Skip to main content

Advertisement

Log in

Threat Responses in Schizophrenia: A Negative Valence Systems Framework

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Emotions are prominent in theories and accounts of schizophrenia but are largely understudied compared to cognition. Utilizing the Research Domain Criteria (RDoC) Negative Valence Systems framework, we review the current knowledge of emotions in schizophrenia. Given the pivotal role of threat responses in theories of schizophrenia and the substantial evidence of altered threat responses, we focus on three components of Negative Valence Systems tied to threat responses: responses to acute threat, responses to potential threat, and sustained threat.

Recent Findings

Individuals with schizophrenia show altered responses to neutral stimuli during acute threat, bed nucleus of the stria terminalis connectivity in response to potential threat, and threat responses associated with sustained threat.

Summary

Our review concludes that Negative Valence Systems are altered in schizophrenia; however, the level and evidence of alterations vary across the types of threat responses. We suggest avenues for future research to further understand and intervene on threat responses in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, et al. Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr Bull. 2018;44:1195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carpenter WT, Kirpatrick B. The heterogeneity of the long-term course of schizophrenia. Schizophr Bull. 1988;14:645–52.

    Article  PubMed  Google Scholar 

  3. Buchanan RW, Carpenter WT. Domains of psychopathology: an approach to the reduction of heterogeneity in schizophrenia. Journal of Nervous and Mental Disease. 1994;182:193–204.

    Article  CAS  PubMed  Google Scholar 

  4. Harrow M, Grossman LS, Jobe TH, Herbener ES. Do patients with schizophrenia ever show periods of recovery? A 15-year multi-follow-up study. Schizophr Bull. 2005;31:723–34.

    Article  PubMed  Google Scholar 

  5. Bleuler E. Dementia Praecox, or the Group of Schizophrenia (1911). New York, NY, US: International University Press; 1950.

    Google Scholar 

  6. Kraepelin E. Lectures on clinical psychiatry [Internet]. New York: Wood; 1917. Available from: file://catalog.hathitrust.org/Record/008424915.

  7. Bleuler E. Dementia Praecox oder Gruppe der Schizophrenien. Leipzig: Franz Deuticke; 1911.

    Google Scholar 

  8. Walker EF, Diforio D. Schizophrenia: a neural diathesis-stress model. Psychol Rev [Internet]. 1997;104:667–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9337628.

  9. Pruessner M, Cullen AE, Aas M, Walker EF. The neural diathesis-stress model of schizophrenia revisited: an update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci Biobehav Rev [Internet]. 2017;73:191–218. Available from: https://www.sciencedirect.com/science/article/pii/S0149763416301713.

  10. Myin-Germeys I, van Os J. Stress-reactivity in psychosis: evidence for an affective pathway to psychosis. Clin Psychol Rev. 2007;27:409–24.

    Article  PubMed  Google Scholar 

  11. • Strik W, Stegmayer K, Walther S, Dierks T. Systems neuroscience of psychosis: mapping schizophrenia symptoms onto brain systems. Neuropsychobiology. 2018;75:100–16. Article describing the SyNoPsis Model proposing alterations in cognitive, motor, and emotion or affect networks underlie unique clinical manifestations of schizophrenia. In addition, the article highlights the importance of negative emotions/affect and limbic system functioning in psychosis.

  12. Green MJ, Phillips ML. Social threat perception and the evolution of paranoia. Neurosci Biobehav Rev. 2004;28:333–42.

    Article  PubMed  Google Scholar 

  13. Freeman D, Garety PA. Connecting neurosis and psychosis: the direct influence of emotion on delusions and hallucinations. Behav Res Ther. 2003;41:923–47.

    Article  PubMed  Google Scholar 

  14. Freeman D, Gittins M, Pugh K, Antley A, Slater M, Dunn G. What makes one person paranoid and another person anxious ? The differential prediction of social anxiety and persecutory ideation in an experimental situation. 2018;1121–32.

  15. • Fusar-Poli P, Estradé A, Stanghellini G, Venables J, Sunkel C, Bao J, et al. The lived experience of psychosis: a bottom-up review co-written by experience and academics. World Psychiatry [Internet]. 2022;21:168–88. Collaborative article including research and first-hand accounts of schizophrenia that highlights the prominence and importance of negative emotions and threat responses.

  16. Taiminen T, Huttunen J, Heilä H, Henriksson M, Isometsä E, Kähkönen J, et al. The schizophrenia Suicide Risk Scale (SSRS): development and initial validation. Schizophr Res. 2001;47:199–213.

    Article  CAS  PubMed  Google Scholar 

  17. Pallanti S, Quercioli L, Hollander E. Social anxiety in outpatients with schizophrenia: a relevant cause of disability. Am J Psychiatry. 2004;161:53–8.

    Article  PubMed  Google Scholar 

  18. Blanchard JJ, Mueser KT, Bellack AS. Anhedonia, positive and negative affect, and social functioning in schizophrenia. Schizophr Bull. 1998;24:413–24.

    Article  CAS  PubMed  Google Scholar 

  19. Liddle PF. The symptoms of chronic schizophrenia: a re-examination of the positive-negative dichotomy. Br J Psychiatry. 1987;151:145–51.

    Article  CAS  PubMed  Google Scholar 

  20. Misiak B, Stramecki F, Gawęda Ł, Prochwicz K, Sąsiadek MM, Moustafa AA, et al. Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a systematic review. Mol Neurobiol. 2018;55:5075–100.

    Article  CAS  PubMed  Google Scholar 

  21. Joyce EM, Roiser JP. Cognitive heterogeneity in schizophrenia. Curr Opin Psychiatry. 2007;20:268–72.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Woodward ND, Heckers S. Brain structure in neuropsychologically defined subgroups of schizophrenia and psychotic bipolar disorder. Schizophr Bull. 2015;41:1349–59.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine D, Quinn K, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorder. Am J Psychiatry. 2010;748–51.

  24. Scarr S, Salapatek P. Patterns of fear development during infancy. Merrill Palmer Q Behav Dev. 2016;16:53–90.

    Google Scholar 

  25. Waters E, Matas L, Sroufe LA. Infants’ reactions to an approaching stranger: description, validation, and functional significance of wariness. Child Dev. 1975;46:348–56.

    Article  CAS  PubMed  Google Scholar 

  26. Kim JH, Richardson R. The effect of temporary amygdala inactivation on extinction and reextinction of fear in the developing rat: Unlearning as a potential mechanism for extinction early in development. J Neurosci. 2008;28:1282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milad MR, Rauch SL, Pitman RK, Quirk GJ. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol. 2006;73:61–71.

    Article  PubMed  Google Scholar 

  28. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62:446–54.

    Article  PubMed  Google Scholar 

  29. Allen AP, Kennedy PJ, Dockray S, Cryan JF, Dinan TG, Clarke G. The trier social stress test: principles and practice. Neurobiol Stress. Elsevier Inc; 2017. p. 113–26.

  30. Buske-Kkschbaum A, Wustmans A, Psych D, Kjrschbaum C, Rauh W, Hellhammer D. Attenuated free cortisol response to psychosocial stress in children with atopic dermatitis. 1997.

  31. Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992;15:353–75.

    Article  CAS  PubMed  Google Scholar 

  32. Davis M. Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol. 2006;61:741–56.

    Article  PubMed  Google Scholar 

  33. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology [Internet]. 2010;35:169–91. Available from: https://doi.org/10.1038/npp.2009.83.

  34. Shackman AJ, Fox AS. Contributions of the central extended amygdala to fear and anxiety. J Neurosci. 2016;36:8050–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LeDoux JE, Pine DS. Using neuroscience to help understand fear and anxiety: a two-system framework. Am J Psychiatry. 2016;1083–93.

  36. Ledoux J. Emotional brain, fear, and the amygdala. Cell Mol Neurobiol. 2003;23.

  37. LeDoux JE. The emotional brain: the mysterious underpinnings of emotional life. The emotional brain: The mysterious underpinnings of emotional life. New York, NY, US: Simon & Schuster; 1996.

  38. Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci. Nature Publishing Group; 2015;317–31.

  39. Adolphs R. The biology of fear. Current Biology [Internet]. 2013;23:R79–93. Available from: https://doi.org/10.1016/j.cub.2012.11.055.

  40. Green MF, Horan WP, Lee J. Social cognition in schizophrenia. Nat Rev Neurosci. 2015;16:620–31.

    Article  CAS  PubMed  Google Scholar 

  41. Myin-Germeys I, Jim VO, Schwartz J, Stone A, Delespaul P. Emotional reactivity to daily life stress in psychosis. Arch Gen Psychiatry [Internet]. 2001;58:1137–44. Available from: https://doi.org/10.1001/archpsyc.58.12.1137.

  42. Pinkham AE, Brensinger C, Kohler C, Gur RE, Gur RC. Actively paranoid patients with schizophrenia over attribute anger to neutral faces. Schizophr Res. 2011;125:174–8.

    Article  PubMed  Google Scholar 

  43. Shasteen JR, Pinkham AE, Kelsven S, Ludwig K, Payne BK, Penn DL. Intact implicit processing of facial threat cues in schizophrenia. Schizophr Res [Internet]. 2016;170:150–5. Available from: https://doi.org/10.1016/j.schres.2015.11.029.

  44. Brenner K, St-Hilaire A, Liu A, Laplante DP, King S. Cortisol response and coping style predict quality of life in schizophrenia. Schizophr Res. 2011;128:23–9.

    Article  PubMed  Google Scholar 

  45. Brenner K, Liu A, Laplante DP, Lupien S, Pruessner JC, Ciampi A, et al. Cortisol response to a psychosocial stressor in schizophrenia : Blunted , delayed , or normal? 2009

  46. Ciufolini S, Dazzan P, Kempton MJ, Pariante C, Mondelli V. HPA axis response to social stress is attenuated in schizophrenia but normal in depression: evidence from a meta-analysis of existing studies. Neurosci Biobehav Rev. Elsevier Ltd.; 2014. p. 359–68.

  47. Reed AC, Lee J, Green MF, Hamilton HK, Miller GA, Subotnik KL, et al. Associations between physiological responses to social-evaluative stress and daily functioning in first-episode schizophrenia. Schizophr Res. 2020;218:233–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rokita KI, Dauvermann MR, Mothersill D, Holleran L, Bhatnagar P, McNicholas Á, et al. Current psychosocial stress, childhood trauma and cognition in patients with schizophrenia and healthy participants. Schizophr Res. 2021;237:115–21.

    Article  PubMed  Google Scholar 

  49. Clamor A, Lincoln TM, Thayer JF, Koenig J. Resting vagal activity in schizophrenia: meta-analysis of heart rate variability as a potential endophenotype. Br J Psychiatry. Royal College of Psychiatrists. 2016;9–16.

  50. Haigh SM, Walford TP, Brosseau P. Heart rate variability in schizophrenia and autism. Front Psychiatry. 2021;12.

  51. Quintana DS, Westlye LT, Kaufmann T, Rustan OG, Brandt CL, Haatveit B, et al. Reduced heart rate variability in schizophrenia and bipolar disorder compared to healthy controls. Acta Psychiatr Scand. 2016;133:44–52.

    Article  CAS  PubMed  Google Scholar 

  52. Liu Y, Huang Y, Zhou J, Li G, Chen J, Xiang Z, et al. Altered heart rate variability in patients with schizophrenia during an autonomic nervous test. Front Psychiatry. 2021;12.

  53. Castro MN, Vigo DE, Weidema H, Fahrer RD, Chu EM, de Achával D, et al. Heart rate variability response to mental arithmetic stress in patients with schizophrenia: autonomic response to stress in schizophrenia. Schizophr Res. 2008;99:294–303.

    Article  PubMed  Google Scholar 

  54. • Tuominen L, Romaniuk L, Milad MR, Goff DC, Hall J, Holt DJ. Impairment in acquisition of conditioned fear in schizophrenia. Neuropsychopharmacology. 2022;47:681–6. A recent article highlighting differences in fear conditioning in schizophrenia.

  55. Anticevic A, Van Snellenberg JX, Cohen RE, Repovs G, Dowd EC, Barch DM. Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies. Schizophr Bull. 2012;38:608–21.

    Article  PubMed  Google Scholar 

  56. • Dugré JR, Bitar N, Dumais A, Potvin S. Limbic hyperactivity in response to emotionally neutral stimuli in schizophrenia: a neuroimaging meta-analysis of the hypervigilant mind. 2019;176:1021–9. Meta-analysis demonstrating the heightened responses to neural stimuli during acute threat paradigms.

  57. Anticevic A, Tang Y, Cho YT, Repovs G, Cole MW, Savic A, et al. Amygdala connectivity differs among chronic, early course, and individuals at risk for developing schizophrenia. Schizophr Bull. 2014;40:1105–16.

    Article  PubMed  Google Scholar 

  58. Liu H, Tang Y, Womer F, Fan G, Lu T, Driesen N, et al. Differentiating patterns of amygdala-frontal functional connectivity in schizophrenia and bipolar disorder. Schizophr Bull. 2014;40:469–77.

    Article  PubMed  Google Scholar 

  59. Bjorkquist OA, Olsen EK, Nelson BD, Herbener ES. Altered amygdala-prefrontal connectivity during emotion perception in schizophrenia. Schizophr Res [Internet]. 2016;175:35–41. Available from: https://doi.org/10.1016/j.schres.2016.04.003.

  60. Mukherjee P, Whalley HC, McKirdy JW, McIntosh AM, Johnstone EC, Lawrie SM, et al. Lower effective connectivity between amygdala and parietal regions in response to fearful faces in schizophrenia. Schizophr Res [Internet]. 2012;134:118–24. Available from: https://doi.org/10.1016/j.schres.2011.09.033.

  61. Mukherjee P, Whalley HC, McKirdy JW, Sprengelmeyer R, Young AW, McIntosh AM, et al. Altered amygdala connectivity within the social brain in schizophrenia. Schizophr Bull. 2014;40:152–60.

    Article  PubMed  Google Scholar 

  62. • Feola B, McHugo M, Armstrong K, Noall MP, Flook EA, Woodward ND, et al. BNST and amygdala connectivity are altered during threat anticipation in schizophrenia. Behavioural Brain Research. 2021;412. First study to examine bed nucleus of stria terminalis (BNST)-mediated anxiety network in schizophrenia during responses to acute threat and potential harm.

  63. Holt DJ, Coombs G, Zeidan MA, Goff DC, Milad MR. Failure of neural responses to safety cues in schizophrenia. Arch Gen Psychiatry. 2012.

  64. Avery SNN, Clauss JAA, Blackford JUU. The human BNST: functional role in anxiety and addiction. Neuropsychopharmacology. 2016;41:126–41.

    Article  CAS  PubMed  Google Scholar 

  65. Fox AS, Oler JA, Tromp DPM, Fudge JL, Kalin NH. Extending the amygdala in theories of threat processing. Trends Neurosci [Internet]. 2015;38:319–29. Available from: https://doi.org/10.1016/j.tins.2015.03.002.

  66. Goode TD, Maren S. Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn Mem. 2017;24:480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry. 2016;21:450–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schimtz A, Grillon C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nat Protoc. 2012;7:527–32.

    Article  Google Scholar 

  69. Grillon C. Greater sustained anxiety but not phasic fear in women compared to men. Emotion. 2008;8:410–3.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Grillon C, Baas JP, Lissek S, Smith K, Milstein J. Anxious responses to predictable and unpredictable aversive events. Behav Neurosci. 2004;118:916–24.

    Article  PubMed  Google Scholar 

  71. Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci. 2013;14:488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Avery SN, Clauss JA, Winder DG, Woodward N, Heckers S, Blackford JU. BNST neurocircuitry in humans. Neuroimage [Internet]. 2014;91:311–23. Available from: https://doi.org/10.1016/j.neuroimage.2014.01.017.

  73. Miles OW, Maren S. Role of the bed nucleus of the stria terminalis in PTSD: insights from preclinical models. Front Behav Neurosci. 2019;13:1–14.

    Article  Google Scholar 

  74. Fox AS, Shelton SE, Oakes TR, Davidson RJ, Kalin NH. Trait-like brain activity during adolescence predicts anxious temperament in primates. PLoS ONE. 2008;3: e2570.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Theiss JD, Ridgewell C, McHugo M, Heckers S, Blackford JU. Manual segmentation of the human bed nucleus of the stria terminalis using 3 T MRI. Neuroimage. 2017;146.

  76. McMenamin BW, Langeslag SJE, Sirbu M, Padmala S, Pessoa XL. Network organization unfolds over time during periods of anxious anticipation. J Neurosci. 2014;34:11261–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tillman RM, Stockbridge MD, Nacewicz BM, Torrisi S, Fox AS, Smith JF, et al. Intrinsic functional connectivity of the central extended amygdala. Hum Brain Mapp. 2018;39:1291–312.

    Article  PubMed  Google Scholar 

  78. Torrisi S, O’Connell K, Andrew D, Reynolds R, Balderston N, Fudge J, et al. Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum Brain Mapp. 2015;36:4076–88.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Choi JM, Padmala S, Pessoa L. Impact of state anxiety on the interaction between threat monitoring and cognition. Neuroimage. 2012;59:1912–23. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3230669&tool=pmcentrez&rendertype=abstract.

  80. Grupe DW, Oathes DJ, Nitschke JB. Dissecting the anticipation of aversion reveals dissociable neural networks. Cereb Cortex. 2013;23:1874–83.

    Article  PubMed  Google Scholar 

  81. Herrmann MJ, Boehme S, Becker MPI, Tupak S v., Guhn A, Schmidt B, et al. Phasic and sustained brain responses in the amygdala and the bed nucleus of the stria terminalis during threat anticipation. Hum Brain Mapp. 2016;37:1091–102.

  82. Klumpers F, Kroes MCW, Baas JMP, Fernández G. How human amygdala and bed nucleus of the stria terminalis may drive distinct defensive responses. J Neurosci. 2017;37:9645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Naaz F, Knight LK, Depue BE. Explicit and ambiguous threat processing: functionally dissociable roles of the amygdala and bed nucleus of the stria terminalis. J Cogn Neurosci. 2019;31:543–59.

    Article  PubMed  Google Scholar 

  84. Somerville LH, Whalen PJ, Kelley WM. Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol Psychiatry [Internet]. 2010;68:416–24. Available from: https://doi.org/10.1016/j.biopsych.2010.04.002.

  85. Clauss JA, Avery SN, Benningfield MM, Blackford JU. Social anxiety is associated with BNST response to unpredictability. Depress Anxiety. 2019;36:666–75.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Shioiri T, Shinada K, Kuwabara H, Someya T. Early prodromal symptoms and diagnoses before first psychotic episode in 219 inpatients with schizophrenia. Psychiatry Clin Neurosci. 2007;61:348–54.

    Article  PubMed  Google Scholar 

  87. Delespaul P, deVries M, van Os J. Determinants of occurence and recovery from hallucinations in daily life. Soc Psychiatry Psychiatr Epidemiol. 2002;37:97–104.

    Article  PubMed  Google Scholar 

  88. Jones P, Murray R, Jones P, Rodgers B, Marmot M. Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. The Lancet [Internet]. 1994;344:1398–402. Available from: https://doi.org/10.1016/S0140-6736(94)90569-X.

  89. Achim AM, Maziade M, Raymond É, Olivier D, Mérette C, Roy MA. How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull. 2011;37:811–21.

    Article  PubMed  Google Scholar 

  90. Cosoff SJ, Julian HR. The prevalence of comorbid anxiety in schizophrenia, schizoaffective disorder and bipolar disorder. Aust N Z J Psychiatry. 1998;32:67–72.

    Article  CAS  PubMed  Google Scholar 

  91. Kagan J, Reznick JS, Clarke C, Snidman N, Kagan J, Reznick JS, et al. Behavioral inhibition to the unfamiliar. Child Dev. 1984;55:2212–25.

    Article  Google Scholar 

  92. Clauss JA, Blackford JU. Behavioral inhibition and risk for developing social anxiety disorder: a meta-analytic study. J Am Acad Child Adolesc Psychiatry. 2012;51:1066-1075.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Feola B, Armstrong K, Woodward ND, Heckers S, Blackford JU. Childhood temperament is associated with distress, anxiety and reduced quality of life in schizophrenia spectrum disorders. Psychiatry Res. 2019;275.

  94. Jetha MK, Goldberg JO, Schmidt LA. Temperament and its relation to social functioning in schizophrenia. Int J Soc Psychiatry. 2011;59:254–63.

    Article  Google Scholar 

  95. Jetha MK, Schmidt LA, Goldberg JO. Stability of shyness, sociability, and social dysfunction in schizophrenia: a preliminary investigation of the influence of social skills training in a community-based stable outpatient sample. Eur J Psychiatry. 2007;21:189–98.

    Article  Google Scholar 

  96. Tottenham N. Early adversity and the neotenous human brain. Biol Psychiatry [Internet]. 2019;1–10. Available from: https://doi.org/10.1016/j.biopsych.2019.06.018.

  97. Tottenham N, Sheridan MA. A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front Hum Neurosci. 2010;3.

  98. Gee DG, Casey BJ. The impact of developmental timing for stress and recovery. Neurobiol Stress [Internet]. 2015;1:184–94. Available from: https://doi.org/10.1016/j.ynstr.2015.02.001.

  99. Carrion VG, Wong SS. Can traumatic stress alter the brain? Understanding the implications of early trauma on brain development and learning. Journal of Adolescent Health [Internet]. 2012;51:S23–8. Available from: https://doi.org/10.1016/j.jadohealth.2012.04.010.

  100. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904.

    Article  PubMed  Google Scholar 

  101. McEwen BS. Allostasis and the epigenetics of brain and body health over the life course: the brain on stress. JAMA Psychiat. 2017;74:551–2.

    Article  Google Scholar 

  102. Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav [Internet]. 2012;106:29–39. Available from: https://doi.org/10.1016/j.physbeh.2011.08.019.

  103. McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010;1186:190–222.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sheridan MA, McLaughlin KA. Neurobiological models of the impact of adversity on education. Curr Opin Behav Sci [Internet]. 2016;10:108–13. Available from: https://doi.org/10.1016/j.cobeha.2016.05.013.

  105. Sheridan MA, Peverill M, Finn AS, McLaughlin KA. Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning. Dev Psychopathol [Internet]. 2017;29:1777–94. Available from: https://www.cambridge.org/core/product/identifier/S0954579417001390/type/journal_article.

  106. Sheridan MA, Sarsour K, Jutte D, D’Esposito M, Boyce WT. The impact of social disparity on prefrontal function in childhood. PLoS One. 2012;7.

  107. McLaughlin KA, Peverill M, Gold AL, Alves S, Sheridan MA. Child maltreatment and neural systems underlying emotion regulation. J Am Acad Child Adolesc Psychiatry [Internet]. 2015;54:753–62. Available from: https://doi.org/10.1016/j.jaac.2015.06.010.

  108. McLaughlin KA, Lambert HK. Child trauma exposure and psychopathology: mechanisms of risk and resilience. Curr Opin Psychol. Elsevier B.V.; 2017. p. 29–34.

  109. McLaughlin KA, Sheridan MA, Humphreys KL, Belsky J, Ellis BJ. The value of dimensional models of early experience: thinking clearly about concepts and categories. Perspect Psychol Sci. 2021;16:1463–72.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse Negl. 2003;27:169–90.

    Article  PubMed  Google Scholar 

  111. Weathers FW, Blake DD, Schnurr P, Kaloupek DG, Marx BP, Keane TM. The Life Events Checklist for DSM-5 (LEC-5). Instrument available from the National Center for PTSD at https://www.ptsd.va.gov. 2013;

  112. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: the adverse childhood experiences (ACE) study. Am J Prev Med. 1998;14:245–58.

    Article  CAS  PubMed  Google Scholar 

  113. McEwen BS. The brain on stress: toward an integrative approach to brain, body, and behavior. Perspect Psychol Sci. 2013;8:673–5.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tractenberg SG, Levandowski ML, de Azeredo LA, Orso R, Roithmann LG, Hoffmann ES, et al. An overview of maternal separation effects on behavioural outcomes in mice: evidence from a four-stage methodological systematic review. Neurosci Biobehav Rev. 2016;68:489–503.

    Article  PubMed  Google Scholar 

  115. Molet J, Maras PM, Avishai-Eliner S, Baram TZ. Naturalistic rodent models of chronic early-life stress. Dev Psychobiol. 2014;56:1675–88.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434–45.

    Article  CAS  PubMed  Google Scholar 

  117. Brake WG, Flores G, Francis D, Meaney MJ, Srivastava LK, Gratton A. Enhanced nucleus accumbens dopamine and plasma corticosterone stress responses in adult rats with neonatal excitotoxic lesions to the medial prefrontal cortex. Neuroscience. 2000;96:687–95.

    Article  CAS  PubMed  Google Scholar 

  118. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM. The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev. 2003;27:33–44.

    Article  PubMed  Google Scholar 

  119. Meaney MJ, Bhatnagar S, Diorio J, Larocque S, Francis D, O’donnell D, et al. Molecular basis for the development of individual differences in the hypothalamic-pituitary-adrenal stress response. Cell Mol Neurobiol. 1993;13.

  120. Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE. The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn. 2007;65:209–37.

    Article  CAS  PubMed  Google Scholar 

  121. McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011;

  122. Teicher MH, Anderson CM, Polcari A. Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences [Internet]. 2012;109:E563–72. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1115396109.

  123. McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci [Internet]. 1999;22:105–22. Available from: http://www.annualreviews.org/doi/10.1146/annurev.neuro.22.1.105.

  124. Lupien SJ, de Leon M, de Santi S, Convit A, Tarshish C, Nair NP, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci [Internet]. 1998;1:69–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10195112.

  125. Gould E, Tanapat P. Stress and hippocampal neurogenesis. . Biol Psychiatry. 1999;1472–9.

  126. Alfarez DN, De Simoni A, Velzing EH, Bracey E, Joëls M, Edwards FA, et al. Corticosterone reduces dendritic complexity in developing hippocampal CA1 neurons. Hippocampus. 2009;19:828–36.

    Article  CAS  PubMed  Google Scholar 

  127. Houtepen LC, Vinkers CH, Carrillo-Roa T, Hiemstra M, van Lier PA, Meeus W, et al. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans. Nat Commun. 2016;7.

  128. Lupien S, King S, Meaney M, McEwen B. Child stress hormone levels correlate with mother’s socioeconomic status and depressive state. Biol ogical Psychiatry [Internet]. 2000;48:976–80. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11082471&retmode=ref&cmd=prlinks.

  129. Blair C, Granger DA, Willoughby M, Mills-Koonce R, Cox M, Greenberg MT, et al. Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Dev. 2011;82:1970–84.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Blair C, Raver CC, Granger D, Mills-Koonce R, Hibel L. Allostasis and allostatic load in the context of poverty in early childhood. Dev Psychopathol. 2011;23:845–57.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Blair C, Berry D, Mills-Koonce R, Granger D. Cumulative effects of early poverty on cortisol in young children: moderation by autonomic nervous system activity. Psychoneuroendocrinology. 2013;38:2666–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kuhlman KR, Abelson JL, Mayer SE, Rajaram N, Briggs H, Young E. Childhood maltreatment and within-person associations between cortisol and affective experience. Stress. 2021;24:822–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Luby JL, Baram TZ, Rogers CE, Barch DM. Neurodevelopmental optimization after early-life adversity: cross-species studies to elucidate sensitive periods and brain mechanisms to inform early intervention. Trends Neurosci. Elsevier Ltd; 2020. p. 744–51.

  134. Tottenham N. A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front Hum Neurosci [Internet]. 2009;3:1–18. Available from: http://journal.frontiersin.org/article/10.3389/neuro.09.068.2009/abstract.

  135. Hart H, Rubia K. Neuroimaging of child abuse: a critical review. Front Hum Neurosci. 2012;6:1–24.

    Article  Google Scholar 

  136. Teicher MH, Samson JA. Annual research review: enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry. Blackwell Publishing Ltd; 2016. p. 241–66.

  137. Paquola C, Bennett MR, Lagopoulos J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—a meta-analysis and review. Neurosci Biobehav Rev. Elsevier Ltd; 2016. p. 299–312.

  138. McLaughlin KA, Sheridan MA, Lambert HK. Childhood adversity and neural development: deprivation and threat as distinct dimensions of early experience. Neurosci Biobehav Rev [Internet]. 2014;47:578–91. Available from: https://doi.org/10.1016/j.neubiorev.2014.10.012.

  139. Cohodes EM, Kitt ER, Baskin-Sommers A, Gee DG. Influences of early-life stress on frontolimbic circuitry: harnessing a dimensional approach to elucidate the effects of heterogeneity in stress exposure. Dev Psychobiol. John Wiley and Sons Inc; 2021. p. 153–72.

  140. Gee DG. Early Adversity and development: parsing heterogeneity and identifying pathways of risk and resilience. Am J Psychiatry. NLM (Medline); 2021. p. 998–1013.

  141. Banihashemi L, Wallace ML, Peng CW, Stinley MM, Germain A, Herringa RJ. Interactions between childhood maltreatment and combat exposure trauma on stress-related activity within the cingulate cortex: a pilot study. Mil Psychol. 2020;32:176–85.

    Article  PubMed Central  Google Scholar 

  142. Corcoran BC, Walker E, Huot R, Mittal V, Tessner K, Kestler L, et al. The stress cascade and schizophrenia: etiology and onset. 2003;671–92.

  143. Zubin J, Spring B. Vulnerability: a new view of schizophrenia. J Abnorm Psychol. 1977;86:103–26.

    Article  CAS  PubMed  Google Scholar 

  144. Aas M, Dazzan P, Mondelli V, Melle I, Murray RM, Pariante CM. A systematic review of cognitive function in first-episode psychosis, including a discussion on childhood trauma, stress, and inflammation. Front Psychiatry. 2014;4:1–13.

    Article  Google Scholar 

  145. • Aas M, Pizzagalli DA, Laskemoen JF, Reponen EJ, Ueland T, Melle I, et al. Elevated hair cortisol is associated with childhood maltreatment and cognitive impairment in schizophrenia and in bipolar disorders. Schizophr Res [Internet]. 2019;213:65–71. Available from: https://doi.org/10.1016/j.schres.2019.01.011Example of childhood trauma is associated with stress measures in psychosis.

  146. Isvoranu AM, van Borkulo CD, Boyette L lou, Wigman JTW, Vinkers CH, Borsboom D, et al. A network approach to psychosis: pathways between childhood trauma and psychotic symptoms. Schizophr Bull. 2017;43:187–96.

  147. Lardinois M, Lataster T, Mengelers R, van Os J, Myin-Germeys I. Childhood trauma and increased stress sensitivity in psychosis. Acta Psychiatr Scand. 2011;123:28–35.

    Article  CAS  PubMed  Google Scholar 

  148. van Nierop M, Lecei A, Myin-Germeys I, Collip D, Viechtbauer W, Jacobs N, et al. Stress reactivity links childhood trauma exposure to an admixture of depressive, anxiety, and psychosis symptoms. Psychiatry Res [Internet]. 2018;260:451–7. Available from: https://doi.org/10.1016/j.psychres.2017.12.012.

  149. Mondelli V, Dazzan P, Hepgul N, Forti M Di, Aas M, Albenzio AD, et al. Abnormal cortisol levels during the day and cortisol awakening response in first-episode psychosis : the role of stress and of antipsychotic treatment. Schizophr Res [Internet]. 2010;116:234–42. Available from: https://doi.org/10.1016/j.schres.2009.08.013.

  150. Ciufolini S, Dazzan P, Kempton MJ, Pariante C, Mondelli V. HPA axis response to social stress is attenuated in schizophrenia but normal in depression: evidence from a meta-analysis of existing studies. Neurosci Biobehav Rev [Internet]. 2014;47:359–68. Available from: https://doi.org/10.1016/j.neubiorev.2014.09.004.

  151. Gomes FV, Zhu X, Grace AA. Stress during critical periods of development and risk for schizophrenia. Schizophr Res. 2019;213:107–13.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gomes FV, Rincón-Cortés M, Grace AA. Adolescence as a period of vulnerability and intervention in schizophrenia: insights from the MAM model. Neurosci Biobehav Rev. 2016;70:260–70.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zimmerman EC, Bellaire M, Ewing SG, Grace AA. Abnormal stress responsivity in a rodent developmental disruption model of schizophrenia. Neuropsychopharmacology. 2013;38:2131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. • Cancel A, Dallel S, Zine A, El-Hage W, Fakra E. Understanding the link between childhood trauma and schizophrenia: a systematic review of neuroimaging studies. Neurosci Biobehav Rev. Elsevier Ltd; 2019. p. 492–504. Systematic review of the impact of sustained threat on the brain in schizophrenia.

  155. McHugo M, Talati P, Woodward ND, Armstrong K, Blackford JU, Heckers S. Regionally specific volume deficits along the hippocampal long axis in early and chronic psychosis. Neuroimage Clin. 2018;20.

  156. Mondelli V, Pariante CM, Navari S, Aas M, Albenzio AD, Di M, et al. Higher cortisol levels are associated with smaller left hippocampal volume in fi rst-episode psychosis. Schizophr Res [Internet]. 2010;119:75–8. Available from: https://doi.org/10.1016/j.schres.2009.12.021.

  157. Quidé Y, Ong XH, Mohnke S, Schnell K, Walter H, Carr VJ, et al. Childhood trauma-related alterations in brain function during a Theory-of-Mind task in schizophrenia. Schizophr Res. 2017;189:162–8.

    Article  PubMed  Google Scholar 

  158. Quidé Y, Girshkin L, Watkeys OJ, Carr VJ, Green MJ. The relationship between cortisol reactivity and emotional brain function is differently moderated by childhood trauma, in bipolar disorder, schizophrenia and healthy individuals. 2021;271:1089–109. Available from: https://doi.org/10.1007/s00406-020-01190-3.

  159. Aas M, Kauppi K, Brandt CL, Tesli M, Kaufmann T, Steen NE, et al. Childhood trauma is associated with increased brain responses to emotionally negative as compared with positive faces in patients with psychotic disorders. Psychol Med. 2017;47:669–79.

    Article  CAS  PubMed  Google Scholar 

  160. Asmal L, Kilian S, du Plessis S, Scheffler F, Chiliza B, Fouche JP, et al. Childhood trauma associated white matter abnormalities in first-episode schizophrenia. Schizophr Bull. 2019;45:369–76.

    Article  PubMed  Google Scholar 

  161. Sheffield JM, Williams LE, Blackford JU, Heckers S. Childhood sexual abuse increases risk of auditory hallucinations in psychotic disorders. Compr Psychiatry [Internet]. 2013;54:1098–104. Available from: https://doi.org/10.1016/j.comppsych.2013.05.013.

  162. Cancel A, Comte M, Truillet R, Boukezzi S, Rousseau PF, Zendjidjian XY, et al. Childhood neglect predicts disorganization in schizophrenia through grey matter decrease in dorsolateral prefrontal cortex. Acta Psychiatr Scand. 2015;132:244–56.

    Article  CAS  PubMed  Google Scholar 

  163. Perez DL, Pan H, Weisholtz DS, Root JC, Tuescher O, Fischer DB, et al. Altered threat and safety neural processing linked to persecutory delusions in schizophrenia: a two-task fMRI study. Psychiatry Res Neuroimaging. 2015;233:352–66.

    Article  Google Scholar 

  164. Phillips ML, Williams L, Senior C, Bullmore ET, Brammer MJ, Andrew C, et al. A differential neural response to threatening and non-threatening negative facial expressions in paranoid and non-paranoid schizophrenics. Psychiatry Res. 1999;92:11–31.

    Article  CAS  PubMed  Google Scholar 

  165. Williams LM, Das P, Liddell BJ, Olivieri G, Peduto AS, David AS, et al. Fronto-limbic and autonomic disjunctions to negative emotion distinguish schizophrenia subtypes. Psychiatry Res Neuroimaging. 2007;155:29–44.

    Article  Google Scholar 

  166. Fahim C, Stip E, Mancini-Marïe A, Mensour B, Boulay LJ, Leroux JM, et al. Brain activity during emotionally negative pictures in schizophrenia with and without flat affect: an fMRI study. Psychiatry Res Neuroimaging. 2005;140:1–15.

    Article  Google Scholar 

  167. Kaczkurkin AN, Foa EB. Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin Neurosci. 2015;17:337–46.

    Article  PubMed  PubMed Central  Google Scholar 

  168. van den Berg DPG, de Bont PAJM, van der Vleugel BM, de Roos C, de Jongh A, van Minnen A, et al. Prolonged exposure vs eye movement desensitization and reprocessing vs waiting list for posttraumatic stress disorder in patients with a psychotic disorder: a randomized clinical trial. JAMA Psychiatry [Internet]. 2015;72:259–67. Available from: https://doi.org/10.1001/jamapsychiatry.2014.2637.

  169. Grant PM, Bredemeier K, Beck AT. Six-month follow-up of recovery-oriented cognitive therapy for low-functioning individuals with schizophrenia. Psychiatr Serv. 2017;68:997–1002.

    Article  PubMed  Google Scholar 

  170. Freeman D, Garety PA, Kuipers E, Fowler D, Bebbington PE. A cognitive model of persecutory delusions [Internet]. British Journal of Clinical Psychology. 2002. Available from: https://www.bps.org.uk.

  171. Freeman D, Emsley R, Diamond R, Collett N, Bold E, Chadwick E, et al. Comparison of a theoretically driven cognitive therapy (the Feeling Safe Programme) with befriending for the treatment of persistent persecutory delusions: a parallel, single-blind, randomised controlled trial. Lancet Psychiatry. 2021;8:696–707.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Lincoln TM, Peters E. A systematic review and discussion of symptom specific cognitive behavioural approaches to delusions and hallucinations. Schizophr Res. 2019;203:66–79.

    Article  PubMed  Google Scholar 

  173. Bangasser DA, Cuarenta A. Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci. Nature Research; 2021. p. 674–84.

Download references

Funding

The authors would also like to acknowledge the funding sources that supported this work: the National Institute of Mental Health (R01MH127018-01 to JUB and NDW; T32MH018921 to BF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandee Feola.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feola, B., Moussa-Tooks, A.B., Sheffield, J.M. et al. Threat Responses in Schizophrenia: A Negative Valence Systems Framework. Curr Psychiatry Rep 26, 9–25 (2024). https://doi.org/10.1007/s11920-023-01479-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-023-01479-9

Keywords

Navigation