Skip to main content

Advertisement

Log in

Biomarkers in HFpEF for Diagnosis, Prognosis, and Biological Phenotyping

  • Biomarkers of Heart Failure (W.H.W. Tang and J. Grodin, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The heterogeneity of heart failure with preserved ejection fraction (HFpEF) is responsible for the limited success of broad management strategies. The role of biomarkers has been evolving helping to provide insight into the diversity of pathophysiology, prognosis, and potential targets for treatments. We will review the role of traditional and novel biomarkers in diagnosing, prognosticating, and evolving the management of patients with HFpEF. As circulating biomarker discovery rapidly evolves, we will explore technology for new biomarker discovery with examples of successful implementation.

Recent Findings

Besides cardiac-specific biomarkers (natriuretic peptides and troponin), other novel nonspecific biomarkers increasingly identify the diversity of pathophysiological mechanisms of HFpEF including inflammation, fibrosis, and renal dysfunction. Newer approaches have provided increasing granularity providing opportunities to integrate large amounts of information from proteomics and genomics as biomarkers of interest in HFpEF.

Summary

HFpEF has been marked with failure of many medications to show benefit, whether measuring single targeted biomarkers or broader targeted discovery proteomics or genomic circulating biomarkers are providing increasing opportunities to better understand and manage HFpEF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as : • Of importance

  1. Bozkurt B, et al. Universal definition and classification of heart failure. J Cardiac Fail. 2021;27(4):P387-413.

    Article  Google Scholar 

  2. Borlaug BA, et al. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9.

    Article  PubMed  Google Scholar 

  3. Zile MR, et al. Heart failure with a normal ejection fraction: is measurement of diastolic function necessary to make the diagnosis of diastolic heart failure? Circulation. 2001;104:779–82.

    Article  CAS  PubMed  Google Scholar 

  4. Shah S, et al. Research priorities for heart failure with preserved ejection fraction. National Heart, lung and blood institute working group summary. Circulation. 2020;141:1001–26.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Solomon SD, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381:1609–20.

    Article  CAS  PubMed  Google Scholar 

  6. Pitt B, et al. TOPCAT Investigators. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92.

    Article  CAS  PubMed  Google Scholar 

  7. Flather MD, et el. Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors with Heart Failure-SENIORS. Eur Heart J. 2005;26(3):215–25.

    Article  CAS  PubMed  Google Scholar 

  8. Anker SD, et al. Empagliflozin in heart failure with a preserved ejection fraction; the EMPEROR-Preserved trial. N Engl J Med. 2021;385:1451–61.

    Article  CAS  PubMed  Google Scholar 

  9. McMurray JJV, et al. Effects of sacubitril-valsartan versus valsartan in women compared to men with heart failure and preserved ejection fraction. Circulation. 2020;141:338–51.

    Article  PubMed  Google Scholar 

  10. Solomon SD, et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J. 2016;37(5):455–62.

    Article  CAS  PubMed  Google Scholar 

  11. Wang TJ, et al. Clinical and echocardiographic correlates of plasma pro-collagen type III amino-terminal peptide levels in the community. Am Heart J. 2007;154(2):291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shah S, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction. A multiorgan roadmap Circulation. 2016;134:73–90.

    PubMed  Google Scholar 

  13. Elster SK, Braunwald E, Wood HF. A study of C-reactive protein in the serum of patients with congestive heart failure. Am Heart J. 1956;51:533–41.

    Article  CAS  PubMed  Google Scholar 

  14. Ibrahim NE, et al. Established and emerging roles of biomarkers in heart failure. Circ Res. 2018;123(5):614–29.

    Article  CAS  PubMed  Google Scholar 

  15. Chow SL, et al. Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation. 2017;135:e1054–91.

    Article  CAS  PubMed  Google Scholar 

  16. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug Administration (US); 2016-. Diagnostic Biomarker. 2016 Dec 22 [Updated 2020 Nov 16].

  17. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115:949–52.

    Article  PubMed  Google Scholar 

  18. Ibrahim NE, Januzzi JL. Beyond natriuretic peptides for diagnosis and management of heart failure. Clin Chem. 2017;63:211–22.

    Article  CAS  PubMed  Google Scholar 

  19. • Heiderneich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e895–1032. The recent ACC/AHA/HFSA guidelines highlighted the role of biomarkers in diagnosis and prognosis of heart failure.

    Google Scholar 

  20. McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.

    Article  CAS  PubMed  Google Scholar 

  21. Maisel A, et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2010;55:2062–76.

    Article  CAS  PubMed  Google Scholar 

  22. Lin DC, et al. Natriuretic peptides in heart failure. Clin Chem. 2014;60:1040–6.

    Article  PubMed  Google Scholar 

  23. Sakane K, et al. Disproportionately low BNP levels in patients of acute heart failure with preserved vs. reduced ejection fraction. Int J Cardiol. 2021;327:105–10.

    Article  PubMed  Google Scholar 

  24. • Tromp J, et al. Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. JAHA. 2017;6:e003989. This analysis evaluated 33 biomarkers from different pathophysiological domains in patients with heart failure, showing that inflammation and angiogenesis-mediated biomarkers are prevalent in HFpEF, compared to stretch-mediated biomarkers in HFrEF.•

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tschope C, et al. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. Eur Heart J. 2005;26:2277–84.

    Article  PubMed  Google Scholar 

  26. Maisel AS, et al. Bedside B-Type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. J Am Coll Cardiol. 2003;41:2010–7.

    Article  PubMed  Google Scholar 

  27. findings from the I-PRESERVE trial. Anand IS. et al. Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2011;4:569–77.

    Article  Google Scholar 

  28. Cleland JGF, et al. The Perindopril in elderly people with Chronic Heart Failure (PEP-CHF) Study. Eur Heart J. 2006;27(19):2338–45.

    Article  CAS  PubMed  Google Scholar 

  29. Defilippi C, Mills N. Rapid cardiac troponin release after transient ischemia: implications for the diagnosis of myocardial infarction. Circulation. 2021;142:1105–8.

    Article  Google Scholar 

  30. Evans JDW, et al. High-sensitivity cardiac troponin and new-onset heart failure: a systematic review and meta-analysis of 67,063 patients with 4,165 incident heart failure events. J Am Coll Cardiol HF. 2018;6(3):187–97.

    Google Scholar 

  31. Greenberg B. Heart failure preserved ejection fraction with coronary artery disease: time for a new classification? J Am Coll Cardiol. 2014;63:2828–30.

    Article  PubMed  Google Scholar 

  32. Arenja N, et al. Sensitive cardiac troponin in the diagnosis and risk stratification of acute heart failure. J Intern Med. 2011;271(6):598–607.

    Article  PubMed  Google Scholar 

  33. Pandey A, et al. Factors associated with and prognostic implications of cardiac troponin elevation in decompensated heart failure with preserved ejection fraction: findings from the American Heart Association Get With The Guidelines-Heart Failure Program. JAMA Cardiol. 2017;2(2):136–45.

    Article  PubMed  Google Scholar 

  34. Myhre PL, et al. Cardiac troponin I and risk of cardiac events in patients with heart failure and preserved ejection fraction. Circulation Heart Failure. 2018;11:e005312.

    Article  PubMed  Google Scholar 

  35. Gori M, et al. Integrating high-sensitivity troponin T and sacubitril/valsartan treatment in HFpEF: the PARAGON-HF Trial. JACC Heart Fail. 2021;9(9):627–35.

    Article  PubMed  Google Scholar 

  36. Martos R, et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115:888–95.

    Article  PubMed  Google Scholar 

  37. Gaggin H, Januzzi J. Biomarkers and diagnostics in heart failure. Biochim Biophys Acta. 2013;1832(12):2442–50.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma UC, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8.

    Article  CAS  PubMed  Google Scholar 

  39. Boer RA, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–8.

    Article  PubMed  Google Scholar 

  40. Edelmann F, et al. Galectin-3 in patients with heart failure with preserved ejection fraction: results from the Aldo-DHF trial. Eur J Heart Fail. 2015;17(2):214–23.

    Article  CAS  PubMed  Google Scholar 

  41. Strivatsan V, et al. Utility of galectin-3 as a prognostic biomarker in heart failure: where do we stand? Eur J Prev Cardiol. 2015;22:1096–110.

    Article  Google Scholar 

  42. Boer De, et al. Association of cardiovascular biomarkers with incident heart failure with preserved and reduced ejection fraction. JAMA Cardiol. 2018;3(3):215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Weinberg EO, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ky B, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4(2):180–7.

    Article  PubMed  Google Scholar 

  45. Wang YC, et al. Soluble ST2 as a biomarker for detecting stable heart failure with a normal ejection fraction in hypertensive patients. J Card Fail. 2013;19(3):163–8.

    Article  CAS  PubMed  Google Scholar 

  46. Aimo A, et al. Meta-analysis of soluble suppression of tumorigenicity-2 and prognosis in acute heart failure. JACC Heart Fail. 2017;5(4):287–96.

    Article  PubMed  Google Scholar 

  47. Duprez DA, et al. Predictive value of collagen biomarkers for heart failure with and without preserved Ejection fraction: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Heart Associ. 2018;7(5):e007885.

    Article  Google Scholar 

  48. Agarwal I, et al. Fibrosis-related biomarkers and incident cardiovascular disease in older adults. The Cardiovascular Health Study. Circu ArrhythElectrophysiol. 2014;7:583–9.

    CAS  Google Scholar 

  49. Sundstrom J, et al. Relations of plasma matrix metalloproteinase-9 to clinical cardiovascular risk factors and echocardiographic left ventricular measures. Framingham Heart Study Circ. 2004;109:2850–6.

    Article  Google Scholar 

  50. Martos R, et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of collagen turnover. Eur J Heart Fail. 2009;11(2):191–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchis L, et al. Prognosis of new-onset heart failure outpatients and collagen biomarkers. Eur J Clin Invest. 2015;45(8):842–9.

    Article  CAS  PubMed  Google Scholar 

  52. Guo XH. Insulin-like growth factor binding protein-related protein 1 contributes to hepatic fibrogenesis. J Dig Dis. 2014;15(4):202–10.

    Article  CAS  PubMed  Google Scholar 

  53. Gandhi PU, et al. Insulin-like growth factor-binding protein-7 as a biomarker of diastolic dysfunction and functional capacity in heart failure with preserved ejection fraction: results from the RELAX Trial. JACC Heart Fail. 2016;4(11):860–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gandhi PU. Prognostic value of insulin-like growth factor-binding protein 7 in patients with heart failure and preserved ejection fraction. J Card Fail. 2017;23(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sabbah M, et al. Obese-inflammatory phenotypes in heart failure with preserved ejection fraction. Circulation; Heart Failure. 2020;13:e006414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;4:263–71.

    Article  Google Scholar 

  57. Koller L, et al. C-reactive protein predicts mortality in patients referred for coronary angiography and symptoms of heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(7):758–66.

    Article  CAS  PubMed  Google Scholar 

  58. Wollert K, et al. Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin Chem. 2017;63(1):140–51.

    Article  CAS  PubMed  Google Scholar 

  59. Izumiya Y, et al. Growth differentiation factor-15 is a useful prognostic marker in patients with heart failure with preserved ejection fraction. Can J Cardiol. 2014;30(3):338–44.

    Article  PubMed  Google Scholar 

  60. Putko BN, et al. Circulating levels of tumor necrosis factor-alpha receptor 2 are increased in HFpEF relative to HFrEF: evidence for a divergence in pathophysiology, on behalf of the Alberta HEART Investigators. PLoS ONE. 2014;9(6):e99495.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chia YC. Interleukin 6 and development of heart failure with preserved ejection fraction in the general population. J Am Heart Assoc. 2021;10(11):e018549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Watson CJ, et al. Biomarker profiling for risk of future heart failure (HFpEF) development. J Transl Med. 2021;19(1):61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patel RB, et al. Renal dysfunction in heart failure with preserved ejection fraction; insights from RELAX trial. J cardiac Fail. 2020;26(3):233–42.

    Article  Google Scholar 

  64. Inker LA. CKD-EPI Investigators Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brisco MA, Testani JM. Novel renal biomarkers to assess cardiorenal syndrome. Curr Heart Fail Rep. 2014;11(4):485–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mullens W. Evaluation of kidney function throughout the heart failure trajectory - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22(4):584–603.

    Article  PubMed  Google Scholar 

  67. Lam M, et al. Proteomics research in cardiovascular medicine and biomarker discovery. J Am Coll Cardiol. 2016;68(25):2819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sanders-van Wijk S, et al. Proteomic evaluation of the comorbidity-inflammation paradigm in heart failure with preserved ejection fraction, results from the PROMIS-HFpEF Study. Circulation. 2020;142:2029–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Adamo L, et al. Proteomic signatures of heart failure in relation to left ventricular ejection fraction. J Am Coll Cardiol. 2020;76(17):1982–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. • Chirinos JA, et al. Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2020;75(11):1281–95. That study, measuring 49 plasma biomarkers from TOPCAT trial participants, showed that various novel biomarkers in different pathological domains are predictive of outcomes in HFpEF and that multi-marker approach coupled with machine-learning represents a promising strategy for enhancing risk stratification in HFpEF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cohen JB, et al. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone. JACC Heart Failure. 2020;8(3):172–84.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nurk S, Koren S, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Levinson CA, et al. Genome wide association studies of heart failure with reduced and preserved ejection fraction point to different genetic architectures. Circulation. 2017;136:A19353.

    Google Scholar 

  74. Aung N, et al. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation. 2019;140(16):1318–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wild PS, et al. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. J Clin Invest. 2017;127(5):1798–812.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rech M, et al. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle. Cardiovasc Res. 2018;114(6):782–93.

    Article  CAS  PubMed  Google Scholar 

  77. Shah S, et al. Genome-wide association and Mendelian randomization analysis provide insights into the pathogenesis of heart failure. Nat Commun. 2020;11(1):163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wong LL, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail. 2015;17(4):393–404.

    Article  CAS  PubMed  Google Scholar 

  79. Watson CJ, et al. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 2015;17(4):405–15.

    Article  CAS  PubMed  Google Scholar 

  80. Ortega FJ, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37(5):1375–83.

    Article  CAS  PubMed  Google Scholar 

  81. Melman YF, et al. Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: a translational pilot study. Circulation. 2015;131(25):2202–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikeda S, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29(8):2193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Montgomery RL, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Qiao L, et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Invest. 2019;129(6):2237–50.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rana I, et al. Contribution of microRNA to pathological fibrosis in cardio-renal syndrome: impact of uremic toxins. Physiol Rep. 2015;3(4):e12371.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Cohen JB, et al. Clinical phenotypes in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone. JACC Heart Fail. 2020;8(3):172–84.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu C-Y, et al. Association of elevated NT-proBNP with myocardial fibrosis in the Multi-Ethnic study of Atherosclerosis (MESA). J Am Coll Cardiol. 2017;70(25):3102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Moemen Eltelbany reports no sources of funding.

Dr. Palak Shah is supported by an NIH K23 Career Development Award 1K23HL143179.

Dr. Christopher deFilippi receives research funding from National Institute of Health R01HL154768, R01HL151293, R21AG072095, and 1UL1TR003015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher deFilippi.

Ethics declarations

Conflict of Interest

Dr. Moemen Eltelbany. None.

Dr. Palak Shah. Unrelated consulting for Merck, Procyrion, and Natera.

Dr. Christopher deFilippi serves as a consultant for Abbott Diagnostics, FujiRebio, Ortho Diagnostics, Quidel, Roche Diagnostics, and Siemens Healthineers, all of which manufacture cardiac biomarker assays.

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biomarkers of Heart Failure.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltelbany, M., Shah, P. & deFilippi, C. Biomarkers in HFpEF for Diagnosis, Prognosis, and Biological Phenotyping. Curr Heart Fail Rep 19, 412–424 (2022). https://doi.org/10.1007/s11897-022-00578-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-022-00578-7

Keywords

Navigation