Skip to main content

Advertisement

Log in

Salty Subjects: Unpacking Racial Differences in Salt-Sensitive Hypertension

  • Inflammation and Cardiovascular Diseases (A Kirabo, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review underlying mechanisms and environmental factors that may influence racial disparities in the development of salt-sensitive blood pressure.

Recent Findings

Our group and others have observed racial differences in diet and hydration, which may influence salt sensitivity. Dietary salt elicits negative alterations to the gut microbiota and immune system, which may increase hypertension risk, but little is known regarding potential racial differences in these physiological responses. Antioxidant supplementation and exercise offset vascular dysfunction following dietary salt, including in Black adults. Furthermore, recent work proposes the role of racial differences in exposure to social determinants of health, and differences in health behaviors that may influence risk of salt sensitivity.

Summary

Physiological and environmental factors contribute to the mechanisms that manifest in racial differences in salt-sensitive blood pressure. Using this information, additional work is needed to develop strategies that can attenuate racial disparities in salt-sensitive blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARIC:

Atherosclerosis risk in communities

BP:

Blood pressure

CV:

Cardiovascular

CRP:

C-reactive protein

DASH:

Dietary Approaches to Stop Hypertension

ENaC:

Epithelial sodium channel

H2O2 :

Hydrogen peroxide

HUVECs:

Human umbilical vein endothelial cells

IL-6:

Interleukin-6

META-Health:

Morehouse and Emory Team up to Eliminate Health Disparities

MESA:

Multi-ethnic study of atherosclerosis

NADPH:

Nicotinamide adenine dinucleotide phosphate

NHANES:

National Health and Nutrition Examination Survey

NGAL:

Neutrophil gelatinase–associated lipocalin

NO:

Nitric oxide

ONOO :

Peroxynitrate

O2 :

Superoxide

RAAS:

Renin-angiotensin-aldosterone system

REGARDS:

Reasons for Geographic and Racial Differences in Stroke

ROS:

Reactive oxygen species

SDoH:

Social determinants of health

SCFA:

Short-chain fatty acid

SGK1:

Serum and glucocorticoid-regulated kinase 1

SOD:

Superoxide dismutase

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans. 2020–2025.

  2. Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension. 2020;75(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  3. Tsao CW, et al. Heart disease and stroke statistics-2023 update: a report from the american heart association. Circulation. 2023;147(8):e93–621.

    Article  PubMed  Google Scholar 

  4. Xu J, et al. Mortality in the United States, 2021. NCHS Data Brief. 2022;456:1–8.

    Google Scholar 

  5. Elijovich F, et al. Salt sensitivity of blood pressure. Hypertension. 2016;68(3):e7–46.

    Article  CAS  PubMed  Google Scholar 

  6. Barba G, et al. Incidence of hypertension in individuals with different blood pressure salt-sensitivity: results of a 15-year follow-up study. J Hypertens. 2007;25(7):1465–71.

    Article  CAS  PubMed  Google Scholar 

  7. Morimoto A, et al. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet. 1997;350(9093):1734–7.

    Article  CAS  PubMed  Google Scholar 

  8. Weinberger MH, et al. Salt sensitivity, pulse pressure, and death in normal and hypertensive humans. Hypertension. 2001;37(2 Pt 2):429–32.

    Article  CAS  PubMed  Google Scholar 

  9. • Linder BA, et al. Short-term high salt intake does not influence resting or exercising heart rate variability but increases MCP-1 concentration in healthy young adults. Am J Physiol Regul Integr Comp Physiol. 2023;324(5):R666–76. This paper from our group highlights the influence of short-term high dietary salt on an inflammatory biomarker, plasma monocyte chemoattractant protein 1.

    Article  CAS  PubMed  Google Scholar 

  10. Barnett AM, et al. High dietary salt intake increases urinary NGAL excretion and creatinine clearance in healthy young adults. Am J Physiol Renal Physiol. 2022.

  11. Babcock MC, et al. High salt intake augments blood pressure responses during submaximal aerobic exercise. J Am Heart Assoc. 2020;9(10).

  12. Overlack A, et al. Age is a major determinant of the divergent blood pressure responses to varying salt intake in essential hypertension. Am J Hypertens. 1995;8(8):829–36.

    Article  CAS  PubMed  Google Scholar 

  13. Dengel DR, et al. Effect of aerobic exercise training on blood pressure sensitivity to dietary sodium in older hypertensives. J Hum Hypertens. 2006;20(5):372–8.

    Article  CAS  PubMed  Google Scholar 

  14. Svetkey LP, McKeown SP, Wilson AF. Heritability of salt sensitivity in Black Americans. Hypertension. 1996;28(5):854–8.

    Article  CAS  PubMed  Google Scholar 

  15. Elijovich F, et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension. 2016;68(3):e7–46.

    Article  CAS  PubMed  Google Scholar 

  16. Sacks FM, DASH-Sodium Collaborative Research Group, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N Engl J Med. 2001;344(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  17. Vollmer WM, et al. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med. 2001;135(12):1019–28.

    Article  CAS  PubMed  Google Scholar 

  18. Morris RC, et al. Normotensive salt sensitivity. Hypertension. 1999;33(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  19. Schmidlin O, et al. NaCl-induced renal vasoconstriction in salt-sensitive African Americans. Hypertension. 1999;33(2):633–9.

    Article  CAS  PubMed  Google Scholar 

  20. • Hunter SD, Kavouras SA, Rahimi M. Exploring heated exercise as a means of preventing the deleterious effects of high-sodium intake in Black women. Am J Physiol Heart Circ Physiol. 2023;324(6):H833-h839. This paper highlights the influence of exercise, specifically hot yoga, and high dietary salt on endothelial function in Black female adults.

    Article  CAS  PubMed  Google Scholar 

  21. Luft FC, et al. Cardiovascular and humoral responses to extremes of sodium intake in normal black and white men. Circulation. 1979;60(3):697–706.

    Article  CAS  PubMed  Google Scholar 

  22. Dimsdale JE, et al. Prediction of salt sensitivity. Am J Hypertens. 1990;3(6 Pt 1):429–35.

    Article  CAS  PubMed  Google Scholar 

  23. Robinson AT, Wenner MM, Charkoudian N. Differential influences of dietary sodium on blood pressure regulation based on race and sex. Auton Neurosci. 2021;236:102873.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sudhir K, et al. Reduced dietary potassium reversibly enhances vasopressor response to stress in African Americans. Hypertension. 1997;29(5):1083–90.

    Article  CAS  PubMed  Google Scholar 

  25. He FJ, et al. Importance of the renin system in determining blood pressure fall with salt restriction in Black and White hypertensives. Hypertension. 1998;32(5):820–4.

    Article  CAS  PubMed  Google Scholar 

  26. Falkner B, Kushner H. Effect of chronic sodium loading on cardiovascular response in young Blacks and Whites. Hypertension. 1990;15(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  27. JT Wright, et al. Determinants of salt sensitivity in Black and White normotensive and hypertensive women. Hypertension (Dallas, Tex. : 1979). 2003;42(6).

  28. Appel LJ, et al. Effects of reduced sodium intake on hypertension control in older individuals. Arch Intern Med. 2001;161(5):685.

    Article  CAS  PubMed  Google Scholar 

  29. Palacios C, et al. Sodium retention in Black and White female adolescents in response to salt intake. J Clin Endocrinol Metab. 2004;89(4):1858–63.

    Article  CAS  PubMed  Google Scholar 

  30. He FJ, et al. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in White, Black, and Asian mild hypertensives. Hypertension. 2009;54(3):482–8.

    Article  CAS  PubMed  Google Scholar 

  31. Kurtz TW, et al. No evidence of racial disparities in blood pressure salt sensitivity when potassium intake exceeds levels recommended in the US dietary guidelines. Am J Physiol Heart Circ Physiol. 2021;320(5):H1903-h1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Ferguson JF, et al. High dietary salt–induced DC activation underlies microbial dysbiosis-associated hypertension. JCI Insight. 2019;4(13). This paper observed immune cell activation induced by high dietary salt and its association with gut dysbiosis in humans and mice.

  33. Nichols OI, et al. Neighborhood socioeconomic deprivation in early childhood mediates racial disparities in blood pressure in a college student sample. J Youth Adolesc. 2022.

  34. Grosicki GJ, et al. Acute beetroot juice reduces blood pressure in young Black and White males but not females. Redox Biol. 2023;63:102718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Voors AW, et al. Studies of blood pressures in children, ages 5–14 years, in a total biracial community: the Bogalusa Heart Study. Circulation. 1976;54(2):319–27.

    Article  CAS  PubMed  Google Scholar 

  36. • Caraballo C, et al. Excess mortality and years of potential life lost among the Black Population in the US, 1999–2020. JAMA. 2023;329(19):1662–70. This paper reported data from the Centers for Disease Control over the recent 22-year period comparing excess death and years of life lost between the Black and White populations.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rao S, et al. Association of genetic West African ancestry, blood pressure response to therapy, and cardiovascular risk among self-reported Black individuals in the systolic blood pressure reduction intervention trial (SPRINT). JAMA Cardiol. 2020.

  38. Haas AV, et al. Genetic predictors of salt sensitivity of blood pressure: the additive impact of 2 hits in the same biological pathway. Hypertension. 2021;78(6):1809–17.

    Article  CAS  PubMed  Google Scholar 

  39. Grosicki GJ, et al. Racial and ethnic disparities in cardiometabolic disease and COVID-19 outcomes in White, Black/African American, and Latinx populations: social determinants of health. Prog Cardiovasc Dis. 2022;71:4–10.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Robinson AT, Cook MD, Lane-Cordova AD. Making cell culture more physiological: a call for more a comprehensive assessment of racial disparities in endothelial cell culture studies. Am J Physiol Cell Physiol. 2019.

  41. Kirkman D, et al. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness and cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2021.

  42. Green DJ, et al. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter? Hypertension. 2011;57(3):363–9.

    Article  CAS  PubMed  Google Scholar 

  43. Golia E, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014;16(9).

  44. Sessa WC. eNOS at a glance. J Cell Sci. 2004;117(Pt 12):2427–9.

    Article  CAS  PubMed  Google Scholar 

  45. Cook NR, et al. Sodium and health-concordance and controversy. BMJ. 2020;369:m2440.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Watso JC, et al. The damaging duo: obesity and excess dietary salt contribute to hypertension and cardiovascular disease. Obes Rev. 2023;24(8):e13589.

    Article  PubMed  Google Scholar 

  47. Robinson AT, Edwards DG, Farquhar WB. The influence of dietary salt beyond blood pressure. Curr Hypertens Rep. 2019;21(6):42.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Patik JC, et al. Mechanisms of dietary sodium-induced impairments in endothelial function and potential countermeasures. Nutrients. 2021;13(1):270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Greaney JL, et al. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: role of oxidative stress. J Physiol. 2012;590(21):5519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guers JJ, et al. Voluntary wheel running prevents salt-induced endothelial dysfunction: role of oxidative stress. J Appl Physiol (1985). 2018.

  51. Durand MJ, Lombard JH. Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt–fed rats by increasing copper/zinc superoxide dimutase expression. Am J Hypertens. 2013;26(6):739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Robinson AT, et al. Microvascular vasodilator plasticity after acute exercise. Exerc Sport Sci Rev. 2018;46(1):48–55.

    Article  PubMed  PubMed Central  Google Scholar 

  53. • Decker KP, et al. High sodium intake differentially impacts brachial artery dilation when evaluated with reactive versus active hyperemia in salt resistant individuals. J Appl Physiol (1985). 2023;134(2): 277–87. This paper demonstrated impaired brachial artery flow–mediated dilation after high dietary salt during reactive hyperemia, but this effect was reversed by acute antioxidant supplementation.

  54. Ramick MG, et al. Apocynin and Tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans. Am J Physiol Heart Circ Physiol. 2019;317(1):H97-h103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brothers RM, Fadel PJ, Keller DM. Racial disparities in cardiovascular disease risk: mechanisms of vascular dysfunction. Am J Physiol Heart Circ Physiol. 2019;317(4):H777-h789.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bunsawat K, et al. Racial and ethnic disparities in cardiometabolic disease and COVID-19 outcomes in White, Black/African American, and Latinx populations: physiological underpinnings. Prog Cardiovasc Dis. 2022;71:11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Heffernan KS, et al. Racial differences in central blood pressure and vascular function in young men. Am J Physiol Heart Circ Physiol. 2008;295(6):H2380–7.

    Article  PubMed  Google Scholar 

  58. D’Agata MN, et al. Young black women demonstrate impaired microvascular but preserved macrovascular function compared to white women. Exp Physiol. 2021;106(10):2031–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. D’Agata MN, et al. Evidence of reduced peripheral microvascular function in young Black women across the menstrual cycle. J Appl Physiol (1985). 2021;131(6):1783–91.

    Article  PubMed  Google Scholar 

  60. Morris AA, et al. Differences in systemic oxidative stress based on race and the metabolic syndrome: the Morehouse and Emory team up to eliminate health disparities (META-Health) study. Metab Syndr Relat Disord. 2012;10(4):252–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feairheller DL, et al. Racial differences in oxidative stress and inflammation: in vitro and in vivo. Clin Transl Sci. 2011;4(1):32–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Plante TB, et al. C-reactive protein and incident hypertension in Black and White Americans in the REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort study. Am J Hypertens. 2021;34(7):698–706.

    Article  CAS  PubMed  Google Scholar 

  63. Hall JE. Renal dysfunction, rather than nonrenal vascular dysfunction, mediates salt-induced hypertension. Circulation. 2016;133(9):894–906.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mutchler SM, Kirabo A, Kleyman TR. Epithelial sodium channel and salt-sensitive hypertension. Hypertension. 2021;77(3):759–67.

    Article  CAS  PubMed  Google Scholar 

  65. Elijovich F, et al. Immune mechanisms of dietary salt-induced hypertension and kidney disease: Harry Goldblatt Award for early career investigators 2020. Hypertension. 2021;78(2):252–60.

    Article  CAS  PubMed  Google Scholar 

  66. Ruggeri Barbaro N, et al. Sodium activates human monocytes via the NADPH oxidase and isolevuglandin formation. Cardiovasc Res. 2021;117(5):1358–71.

    Article  PubMed  Google Scholar 

  67. Zaika O, et al. Direct activation of ENaC by angiotensin II: recent advances and new insights. Curr Hypertens Rep. 2013;15(1):17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Morris RC, et al. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation. 2016;133(9):881–93.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schmidlin O, Sebastian AF, Morris RC Jr. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension. 2007;49(5):1032–9.

    Article  CAS  PubMed  Google Scholar 

  70. Schmidlin OFA, Tanaka M, Sebastian A, Morris RC. NaCl-induced renal vasoconstriction in salt-sensitive African Americans: antipressor and hemodynamic effects of potassium bicarbonate. Hypertension (Dallas, Tex. : 1979). 1999;33(2).

  71. Fink GD, et al. Determinants of renal vascular resistance in the Dahl strain of genetically hypertensive rat. Hypertension. 1980;2(3):274–80.

    Article  CAS  PubMed  Google Scholar 

  72. Wang W, Chonchol M, Seals DR, Nowak KL. Dietary sodium restriction decreases urinary NGAL in older adults with moderately elevated systolic blood pressure free from chronic kidney disease. J Investig Med. 2020;68(7):1271–5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pratt JH, et al. Effect of administered potassium on the renin-aldosterone axis in young Blacks compared with Whites. J Hypertens. 1997;15(8):877–83.

    Article  CAS  PubMed  Google Scholar 

  74. Cogswell ME, et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA. 2018;319(12):1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lujan HL, DiCarlo SE. The “African gene” theory: it is time to stop teaching and promoting the slavery hypertension hypothesis. Adv Physiol Educ. 2018;42(3):412–6.

    Article  PubMed  Google Scholar 

  76. Jackson FL. An evolutionary perspective on salt, hypertension, and human genetic variability. Hypertension. 1991;17(1 Suppl):I129–32.

    CAS  PubMed  Google Scholar 

  77. Grollman A. A conjecture about the prevalence of essential hypertension and its high incidence in the Black. Tex Rep Biol Med. 1978;36:25–32.

    CAS  PubMed  Google Scholar 

  78. Wilson TW, Grim CE. Biohistory of slavery and blood pressure differences in Blacks today. A hypothesis. Hypertension. 1991;17(1 Suppl):I122–8.

    CAS  PubMed  Google Scholar 

  79. Wilson TW, Hollifield LR, Grim CE. Systolic blood pressure levels in Black populations in sub-Sahara Africa, the West Indies, and the United States: a meta-analysis. Hypertension. 1991;18(3 Suppl):I87-91.

    CAS  PubMed  Google Scholar 

  80. Poulter NR, Khaw KT, Sever PS. Higher blood pressures of urban migrants from an African low-blood pressure population are not due to selective migration. Am J Hypertens. 1988;1(3 Pt 3):143s–5s.

    Article  CAS  PubMed  Google Scholar 

  81. Curtin PD. The slavery hypothesis for hypertension among African Americans: the historical evidence. Am J Public Health. 1992;82(12):1681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schmidlin O, et al. Salt sensitivity in Blacks: evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension. 2011;58(3):380–5.

    Article  CAS  PubMed  Google Scholar 

  83. Afzaal M, et al. Human gut microbiota in health and disease: unveiling the relationship. Front Microbiol. 2022;13:999001.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Grosicki GJ, et al. Gut check: unveiling the influence of acute exercise on the gut microbiota. Exp Physiol. 2023.

  85. Yang T, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–40.

    Article  CAS  PubMed  Google Scholar 

  86. Mell B, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics. 2015;47(6):187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5(2):202–7.

    Article  PubMed  Google Scholar 

  89. Wu Y, et al. The role of short-chain fatty acids of gut microbiota origin in hypertension. Front Microbiol. 2021;12:730809.

    Article  PubMed  PubMed Central  Google Scholar 

  90. • Pluznick JL, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci. 2013;110(11):4410–5. This paper highlights the mechanisms of receptors and short-chain fatty acids in the gut microbiota on blood pressure regulation.

  91. Tilves C, et al. Increases in circulating and fecal butyrate are associated with reduced blood pressure and hypertension: results from the SPIRIT trial. J Am Heart Assoc. 2022;11(13):e024763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bier A, et al. A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients. 2018;10(9):1154.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Myint H, et al. Functional modulation of caecal fermentation and microbiota in rat by feeding bean husk as a dietary fibre supplement. Beneficial Microbes. 2018;9(6):963–74.

    Article  CAS  PubMed  Google Scholar 

  94. Zhai X, et al. Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet. J Agric Food Chem. 2018;66(48):12706–18.

    Article  CAS  PubMed  Google Scholar 

  95. Jama HA, et al. Prebiotic intervention with HAMSAB in untreated essential hypertensive patients assessed in a phase II randomized trial. Nature Cardiovasc Res. 2023.

  96. Kaye DM, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation. 2020;141(17):1393–403.

    Article  CAS  PubMed  Google Scholar 

  97. Brooks AW, et al. Gut microbiota diversity across ethnicities in the United States. PLoS Biol. 2018;16(12):e2006842.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Walejko JM, et al. Gut microbiota and serum metabolite differences in African Americans and White Americans with high blood pressure. Int J Cardiol. 2018;271:336–9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Carson TL, et al. Associations between race, perceived psychological stress, and the gut microbiota in a sample of generally healthy Black and White women: a pilot study on the role of race and perceived psychological stress. Psychosom Med. 2018;80(7):640–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. • Hester CM, et al. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J Gastroenterol. 2015;21(9):2759–69. This paper revealed that African Americans had lower levels of short-chain fatty acids and higher Firmicute/Bacteroidetes ratio compared with White Americans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rothschild D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5.

    Article  CAS  PubMed  Google Scholar 

  102. Ou J, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98(1):111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zakharia F, et al. Characterizing the admixed African ancestry of African Americans. Genome Biol. 2009;10(12):R141.

    Article  PubMed  PubMed Central  Google Scholar 

  104. • Dugas LR, et al. Decreased microbial co-occurrence network stability and SCFA receptor level correlates with obesity in African-origin women. Sci Rep. 2018;8(1). This paper found that females from Ghana consumed significantly greater dietary fiber, microbial diversity, and short-chain fatty acids compared with females from the U.S.

  105. Price CA, et al. Differences in gut microbiome by insulin sensitivity status in Black and White women of the National Growth and Health Study (NGHS): a pilot study. PLoS ONE. 2022;17(1):e0259889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Storey M, Anderson P. Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr Res. 2014;34(10):844–50.

    Article  CAS  PubMed  Google Scholar 

  107. Marmot M, et al. Closing the gap in a generation: health equity through action on the social determinants of health. The Lancet. 2008;372(9650):1661–9.

    Article  Google Scholar 

  108. Havranek EP, et al. Social determinants of risk and outcomes for cardiovascular disease. Circulation. 2015;132(9):873–98.

    Article  PubMed  Google Scholar 

  109. Kucharska-Newton AM, et al. Socioeconomic indicators and the risk of acute coronary heart disease events: comparison of population-based data from the United States and Finland. Ann Epidemiol. 2011;21(8):572–9.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Commodore-Mensah Y, et al. Associations between social determinants and hypertension, stage 2 hypertension, and controlled blood pressure among men and women in the United States. Am J Hypertens. 2021;34(7):707–17.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Roux AVD, et al. Neighborhood of residence and incidence of coronary heart disease. N Engl J Med. 2001;345(2):99–106.

    Article  Google Scholar 

  112. Kaiser P, et al. Neighborhood environments and incident hypertension in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2016;183(11):988–97.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Mujahid MS, et al. Historical redlining and cardiovascular health: the multi-ethnic study of atherosclerosis. Proc Natl Acad Sci. 2021;118(51):e2110986118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ifatunji MA, et al. Black nativity and health disparities: a research paradigm for understanding the social determinants of health. Int J Environ Res Public Health. 2022;19(15):9166.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Williams DR, et al. Perceived discrimination and psychological well-being in the USA and South Africa. Ethn Health. 2012;17(1–2):111–33.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mujahid MS, et al. Neighborhood stressors and race/ethnic differences in hypertension prevalence (the Multi-Ethnic Study of Atherosclerosis). Am J Hypertens. 2011;24(2):187–93.

    Article  PubMed  Google Scholar 

  117. Forde AT, et al. Discrimination and hypertension risk among African Americans in the Jackson Heart Study. Hypertension. 2020;76(3):715–23.

    Article  CAS  PubMed  Google Scholar 

  118. Koepke JP, Jones S, Dibona GF. Stress increases renal nerve activity and decreases sodium excretion in Dahl rats. Hypertension. 1988;11(4):334–8.

    Article  CAS  PubMed  Google Scholar 

  119. Deter HC, et al. Psychophysiological reactivity of salt-sensitive normotensive subjects. J Hypertens. 1997;15(8):839–44.

    Article  CAS  PubMed  Google Scholar 

  120. Buchholz K, et al. Enhanced affective startle modulation in salt-sensitive subjects. Hypertension. 2001;38(6):1325–9.

    Article  CAS  PubMed  Google Scholar 

  121. Schneider MP, et al. Impaired sodium excretion during mental stress in mild essential hypertension. Hypertension. 2001;37(3):923–7.

    Article  CAS  PubMed  Google Scholar 

  122. Light KC, Turner JR. Stress-induced changes in the rate of sodium excretion in healthy black and white men. J Psychosom Res. 1992;36(5):497–508.

    Article  CAS  PubMed  Google Scholar 

  123. Notterman DA, Mitchell C. Epigenetics and understanding the impact of social determinants of health. Pediatr Clin North Am. 2015;62(5):1227–40.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lloyd-Jones DM, et al. Life’s essential 8: updating and enhancing the American Heart Association’s construct of cardiovascular health: a presidential advisory from the American Heart Association. Circulation. 2022;146(5).

  125. Booth JN, et al. Racial differences in maintaining optimal health behaviors into middle age. Am J Prev Med. 2019;56(3):368–75.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Svetkey LP, DASH-Sodium Collaborative Research Group, et al. The DASH diet, sodium intake and blood pressure trial (DASH-sodium): rationale and design. J Am Diet Assoc. 1999;99(8 Suppl):S96-104.

    Article  CAS  PubMed  Google Scholar 

  127. Moore TJ, et al. DASH (Dietary Approaches to Stop Hypertension) diet is effective treatment for stage 1 isolated systolic hypertension. 2001.

  128. Ford ES, Mokdad AH. Dietary magnesium intake in a national sample of US adults. J Nutr. 2003;133(9):2879–82.

    Article  CAS  PubMed  Google Scholar 

  129. Jackson SE, et al. Ethnic differences in magnesium intake in U.S. older adults: findings from NHANES 2005–2016. Nutrients. 2018;10(12).

  130. • McCullough ML, et al. Association of socioeconomic and geographic factors with diet quality in US adults. JAMA Netw Open. 2022;5(6):e2216406. This cross-sectional analysis found that income, educational attainment, and location of residence influenced poor diet quality in a diverse U.S. cohort.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Meyerovitz CV, et al. Social determinants, blood pressure control, and racial inequities in childbearing age women with hypertension, 2001 to 2018. J Am Heart Assoc. 2023;12(5).

  132. Poorolajal J, et al. Oral potassium supplementation for management of essential hypertension: a meta-analysis of randomized controlled trials. PLoS ONE. 2017;12(4):e0174967.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zhang X, et al. Effects of magnesium supplementation on blood pressure: a meta-analysis of randomized double-blind placebo-controlled trials. Hypertension. 2016;68(2):324–33.

    Article  CAS  PubMed  Google Scholar 

  134. Cormick G, et al. Calcium supplementation for prevention of primary hypertension. Cochrane Database Syst Rev. 2022;1(1):Cd010037.

    PubMed  Google Scholar 

  135. Houston MC, Harper KJ. Potassium, magnesium, and calcium: their role in both the cause and treatment of hypertension. J Clin Hypertens (Greenwich). 2008;10(7 Suppl 2):3–11.

    Article  CAS  PubMed  Google Scholar 

  136. Patki PS, et al. Efficacy of potassium and magnesium in essential hypertension: a double-blind, placebo controlled, crossover study. BMJ. 1990;301(6751):521–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Huang L, et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ. 2020:m315.

  138. Stookey JD, et al. Underhydration is associated with obesity, chronic diseases, and death within 3 to 6 years in the U.S. population aged 51–70 years. Nutrients. 2020;12(4):905.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lartey D, et al. Estimating differences in risk of chronic kidney disease based on water intake in a national sample. Ann Nutr Metab. 2021;77(Suppl. 4):30–2.

    Article  CAS  Google Scholar 

  140. Brooks CJ, et al. Racial/ethnic and socioeconomic disparities in hydration status among US adults and the role of tap water and other beverage intake. Am J Public Health. 2017;107(9):1387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Rosinger A, Herrick K. Daily water intake among U.S. men and women, 2009–2012. NCHS Data Brief. 2016;242:1–8.

    Google Scholar 

  142. Robinson AT, et al. Cross-sectional analysis of racial differences in hydration and neighborhood deprivation in young adults. Am J Clin Nutr. 2023.

  143. Roussel R, et al. Plasma copeptin and decline in renal function in a cohort from the community: the prospective D.E.S.I.R. study. Am J Nephrol. 2015;42(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  144. Tasevska I, et al. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart. 2016;102(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  145. Kanbay M, et al. Acute effects of salt on blood pressure are mediated by serum osmolality. J Clin Hypertens (Greenwich). 2018;20(10):1447–54.

    Article  CAS  PubMed  Google Scholar 

  146. Pescatello LS, et al. Physical activity to prevent and treat hypertension: a systematic review. Med Sci Sports Exerc. 2019;51(6):1314–23.

    Article  PubMed  Google Scholar 

  147. Mandsager K, et al. Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing. JAMA Netw Open. 2018;1(6).

  148. Li K, Wen M. Racial and ethnic disparities in leisure-time physical activity in California: patterns and mechanisms. Race Soc Probl. 2013;5(3):147–56.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hawes AM, et al. Disentangling race, poverty, and place in disparities in physical activity. Int J Environ Res Public Health. 2019;16(7).

  150. Pandey A, et al. Determinants of racial/ethnic differences in cardiorespiratory fitness (from the Dallas Heart Study). Am J Cardiol. 2016;118(4):499–503.

    Article  PubMed  Google Scholar 

  151. Guers JJ, et al. Voluntary wheel running attenuates salt-induced vascular stiffness independent of blood pressure. Am J Hypertens. 2019;32(12):1162–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de Souza JA, et al. Swimming training improves cardiovascular autonomic dysfunctions and prevents renal damage in rats fed a high-sodium diet from weaning. Exp Physiol. 2021;106(2):412–26.

    Article  PubMed  Google Scholar 

  153. Rebholz CM, et al. Physical activity reduces salt sensitivity of blood pressure: the genetic epidemiology network of salt sensitivity study. Am J Epidemiol. 2012;176(Suppl 7):S106–13.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ahn S, et al. A scoping review of racial/ethnic disparities in sleep. Sleep Med. 2021;81:169–79.

    Article  PubMed  Google Scholar 

  155. Culver MN, et al. Sleep duration irregularity is associated with elevated blood pressure in young adults. Chronobiol Int. 2022:1–9.

  156. Rogers EM, Banks NF, Jenkins NDM. The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: a narrative review. Diabetes Metab Res Rev. 2023:e3667.

  157. Stock AA, et al. Effects of sleep extension on sleep duration, sleepiness, and blood pressure in college students. Sleep Health. 2020;6(1):32–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We made our figures using canva.com and biorender.com. We have a biorender license and obtained permissions for the figures.

Funding

This work was supported by National Institutes of Health (NIH) grants K01HL147998 and R15HL165325 (to ATR), UL1TR003096 (pilot funding to ATR and TL-1 Fellowship to SJ).

Author information

Authors and Affiliations

Authors

Contributions

SJ and ATR wrote the main manuscript. SJ and ATR prepared the manuscript figures and the table. SJ, SDH, MDC, GJG, and ATR all edited the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Austin T. Robinson.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Hunter, S.D., Cook, M.D. et al. Salty Subjects: Unpacking Racial Differences in Salt-Sensitive Hypertension. Curr Hypertens Rep 26, 43–58 (2024). https://doi.org/10.1007/s11906-023-01275-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-023-01275-z

Keywords

Navigation