91.

  59. Heragu N, Mahony L. Is captopril useful in decreasing pleural drainage in children after modified Fontan operation? Am J Cardiol. 1999;84:1109–12.

  60. Kouatli AA, Garcia JA, Zellers TM, Weinstein EM, Mahony L. Enalapril does not enhance exercise capacity in patients after Fontan procedure. Circulation. 1997;96:1507–12.

    Article  CAS  PubMed  Google Scholar 

  61. Dos L, Pujadas S, Estruch M, et al. Eplerenone in systemic right ventricle: double blind randomized clinical trial. The evedes study. Int J Cardiol. 2013;168(6):5167--73.

  62. Dore A, Houde C, Chan KL, et al. Angiotensin receptor blockade and exercise capacity in adults with systemic right ventricles: a multicenter, randomized, placebo-controlled clinical trial. Circulation. 2005;112:2411–6.

    Article  CAS  PubMed  Google Scholar 

  63. Giardini A, Balducci A, Specchia S, Gargiulo G, Bonvicini M, Picchio FM. Effect of sildenafil on haemodynamic response to exercise and exercise capacity in Fontan patients. Eur Heart J. 2008;29:1681–7.

    Article  CAS  PubMed  Google Scholar 

  64. Goldberg DJ, French B, McBride MG, et al. Impact of oral sildenafil on exercise performance in children and young adults after the fontan operation: a randomized, double-blind, placebo-controlled, crossover trial. Circulation. 2011;123:1185–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Galiè N, Beghetti M, Gatzoulis MA, et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation. 2006;114:48–54.

    Article  PubMed  Google Scholar 

  66. Fine N, Dias B, Shoemaker G, Mehta S. Endothelin receptor antagonist therapy in congenital heart disease with shunt-associated pulmonary arterial hypertension: a qualitative systematic review. Can J Cardiol. 2009;25:e63–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Hebert A, Jensen AS, Idorn L, Sørensen KE, Søndergaard L. The effect of Bosentan on exercise capacity in Fontan patients; rationale and design for the TEMPO study. BMC Cardiovasc Disord. 2013;13:36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wang H, Parker JD, Newton GE, et al. Influence of obstructive sleep apnea on mortality in patients with heart failure. J Am Coll Cardiol. 2007;49:1625–31.

    Article  PubMed  Google Scholar 

  69. Swedberg K, Young JB, Anand IS, et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med. 2013;368:1210–9.

    Article  CAS  PubMed  Google Scholar 

  70. Tang YD, Katz SD. Anemia in chronic heart failure: prevalence, etiology, clinical correlates, and treatment options. Circulation. 2006;113:2454–61.

    Article  PubMed  Google Scholar 

  71. Takeda A, Taylor SJ, Taylor RS, Khan F, Krum H, Underwood M. Clinical service organisation for heart failure. Cochrane Database Syst Rev. 2012;9, CD002752.

    PubMed  Google Scholar 

  72. Flynn KE, Pina IL, Whellan DJ, et al. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1451–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Roos-Hesselink JW, Meijboom FJ, Spitaels SEC, et al. Decline in ventricular function and clinical condition after mustard repair for transposition of the great arteries (a prospective study of 22–29 years). Eur Heart J. 2004;25:1264–70.

    Article  CAS  PubMed  Google Scholar 

  74. Gatzoulis MA, Till JA, Somerville J, Redington AN. Mechanoelectrical interaction in tetralogy of Fallot. QRS prolongation relates to right ventricular size and predicts malignant ventricular arrhythmias and sudden death. Circulation. 1995;92:231–7.

    Article  CAS  PubMed  Google Scholar 

  75. Thambo JB, Dos Santos P, Bordachar P. Cardiac resynchronization therapy in patients with congenital heart disease. Arch Cardiovasc Dis. 2011;104:410–6.

    Article  PubMed  Google Scholar 

  76. Guihaire J, Haddad F, Mercier O, Murphy DJ, Wu JC, Fadel E. The right heart in congenital heart disease, mechanisms and recent advances. J Clin Exp Cardiol. 2012;8:1–11.

    Google Scholar 

  77. Davies RR, Russo MJ, Yang J, Quaegebeur JM, Mosca RS, Chen JM. Listing and transplanting adults with congenital heart disease. Circulation. 2011;123:759–67.

    Article  PubMed  Google Scholar 

  78. Karamlou T, Hirsch J, Welke K, et al. A United Network for Organ Sharing analysis of heart transplantation in adults with congenital heart disease: outcomes and factors associated with mortality and retransplantation. J Thorac Cardiovasc Surg. 2010;140:161–8.

    Article  PubMed  Google Scholar 

  79. Attenhofer Jost CH, Schmidt D, Huebler M, et al. Heart transplantation in congenital heart disease: in whom to consider and when? J Transplant. 2013;2013:376027.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Lamour JM, Kanter KR, Naftel DC, et al. The effect of age, diagnosis, and previous surgery in children and adults undergoing heart transplantation for congenital heart disease. J Am Coll Cardiol. 2009;54:160–5.

    Article  PubMed  Google Scholar 

  81. Everitt MD, Donaldson AE, Stehlik J, et al. Would access to device therapies improve transplant outcomes for adults with congenital heart disease? Analysis of the United Network for Organ Sharing (UNOS). J Heart Lung Transplant. 2011;30:395–401.

    Article  PubMed  Google Scholar 

  82. Bhama JK, Shulman J, Bermudez CA, et al. Heart transplantation for adults with congenital heart disease: results in the modern era. J Heart Lung Transplant. 2013;32:499–504.

    Article  PubMed  Google Scholar 

  83. Maxwell BG, Wong JK, Sheikh AY, Lee PH, Lobato RL. Heart transplantation with or without prior mechanical circulatory support in adults with congenital heart disease. Eur J Cardiothorac Surg. 2014;45(5):842.

  84. Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report–2012. J Heart Lung Transplant. 2012;31:1052–64.

    Article  PubMed  Google Scholar 

  85. Norozi K, Bahlmann J, Raab B, et al. A prospective, randomized, double-blind, placebo controlled trial of beta-blockade in patients who have undergone surgical correction of tetralogy of Fallot. Cardiol Young. 2007;17:372–9.

    Article  PubMed  Google Scholar 

  86. Ishibashi N, Park IS, Takahashi Y, et al. Effectiveness of carvedilol for congestive heart failure that developed long after modified Fontan operation. Pediatr Cardiol. 2006;27:473–5.

    Article  PubMed  Google Scholar 

  87. Doughan ARK, McConnell ME, Book WM. Effect of beta blockers (Carvedilol or Metoprolol XL) in patients with transposition of great arteries and dysfunction of the systemic right ventricle. Am J Cardiol. 2007;99:704–6.

    Article  CAS  PubMed  Google Scholar 

  88. Giardini A, Lovato L, Donti A, et al. A pilot study on the effects of carvedilol on right ventricular remodelling and exercise tolerance in patients with systemic right ventricle. Int J Cardiol. 2007;114:241–6.

    Article  PubMed  Google Scholar 

  89. Josephson CB, Howlett JG, Jackson SD, Finley J, Kells CM. A case series of systemic right ventricular dysfunction post atrial switch for simple D-transposition of the great arteries: The impact of beta-blockade. Can J Cardiol. 2006;22:769–72.

    Article  PubMed Central  PubMed  Google Scholar 

  90. van der Bom T, Winter MM, Bouma BJ, et al. Effect of valsartan on systemic right ventricular function: a double-blind, randomized, placebo-controlled pilot trial. Circulation. 2013;127:322–30.

    Article  PubMed  Google Scholar 

  91. Lester SJ, McElhinney DB, Viloria E, et al. Effects of losartan in patients with a systemically functioning morphologic right ventricle after atrial repair of transposition of the great arteries. Am J Cardiol. 2001;88:1314–6.

    Article  CAS  PubMed  Google Scholar 

  92. Therrien J, Provost Y, Harrison J, Connelly M, Kaemmerer H, Webb GD. Effect of angiotensin receptor blockade on systemic right ventricular function and size: a small, randomized, placebo-controlled study. Int J Cardiol. 2008;129:187–92.

    Article  PubMed  Google Scholar 

  93. Hechter SJ, Fredriksen PM, Liu P, et al. Angiotensin-converting enzyme inhibitors in adults after the Mustard procedure. Am J Cardiol. 2001;87:660–3.

  94. Tutarel O, Meyer GP, Bertram H, Wessel A, Schieffer B, Westhoff-Bleck M. Safety and efficiency of chronic ACE inhibition in symptomatic heart failure patients with a systemic right ventricle. Int J Cardiol. 2012;154:14–6.

    Article  PubMed  Google Scholar 

  95. Gatzoulis MA, Rogers P, Li W, et al. Safety and tolerability of bosentan in adults with Eisenmenger physiology. Int J Cardiol. 2005;98:147–51.

    Article  PubMed  Google Scholar 

  96. Sitbon O, Beghetti M, Petit J, et al. Bosentan for the treatment of pulmonary arterial hypertension associated with congenital heart defects. Eur J Clin Invest. 2006;36 Suppl 3:25–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Ada Stefanescu declares no potential conflicts of interest.

Dr. Defaria Yeh declares no potential conflicts of interest.

Dr. David M. Dudzinski reports consulting work for a health care consulting firm and for Sanofi Aventis; the field of the work was on legal regulation of protein-based drugs and delivery systems. Dr. Dudzinski received payment for editing the cardiology section of Lippincott Williams & Wilkins “Pocket Medicine” text.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen DeFaria Yeh MD FACC.

Additional information

This article is part of the Topical Collection on Adult Congenital Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanescu, A., DeFaria Yeh, D. & Dudzinski, D.M. Heart Failure in Adult Congenital Heart Disease. Curr Treat Options Cardio Med 16, 337 (2014). https://doi.org/10.1007/s11936-014-0337-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-014-0337-y

Keywords

Navigation