Skip to main content

Advertisement

Log in

Update on Osteosarcoma

  • Orthopedic Oncology (JA Abraham, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Osteosarcoma (OSA) is the most common primary tumor of bone, mainly affecting children and adolescents. Here we discuss recent advances in surgical and systemic therapies, and highlight potentially new modalities in preclinical evaluation and prognostication.

Recent Findings

The advent of neoadjuvant and adjuvant chemotherapy has markedly improved the disease-free recurrence and overall survival of OSA. However, treatment efficacy has been stagnant since the 1980s. This plateau has prompted preclinical and clinical research into in precision surgery, inhaled chemotherapy to increase pulmonary drug concentration without systemic side effects, and novel immunomodulators intended to block molecular pathways associated with OSA proliferation and metastasis.

Summary

With the advent of novel surgical techniques and new forms and vectors for chemotherapy, it is hoped that OSA treatment outcomes will exceed their currently sustained plateau in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Widhe B, Widhe T. Initial symptoms and clinical features in osteosarcoma and Ewing sarcoma. J Bone Joint Surg Am. 2000;82:667–74.

    CAS  PubMed  Google Scholar 

  2. Cho WH, Song WS, Jeon D-G, Kong C-B, Kim MS, Lee JA, et al. Differential presentations, clinical courses, and survivals of osteosarcomas of the proximal humerus over other extremity locations. Ann Surg Oncol. 2010;17:702–8.

    PubMed  Google Scholar 

  3. Abate ME, Longhi A, Galletti S, Ferrari S, Bacci G. Non-metastatic osteosarcoma of the extremities in children aged 5 years or younger. Pediatr Blood Cancer. 2010;55:652–4.

    PubMed  Google Scholar 

  4. Kager L, Zoubek A, Pötschger U, Kastner U, Flege S, Kempf-Bielack B, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol. 2003;21:2011–8.

    PubMed  Google Scholar 

  5. Pakos EE, Nearchou AD, Grimer RJ, Koumoullis HD, Abudu A, Bramer JAM, et al. Prognostic factors and outcomes for osteosarcoma: an international collaboration. Eur J Cancer. 2009;45:2367–75.

    PubMed  Google Scholar 

  6. Gross SW. The classic: sarcoma of the long bones: based upon a study of one hundred and sixty-five cases. 1879. Clin Orthop Relat Res. 2005;438:9–14.

    PubMed  Google Scholar 

  7. Broström LA, Strander H, Nilsonne U. Survival in osteosarcoma in relation to tumor size and location. Clin Orthop Relat Res 1982;250–254.

  8. Taylor WF, Ivins JC, Dahlin DC, Edmonson JH, Pritchard DJ. Trends and variability in survival from osteosarcoma. Mayo Clin Proc. 1978;53:695–700.

    CAS  PubMed  Google Scholar 

  9. Friedman MA, Carter SK. The therapy of osteogenic sarcoma: current status and thoughts for the future. J Surg Oncol. 1972;4:482–510.

    CAS  PubMed  Google Scholar 

  10. Dahlin DC, Coventry MB. Osteogenic sarcoma. A study of six hundred cases. J Bone Joint Surg Am. 1967;49:101–10.

    CAS  PubMed  Google Scholar 

  11. Jaffe N. The classic: recent advances in chemotherapy of metastatic osteogenic sarcoma. 1972. Clin Orthop Relat Res. 2005;438:19–21.

    PubMed  Google Scholar 

  12. Sutow WW, Sullivan MP, Fernbach DJ, Cangir A, George SL. Adjuvant chemotherapy in primary treatment of osteogenic sarcoma. A Southwest Oncology Group study. Cancer. 1975;36:1598–602.

    CAS  PubMed  Google Scholar 

  13. Sutow WW, Sullivan MP, Wilbur JR, Cangir A. Study of adjuvant chemotherapy in osteogenic sarcoma. J Clin Pharmacol. 1975;15:530–3.

    CAS  PubMed  Google Scholar 

  14. Cortes EP, Holland JF, Wang JJ, Sinks LF, Blom J, Senn H, et al. Amputation and adriamycin in primary osteosarcoma. N Engl J Med. 1974;291:998–1000.

    CAS  PubMed  Google Scholar 

  15. Sutow WW. Multidrug chemotherapy in osteosarcoma. Clin Orthop Relat Res. 1980:67–72.

  16. Goorin AM, Perez-Atayde A, Gebhardt M, Andersen JW, Wilkinson RH, Delorey MJ, et al. Weekly high-dose methotrexate and doxorubicin for osteosarcoma: the Dana-Farber Cancer Institute/the Children’s Hospital--study III. J Clin Oncol. 1987;5:1178–84.

    CAS  PubMed  Google Scholar 

  17. Edmonson JH, Green SJ, Ivins JC, Gilchrist GS, Creagan ET, Pritchard DJ, et al. A controlled pilot study of high-dose methotrexate as postsurgical adjuvant treatment for primary osteosarcoma. J Clin Oncol. 1984;2:152–6.

    CAS  PubMed  Google Scholar 

  18. Edmonson JH, Green SJ, Ivins JC, Gilchrist GS, Cregan ET, Pritchard DJ, et al. Methotrexate as adjuvant treatment for primary osteosarcoma. N Engl J Med. 1980;303:642–3.

    CAS  PubMed  Google Scholar 

  19. Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med. 1986;314:1600–6.

    CAS  PubMed  Google Scholar 

  20. Eilber F, Giuliano A, Eckardt J, Patterson K, Moseley S, Goodnight J. Adjuvant chemotherapy for osteosarcoma: a randomized prospective trial. J Clin Oncol. 1987;5:21–6.

    CAS  PubMed  Google Scholar 

  21. Simpson E, Brown HL. Understanding osteosarcomas. JAAPA. 2018;31:15–9.

    PubMed  Google Scholar 

  22. Bernthal NM, Federman N, Eilber FR, Nelson SD, Eckardt JJ, Eilber FC, et al. Long-term results (>25 years) of a randomized, prospective clinical trial evaluating chemotherapy in patients with high-grade, operable osteosarcoma. Cancer. 2012;118:5888–93.

    CAS  PubMed  Google Scholar 

  23. Rosen G, Murphy ML, Huvos AG, Gutierrez M, Marcove RC. Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma. Cancer. 1976;37:1–11.

    CAS  PubMed  Google Scholar 

  24. Rosen G, Caparros B, Huvos AG, Kosloff C, Nirenberg A, Cacavio A, et al. Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer. 1982;49:1221–30.

    CAS  PubMed  Google Scholar 

  25. Bacci G, Ferrari S, Bertoni F, Ruggieri P, Picci P, Longhi A, et al. Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol. 2000;18:4016–27.

    CAS  PubMed  Google Scholar 

  26. Bacci G, Ferrari S, Lari S, Mercuri M, Donati D, Longhi A, et al. Osteosarcoma of the limb. Amputation or limb salvage in patients treated by neoadjuvant chemotherapy. J Bone Joint Surg (Br). 2002;84:88–92.

    CAS  Google Scholar 

  27. Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33:3029–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20:776–90.

    PubMed  Google Scholar 

  29. Bielack S, Jürgens H, Jundt G, Kevric M, Kühne T, Reichardt P, et al. Osteosarcoma: the COSAS experience. Cancer Treat Res. 2009;152:289–308.

    PubMed  Google Scholar 

  30. Ferrari S, Serra M. An update on chemotherapy for osteosarcoma. Expert Opin Pharmacother. 2015;16:2727–36.

    CAS  PubMed  Google Scholar 

  31. Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival--a report from the Children’s Oncology Group. J Clin Oncol. 2008;26:633–8.

    CAS  PubMed  Google Scholar 

  32. Bielack SS, Smeland S, Whelan JS, Marina N, Jovic G, Hook JM, et al. Methotrexate, doxorubicin, and cisplatin (MAP) plus maintenance pegylated interferon alfa-2b versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative map: first results of the EURAMOSA-1 good response randomized controlled trial. J Clin Oncol. 2015;33:2279–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bramwell VH, Burgers M, Sneath R, Souhami R, van Oosterom AT, Voûte PA, et al. A comparison of two short intensive adjuvant chemotherapy regimens in operable osteosarcoma of limbs in children and young adults: the first study of the European Osteosarcoma Intergroup. J Clin Oncol. 1992;10:1579–91.

    CAS  PubMed  Google Scholar 

  34. Souhami RL, Craft AW, Van der Eijken JW, Nooij M, Spooner D, Bramwell VH, et al. Randomised trial of two regimens of chemotherapy in operable osteosarcoma: a study of the European Osteosarcoma Intergroup. Lancet. 1997;350:911–7.

    CAS  PubMed  Google Scholar 

  35. Ferrari S, Ruggieri P, Cefalo G, Tamburini A, Capanna R, Fagioli F, et al. Neoadjuvant chemotherapy with methotrexate, cisplatin, and doxorubicin with or without ifosfamide in nonmetastatic osteosarcoma of the extremity: an Italian sarcoma group trial ISG/OSA-1. J Clin Oncol. 2012;30:2112–8.

    CAS  PubMed  Google Scholar 

  36. Moore DD, Luu HH. Osteosarcoma. Cancer Treat Res. 2014;162:65–92.

    PubMed  Google Scholar 

  37. Meyers PA, Heller G, Healey J, Huvos A, Lane J, Marcove R, et al. Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol. 1992;10:5–15.

    CAS  PubMed  Google Scholar 

  38. Whelan JS, Davis LE. Osteosarcoma, chondrosarcoma, and chordoma. J Clin Oncol. 2018;36:188–93.

    CAS  PubMed  Google Scholar 

  39. Salah S, Fayoumi S, Alibraheem A, et al. The influence of pulmonary metastasectomy on survival in osteosarcoma and soft-tissue sarcomas: a retrospective analysis of survival outcomes, hospitalizations and requirements of home oxygen therapy. Interact Cardiovasc Thorac Surg. 2013;17(2):296–302. https://doi.org/10.1093/icvts/ivt177.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin AY, Kotova S, Yanagawa J, Elbuluk O, Wang G, Kar N, et al. Risk stratification of patients undergoing pulmonary metastasectomy for soft tissue and bone sarcomas. J Thorac Cardiovasc Surg. 2015;149(1):85–92. https://doi.org/10.1016/j.jtcvs.2014.09.039.

    Article  PubMed  Google Scholar 

  41. DeLaney TF, Park L, Goldberg SI, Hug EB, Liebsch NJ, Munzenrider JE, et al. Radiotherapy for local control of osteosarcoma. Int J Radiat Oncol Biol Phys. 2005;61:492–8.

    PubMed  Google Scholar 

  42. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531–43.

    PubMed  PubMed Central  Google Scholar 

  43. Friebele JC, Peck J, Pan X, Abdel-Rasoul M, Mayerson JL. Osteosarcoma: a meta-analysis and review of the literature. Am J Orthop. 2015;44:547–53.

    PubMed  Google Scholar 

  44. Okada K, Frassica FJ, Sim FH, Beabout JW, Bond JR, Unni KK. Parosteal osteosarcoma. A clinicopathological study. J. Bone Joint Surg. Am. 1994;76:366–78.

    CAS  Google Scholar 

  45. Grimer RJ, Bielack S, Flege S, Cannon SR, Foleras G, Andreeff I, et al. Periosteal osteosarcoma--a European review of outcome. Eur J Cancer. 2005;41:2806–11.

    PubMed  Google Scholar 

  46. Rose PS, Dickey ID, Wenger DE, Unni KK, Sim FH. Periosteal osteosarcoma: long-term outcome and risk of late recurrence. Clin Orthop Relat Res. 2006;453:314–7.

    PubMed  Google Scholar 

  47. Durfee RA, Mohammed M, Luu HH. Review of osteosarcoma and current management. Rheumatol Ther. 2016;3:221–43.

    PubMed  PubMed Central  Google Scholar 

  48. Bacci G, Longhi A, Versari M, Mercuri M, Briccoli A, Picci P. Prognostic factors for osteosarcoma of the extremity treated with neoadjuvant chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer. 2006;106:1154–61.

    PubMed  Google Scholar 

  49. Szendroi M, Pápai Z, Koós R, Illés T. Limb-saving surgery, survival, and prognostic factors for osteosarcoma: the Hungarian experience. J Surg Oncol. 2000;73:87–94.

    CAS  PubMed  Google Scholar 

  50. Ruggieri P, Calabrò T, Montalti M, Mercuri M. The role of surgery and adjuvants to survival in Pagetic osteosarcoma. Clin Orthop Relat Res. 2010;468:2962–8.

    PubMed  PubMed Central  Google Scholar 

  51. Iwata S, Ishii T, Kawai A, Hiruma T, Yonemoto T, Kamoda H, et al. Prognostic factors in elderly osteosarcoma patients: a multi-institutional retrospective study of 86 cases. Ann Surg Oncol. 2014;21:263–8.

    PubMed  Google Scholar 

  52. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422–41.

    PubMed  Google Scholar 

  53. Hendershot E, Pappo A, Malkin D, Sung L. Tumor necrosis in pediatric osteosarcoma: impact of modern therapies. J Pediatr Oncol Nurs. 2006;23:176–81.

    PubMed  Google Scholar 

  54. Zelken JA, Tufaro AP. Current trends and emerging future of indocyanine green usage in surgery and oncology: an update. Ann Surg Oncol. 2015;22(Suppl 3):S1271–83.

    PubMed  Google Scholar 

  55. Fourman MS, McKenna P, Phillips BT, Crawford L, Romanelli F, Lin F, et al. ICG angiography predicts burn scarring within 48 h of injury in a porcine vertical progression burn model. Burns. 2015;41:1043–8.

    PubMed  Google Scholar 

  56. •• Fourman MS, Mahjoub A, Mandell JB, Yu S, Tebbets JC, Crasto JA, et al. Quantitative primary tumor indocyanine green measurements predict osteosarcoma metastatic lung burden in a mouse model. Clin Orthop Relat Res. 2018;476:479–87. This paper describes a novel way of quantifying primary and metastatic osteosarcoma tumors in a previously validated immunocompetent orthotopic mouse model. The potential utility of indocyanine green as an intraoperative margin and tumor detector as opposed to intraoperative histology makes it a very valuable clinical tool for debulking procedures in anatomically vulnerable locations.

    PubMed  PubMed Central  Google Scholar 

  57. •• Mahjoub A, Morales-Restrepo A, Fourman MS, Mandell JB, Feiqi L, Hankins ML, et al. Tumor resection guided by intraoperative indocyanine green dye fluorescence angiography results in negative surgical margins and decreased local recurrence in an orthotopic mouse model of osteosarcoma. Ann Surg Oncol. 2019;26:894–8. This paper demonstrates that using intraoperative indocyanine green dye fluorescence angiography is an extremely effective tool in achieving negative surgical margins and, in turn, diminishes the chance of local recurrence in mice with osteosarcoma. This is a tool that has huge potential in the clinical realm.

    PubMed  Google Scholar 

  58. Indocyanine Green (ICG) Guided Tumor Resection - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Jul 11]. Available from: https://clinicaltrials.gov/ct2/show/NCT04084067

  59. Mao Y, Chi C, Yang F, Zhou J, He K, Li H, et al. The identification of sub-centimetre nodules by near-infrared fluorescence thoracoscopic systems in pulmonary resection surgeries. Eur J Cardiothorac Surg. 2017;52:1190–6.

    PubMed  Google Scholar 

  60. Zhou H, Yi W, Li A, Wang B, Ding Q, Xue L, et al. Specific small-molecule NIR-II fluorescence imaging of osteosarcoma and lung metastasis. Adv Healthc Mater. 2020;9:e1901224.

    PubMed  Google Scholar 

  61. Sakuda T, Kubo T, Johan MP, Furuta T, Sakaguchi T, Nakanishi M, et al. Novel near-infrared fluorescence-guided surgery with vesicular stomatitis virus for complete surgical resection of osteosarcomas in mice. J Orthop Res. 2019;37:1192–201.

    PubMed  Google Scholar 

  62. Cheng J, Wang W, Xu X, Lin Z, Xie C, Zhang Y, et al. AgBiS2 nanoparticles with synergistic photodynamic and bioimaging properties for enhanced malignant tumor phototherapy. Mater Sci Eng C Mater Biol Appl. 2020;107:110324.

    CAS  PubMed  Google Scholar 

  63. Sharma S, White D, Imondi AR, Placke ME, Vail DM, Kris MG. Development of inhalational agents for oncologic use. J Clin Oncol. 2001;19:1839–47.

    CAS  PubMed  Google Scholar 

  64. Koshkina NV, Waldrep JC, Roberts LE, Golunski E, Melton S, Knight V. Paclitaxel liposome aerosol treatment induces inhibition of pulmonary metastases in murine renal carcinoma model. Clin Cancer Res. 2001;7:3258–62.

    CAS  PubMed  Google Scholar 

  65. Kiany S, Gordon N. Aerosol delivery of interleukin-2 in combination with adoptive transfer of natural killer cells for the treatment of lung metastasis: methodology and effect. Methods Mol Biol. 2016;1441:285–95.

    CAS  PubMed  Google Scholar 

  66. •• Gordon N, Felix K, Daw NC. Aerosolized chemotherapy for osteosarcoma. Adv Exp Med Biol. 2020;1257:67–73. Pulmonary metastasis of osteosarcoma is a major contributor to poorer prognosis and is difficult to treat. Aerosol chemotherapy has been proven to be effective in causing regression of pulmonary metastases and improving survival in mice with osteosarcoma. This chapter reviews various chemotherapeutic agents delivered via inhalation therapy and ongoing studies in patients with lung metastases with aerosolized chemotherapy.

    CAS  PubMed  Google Scholar 

  67. Kim A, Widemann BC, Krailo M, Jayaprakash N, Fox E, Weigel B, et al. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62:1562–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Grignani G, Palmerini E, Ferraresi V, D’Ambrosio L, Bertulli R, Asaftei SD, et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol. 2015;16:98–107.

    CAS  PubMed  Google Scholar 

  69. •• Regan DP, Coy JW, Chahal KK, Chow L, Kurihara JN, Guth AM, Kufareva I, Dow SW, The angiotensin receptor blocker losartan suppresses growth of pulmonary metastases via AT1R-independent inhibition of CCR2 signaling and monocyte recruitment. J Immunol. 2019;202(10):3087–102. Pazopanib, a selective multitargeted tyrosine kinase inhibitor that has been proven to be effective in the treatment of metastatic soft tissue sarcomas, was evaluated in this study in the treatment of metastatic bone sarcomas in patients who failed chemotherapy. This study demonstrated that pazopanib is a well-tolerated and effective treatment of metastatic bone sarcomas refractory to traditional chemotherapy. Given the poor prognosis associated with metastatic, chemotherapy-resistant, bone sarcomas, identification of effective treatment alternatives is of utmost importance.

  70. Coens C, van der Graaf WTA, Blay J-Y, Chawla SP, Judson I, Sanfilippo R, et al. Health-related quality-of-life results from PALETTE: A randomized, double-blind, phase 3 trial of pazopanib versus placebo in patients with soft tissue sarcoma whose disease has progressed during or after prior chemotherapy-a European Organization for research and treatment of cancer soft tissue and bone sarcoma group global network study (EORTC 62072). Cancer. 2015;121:2933–41.

    CAS  PubMed  Google Scholar 

  71. Safwat A, Boysen A, Lücke A, Rossen P. Pazopanib in metastatic osteosarcoma: significant clinical response in three consecutive patients. Acta Oncol (Madr). 2014;53:1451–4.

    Google Scholar 

  72. Umeda K, Kato I, Saida S, Okamoto T, Adachi S. Pazopanib for second recurrence of osteosarcoma in pediatric patients. Pediatr Int. 2017;59:937–8.

    CAS  PubMed  Google Scholar 

  73. Longhi A, Paioli A, Palmerini E, Cesari M, Abate ME, Setola E, et al. Pazopanib in relapsed osteosarcoma patients: report on 15 cases. Acta Oncol. 2019;58:124–8.

    PubMed  Google Scholar 

  74. Study of Pazopanib in the Treatment of Osteosarcoma Metastatic to the Lung - No Study Results Posted - ClinicalTrials.gov [Internet]. [cited 2020 Jul 12]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT01759303

  75. •• Italiano A, Mir O, Mathoulin-Pelissier S, Penel N, Piperno-Neumann S, Bompas E, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020;21:446–55. This clinical trial demonstrates the antitumor effect and drug-related adverse events of cabozantinib, a new therapeutic option for osteosarcoma treatment.

    CAS  PubMed  Google Scholar 

  76. Koonrungsesomboon N, Ngamphaiboon N, Townamchai N, Teeyakasem P, Charoentum C, Charoenkwan P, et al. Phase II, multi-center, open-label, single-arm clinical trial evaluating the efficacy and safety of mycophenolate mofetil in patients with high-grade locally advanced or metastatic osteosarcoma (ESMMO): rationale and design of the ESMMO trial. BMC Cancer. 2020;20:268.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. •• Klangjorhor J, Chaiyawat P, Teeyakasem P, Sirikaew N, Phanphaisarn A, Settakorn J, et al. Mycophenolic acid is a drug with the potential to be repurposed for suppressing tumor growth and metastasis in osteosarcoma treatment. Int J Cancer. 2020;146:3397–409. This paper demonstrates the in vivo antitumor effect of mycophenolate mofetil, an immunosuppressive drug already used in humans in the treatment of autoimmune diseases or organ transplants. More specifically, mycophenolate mofetil significantly reduced the number of lung metastatic nodules compared to the vehicle group in mice. This could be a novel treatment targeting an aspect of osteosarcoma that portends a poor prognosis, metastases.

    CAS  PubMed  Google Scholar 

  78. Yamagishi T, Kawashima H, Ogose A, Ariizumi T, Sasaki T, Hatano H, et al. Receptor-activator of nuclear kappaB ligand expression as a new therapeutic target in primary bone tumors. PLoS One. 2016;11:e0154680.

    PubMed  PubMed Central  Google Scholar 

  79. Ohba T, Cates JMM, Cole HA, Slosky DA, Haro H, Ichikawa J, et al. Pleiotropic effects of bisphosphonates on osteosarcoma. Bone. 2014;63:110–20.

    CAS  PubMed  Google Scholar 

  80. Beristain AG, Narala SR, Di Grappa MA, Khokha R. Homotypic RANK signaling differentially regulates proliferation, motility and cell survival in osteosarcoma and mammary epithelial cells. J Cell Sci. 2012;125:943–55.

    CAS  PubMed  Google Scholar 

  81. Savvidou OD, Bolia IK, Chloros GD, Papanastasiou J, Koutsouradis P, Papagelopoulos PJ. Denosumab: current use in the treatment of primary bone tumors. Orthopedics. 2017;40:204–10.

    PubMed  Google Scholar 

  82. Denosumab in Treating Patients With Recurrent or Refractory Osteosarcoma - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Jul 14]. Available from: https://clinicaltrials.gov/ct2/show/NCT02470091

  83. Ouyang Z, Li H, Zhai Z, Xu J, Dass CR, Qin A, et al. Zoledronic acid: pleiotropic anti-tumor mechanism and therapeutic outlook for osteosarcoma. Curr Drug Targets. 2018;19:409–21.

    CAS  PubMed  Google Scholar 

  84. Piperno-Neumann S, Le Deley M-C, Rédini F, Pacquement H, Marec-Bérard P, Petit P, et al. Zoledronate in combination with chemotherapy and surgery to treat osteosarcoma (OS2006): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17:1070–80.

    CAS  PubMed  Google Scholar 

  85. •• Tsuda Y, Tsoi K, Stevenson JD, Parry MC, Fujiwara T, Sumathi V, et al. Is microscopic vascular invasion in tumor specimens associated with worse prognosis in patients with high-grade localized osteosarcoma? Clin Orthop Relat Res. 2020;478:1190–8. This paper examines microscopic vascular invasion (MVI) as a prognostic factor in high-grade localized osteosarcoma. Finding that MVI is associated with lower overall survival and higher cumulative incidence of local recurrence or metastasis, this measurement has huge potential to be used in the future in new clinical trials and as a novel prognostic factor in patients with osteosarcoma.

    PubMed  Google Scholar 

  86. Anderson ME, Wu JS, Vargas SO. CORR® tumor board: is microscopic vascular invasion in tumor specimens associated with worse prognosis in patients with high-grade localized osteosarcoma? Clin Orthop Relat Res. 2020;478:1186–9.

    PubMed  Google Scholar 

  87. Dobrenkov K, Ostrovnaya I, Gu J, Cheung IY, Cheung N-KV. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer. 2016;63:1780–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Doronin II, Vishnyakova PA, Kholodenko IV, Ponomarev ED, Ryazantsev DY, Molotkovskaya IM, et al. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer. 2014;14:295.

    PubMed  PubMed Central  Google Scholar 

  89. Louis CU, Savoldo B, Dotti G, Pule M, Yvon E, Myers GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118:6050–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Poon VI, Roth M, Piperdi S, Geller D, Gill J, Rudzinski ER, et al. Ganglioside GD2 expression is maintained upon recurrence in patients with osteosarcoma. Clin Sarcoma Res. 2015;5:4.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bishop MW, Hutson PR, Hank JA, Sondel PM, Furman WL, Meagher MM, et al. A Phase 1 and pharmacokinetic study evaluating daily or weekly schedules of the humanized anti-GD2 antibody hu14.18K322A in recurrent/refractory solid tumors. MAbs. 2020;12:1773751.

    PubMed  PubMed Central  Google Scholar 

  92. Greco N, Schott T, Mu X, Rothenberg A, Voigt C, McGough RL, et al. ALDH activity correlates with metastatic potential in primary sarcomas of bone. J Cancer Ther. 2014;5:331–8.

    PubMed  PubMed Central  Google Scholar 

  93. Mu X, Isaac C, Schott T, Huard J, Weiss K. Rapamycin inhibits ALDH activity, resistance to oxidative stress, and metastatic potential in murine osteosarcoma cells. Sarcoma. 2013;2013:480713.

    PubMed  PubMed Central  Google Scholar 

  94. Yang L, Ren Y, Yu X, Qian F, Bian BSJ, Xiao HL, et al. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol. 2014;27(5):775–83. https://doi.org/10.1038/modpathol.2013.189.

    Article  CAS  PubMed  Google Scholar 

  95. Cho H-J, Lee T-S, Park J-B, Park K-K, Choe J-Y, Sin D-I, et al. Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression. J Biochem Mol Biol. 2007;40:1069–76.

    CAS  PubMed  Google Scholar 

  96. Crasto JA, Fourman MS, Morales-Restrepo A, Mahjoub A, Mandell JB, Ramnath K, et al. Disulfiram reduces metastatic osteosarcoma tumor burden in an immunocompetent Balb/c or-thotopic mouse model. Oncotarget. 2018;9:30163–72.

    PubMed  PubMed Central  Google Scholar 

  97. •• Mandell JB, Lu F, Fisch M, Beumer JH, Guo J, Watters RJ, et al. Combination therapy with disulfiram, copper, and doxorubicin for osteosarcoma: in vitro support for a novel drug repurposing strategy. Sarcoma. 2019;2019:1320201. This paper is a comprehensive investigation on copper in osteosarcoma. Beyond examining differences in endogenous copper level and copper transporter genes in murine osteosarcoma cells with differing metastatic potentials, this study also demonstrated the ability of copper chloride to augment the efficacy of disulfiram in sarcoma treatment.

    PubMed  PubMed Central  Google Scholar 

  98. Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: “Copper That Cancer”. Metallomics. 2015;7:1459–76.

    CAS  PubMed  Google Scholar 

  99. •• Wang Y, Yu W, Zhu J, Wang J, Xia K, Liang C, et al. Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res. 2019;38:168. Considering the urgent need for new therapeutic regiments, this paper features an effective novel immunological treatment strategy in the future clinical practice for the treatment of osteosarcoma: chimeric antigen receptor (CAR)–engineered T cells.

    PubMed  PubMed Central  Google Scholar 

  100. iC9-GD2-CAR-VZV-CTLs/Refractory or Metastatic GD2-positive Sarcoma and Neuroblastoma - Full Text View - ClinicalTrials.gov [Internet]. [cited 2020 Jul 24]. Available from: https://clinicaltrials.gov/ct2/show/NCT01953900

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt R. Weiss.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Orthopedic Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belayneh, R., Fourman, M.S., Bhogal, S. et al. Update on Osteosarcoma. Curr Oncol Rep 23, 71 (2021). https://doi.org/10.1007/s11912-021-01053-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01053-7

Keywords

Navigation