Skip to main content

Advertisement

Log in

Metacognition and motivation as predictors for mathematics performance of Belgian elementary school children

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

In this paper, we investigate the role of metacognitive postdiction skills, intrinsic motivation and prior proficiency in mathematics as Propensity factors within the opportunity–propensity (O–P) model of learning. We tested Belgian children from Grade 1 till 6 in January and June. The study revealed overlapping yet different predictors for mathematical accuracy and fluency, which led us to the practical recommendation for teachers to pay attention to both aspects of mathematics. The metacognitive postdiction skills of children were related to accuracy in mathematics during the whole elementary school period. In addition, we observed that children evaluated their own performance as worse when they were slower in Grades 3 and 4. Intrinsic motivation was related to accuracy but not to fluency in Grade 3. Especially prior mathematical accuracy mattered as a propensity factor. More than half of the variance in accuracy and less than one-fifth of the variance in fluency in January predicted the performances of children for mathematics in June, a finding that highlights the importance of longitudinal designs including students’ prior mathematical accuracy’ as well. Finally, we observed that poor mathematics performers are less intrinsically motivated, and less metacognitively accurate. Moreover, they overestimate their performances more often than well-performing peers in all grades, stressing the importance of paying attention to these aspects in mathematics education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aesaert, K., & Denis, J. (2018). Evolutie wiskundeprestaties in het lager onderwijs Trendanalyse van peilingsdata tussen 2002 en 2016 [Evolution of mathematics performances in elementary school children. Trend analysis of testing between 2002 and 2016]. Paper on the Studie-en ontmoetingsdag voor Vlaamse onderzoekers, opleiders en begeleiders van het wiskundeonderwijs aan 3- tot 14-jarigen [Research meeting for Flemish researchers, trainers and educators to 3 till 14-years olds]. 5 June 2018 KULeuven campus groep T (Leuven: Belgium). https://ppw.kuleuven.be/o_en_o/CIPenT/studiedag-wiskundeonderwijs-2018/presentaties/k-aesaert.

  • Arefi, M., Naghibzadeh, M., & Boloki, A. (2014). The relationship of parental attachment, peer attachment, and academic self-concept to academic achievement of high school students. International Journal of Academic Research, 6, 73–78.

    Article  Google Scholar 

  • Baten, E., & Desoete, A. (2018). Mathematical (dis)abilities within the opportunity–propensity model: The choice of mathematics test matters. Frontiers in Psychology, Developmental Psychology. https://doi.org/10.3389/fpsyg.2018.00667.

    Article  Google Scholar 

  • Baten, E., Praet, M., & Desoete, A. (2017). The relevance and efficacy of metacognition for instructional design in the domain of mathematics. ZDM Mathematics Education, 49, 613–623. https://doi.org/10.1007/s11858-017-0851-y.

    Article  Google Scholar 

  • Baudonck, M., Debusschere, A., Dewulf, B., Samyn, F., Vercaemst, V., & Desoete, A. (2006). De Kortrijkse Rekentest Revision KRT-R. [The Kortrijk Arithmetic Test Revision KRT-R]. Kortrijk: CAR Overleie.

    Google Scholar 

  • Boekaerts, M., & Rozendaal, J. S. (2010). Using multiple calibration indices in order to capture the complex picture of what affects students’ accuracy of feeling of confidence. Learning and Instruction, 20, 372–382.

    Article  Google Scholar 

  • Bol, L., & Hacker, D. J. (2012). Calibration research: Where do we go from here? Frontiers in Psychology, 3, 1–6.

    Article  Google Scholar 

  • Borkowski, J. G. (1992). Metacognitive theory: A framework for teaching literacy, writing, and mathematics skills. Journal of Learning Disabilities, 25, 253–257.

    Article  Google Scholar 

  • Borkowski, J. G., & Thorpe, P. K. (1994). Self-regulation and motivation: A life-span perspective on underachievement. In D. H. Schunk & B. J. Zimmerman (Eds.), Selfregulation of learning and performance: Issues of educational applications (pp. 45–100). Hillsdale: Erlbaum.

    Google Scholar 

  • Brown, A. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In F. Reiner & R. Kluwe (Eds.), Metacognition, motivation, and understanding (pp. 65–116). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Byrnes, J. P., & Miller, D. C. (2007). The relative importance of predictors of mathematics and science achievement: An opportunity–propensity analysis. Contemporary Educational Psychology, 32, 599–629. https://doi.org/10.1016/j.cedpsych.2006.09.002.

    Article  Google Scholar 

  • Byrnes, J. P., & Wasik, B. A. (2009). Factors predictive of mathematics achievement in kindergarten, first and third grades: An opportunity–propensity analysis. Contemporary Educational Psychology, 34, 167–183. https://doi.org/10.1016/j.cedpsych.2009.01.002.

    Article  Google Scholar 

  • Carr, M., Alexander, J., & Folds-Bennett, T. (1994). Metacognition and mathematics strategy use. Applied Cognitive Psychology, 8, 583–595. https://doi.org/10.1002/acp.2350080605.

    Article  Google Scholar 

  • Carr, M., & Jessup, D. L. (1995). Cognitive and metacognitive predictors of mathematics strategy use. Learning and Instruction, 7, 235–247. https://doi.org/10.1016/1041-6080(95)90012.

    Article  Google Scholar 

  • Chen, P. P. (2002). Exploring the accuracy and predictability of the self-efficacy beliefs of seventh-grade mathematics students. Learning and Individual Differences, 14, 77–90.

    Article  Google Scholar 

  • Claessens, A., Duncan, G., & Engel, M. (2009). Kindergarten skills and fifth-grade achievement: Evidence from the ECLS-K. Economics of Education Review, 28, 415–427. https://doi.org/10.1016/j.econedurev.2008.09.003.

    Article  Google Scholar 

  • Claessens, A., & Engel, M. (2013). How important is where you start? Early mathematics knowledge and later school success. Teachers College Record, 115(6), 060306.

    Google Scholar 

  • Cohen Kadosh, R., & Dowker, A. (2015). The Oxford handbook of numerical cognition. Oxford: Oxford University Press.

    Google Scholar 

  • Deary, I. J., Whalley, L. J., Lemmon, H., Crawford, J. R., & Starr, J. M. (2000). The stability of individual differences in mental ability from childhood to old age: Follow-up of the 1932 Scottish mental survey. Intelligence, 28, 49–55. https://doi.org/10.1016/S0160-2896(99)00031-8.

    Article  Google Scholar 

  • Deci, E. L., Conell, J., & Ryan, R. (1989). Self determination in a work organization. Journal of Applied Psychology, 74(4), 580–590.

    Article  Google Scholar 

  • Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Boston: Springer US. https://doi.org/10.1007/978-1-4899-2271-7.

    Book  Google Scholar 

  • Desender, K., Van Opstal, F., & Van den Bussche, E. (2017). Subjective experience of difficulty depends on multiple cues. Scientific Reports, 7, 44222. https://doi.org/10.1038/srep44222.

    Article  Google Scholar 

  • Desoete, A. (2007). Evaluating and improving the mathematics teaching–learning process through metacognition? Electronic Journal of Research in Educational Psychology, 5, 705–730.

    Google Scholar 

  • Desoete, A. (2008). Multi-method assessment of metacognitive skills in elementary school children: How you test is what you get. Metacognition Learning, 3, 189–206. https://doi.org/10.1007/s11409-008-9026-0.

    Article  Google Scholar 

  • Desoete, A., & Roeyers, H. (2002). Off-line metacognition. A domain-specific retardation in young children with learning disabilities? Learning Disability Quarterly, 25, 123–139. https://doi.org/10.2307/1511279.

    Article  Google Scholar 

  • Desoete, A., & Roeyers, H. (2006). Metacognitive macroevaluations in mathematical problem solving. Learning and Instruction, 16, 12–25. https://doi.org/10.1016/j.learninstruc.2005.12.003.

    Article  Google Scholar 

  • Desoete, A., Roeyers, H., & Buysse, A. (2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disabilities, 34, 435–449. https://doi.org/10.1177/002221940103400505.

    Article  Google Scholar 

  • Dowker, A. (2005). Individual differences in arithmetic. Implications for psychology, neuroscience and education. Hove: Psychology Press.

    Book  Google Scholar 

  • Dowker, A. (2015). Individual differences in arithmetical abilities. The componential nature of arithmetic. In The Oxford Handbook of Mathematical Cognition (pp. 862–878). Oxford: Medicine UK.

    Google Scholar 

  • Duncan, G. J., & Magnuson, K. (2009). The nature and impact of early achievement skills, attention and behavior problems. Paper presented at the Russel Sage Foundation conference on Social Inequality and Educational Outcomes, November 19–20.

  • Efklides, A. (2001). Metacognitive experiences in problem solving: Metacognition, motivation, and self-regulation. In A. Efklides, J. Kuhl & R. M. Sorrentino (Eds.), Trends and prospects in motivation research (pp. 297–323). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1, 3–14. https://doi.org/10.1016/j.edurev.2005.11.00.

    Article  Google Scholar 

  • Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13, 277–287. https://doi.org/10.1027/1016-9040.13.4.277.

    Article  Google Scholar 

  • Efklides, A., & Sideridis, G. D. (2009). Assessing cognitive failures. European Journal of Psychological Assessment, 25, 69–72.

    Article  Google Scholar 

  • Erickson, S., & Heit, E. (2015). Metacognition and confidence: Comparing mathematics to other academic subjects. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2015.00742.

    Article  Google Scholar 

  • Flavell, J. H. (1976). Metacognitive aspects of problem-solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–236). Hillsdale: Erlbaum.

    Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist, 34, 906–911.

    Article  Google Scholar 

  • Flavell, J. H. (1987). Speculations about the nature and development of metacognition. In F. E. Weinert & R. Kluwe (Eds.), Metacognition, motivation and understanding (pp. 20–29). Hillsdale: Erlbaum.

    Google Scholar 

  • Fleming, S. M., Donlan, R. J., & Frith, C. D. (2012). Metacognition: Computation, biology and function. Philosophical Transactions of the Royal Society, 367, 1280–1286. https://doi.org/10.1098/rstb.2012.0021.

    Article  Google Scholar 

  • Fleming, S. M., & Lau, H. C. (2014). How to measure metacognition. Frontier in human neuroscience, 8(443), 1–8. https://doi.org/10.3389/frhum.2014.00443.

    Article  Google Scholar 

  • Furnes, B., & Norman, E. (2015). Metacognition and reading: Comparing three forms of metacognition in normally developing readers and readers with dyslexia. Dyslexia, 21, 273–284. https://doi.org/10.1002/dys.1501.

    Article  Google Scholar 

  • Gagné, M., & Deci, E. L. (2005). Self-determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331–362. https://doi.org/10.1002/job.322.

    Article  Google Scholar 

  • García, T., Rodríguez, C., González-Castro, P., González-Pienda, J. A., & Torrance, M. (2016). Elementary students’ metacognitive processes and post-performance calibration on mathematical problem-solving tasks. Metacognition and Learning, 11, 139–170.

    Article  Google Scholar 

  • Gascoine, L., Higgins, S., & Wall, K. (2017). The assessment of metacognition in children aged 4–16 years: a systematic review. Review of Education, 5, 3–57. https://doi.org/10.1002/rev3.3077.

    Article  Google Scholar 

  • Guay, F., Marsh, H. W., & Boivin, M. (2003). Academic self-concept and academic achievement: Developmental perspectives on their causal ordering. Journal of Educational Psychology, 95, 124–136. https://doi.org/10.1037/0022-0663.95.1.124.

    Article  Google Scholar 

  • Hacker, J. D., Bol, L., Horgan, D. D., & Rakow, E. A. (2000). Test prediction and performance in a classroom context. Journal of Educational Psychology, 92, 160–170.

    Article  Google Scholar 

  • Henik, A., Rubinstein, O., & Ashkenazi, S. (2015). Developmental dyscalculia as a heterogenous disability. In R. Cohen, Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical cognition (pp. 662–667). Oxford: Oxford University Press.

    Google Scholar 

  • Koriat, A. (2007). Metacognition and consciousness. In P. D. Zelazo, M. Moscovitch & E. Thompson (Eds.), The Cambridge handbook of consciousness (pp. 289–325). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Kriegbaum, K., Jansen, M., & Spinath, B. (2015). Motivation: A predictor of PISA’s mathematical competence beyond intelligence and prior test achievement. Learning and Individual Differences, 43, 140–148. https://doi.org/10.1016/j.lindif.2015.08.026.

    Article  Google Scholar 

  • Kruger, J. (2002). Unskilled and unaware—but why? A reply to Krueger and Mueller. Journal of Personality and Social psychology, 82, 189–192.

    Article  Google Scholar 

  • Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77, 1121–1134.

    Article  Google Scholar 

  • Lin, L., Moore, D., & Zabrucky, K. M. (2001). An assessment of student’s calibration of comprehension and calibration of performance using multiple measures. Reading Psychology, 22, 111–128.

    Article  Google Scholar 

  • Lin, L., & Zabrucky, K. (1998). Calibration of comprehension: Research and implications for education and instruction. Contemporary Educational Psychology, 23, 345–391.

    Article  Google Scholar 

  • Lin, L., Zabrucky, K. M., & Moore, D. (2002). Effects of text difficulty and adults’ age on relative calibration of comprehension. American Journal of Psychology, 115, 187–198.

    Article  Google Scholar 

  • Lu, L., Weber, H. S., Spinath, F. M., & Shi, J. (2011). Predicting school achievement from cognitive and non-cognitive variables in a Chinese sample of elementary school children. Intelligence, 39(2–3), 130–140. https://doi.org/10.1016/j.intell.2011.02.002.

    Article  Google Scholar 

  • Lucangeli, D., Cornoldi, C., & Tellarini, M. (1998). Metacognition and learning disabilities in mathematics. In T. E. Scruggs & M. A. Mastropieri (Eds.), Advances in learning and behavioral disabilities (pp. 219–285). Greenwich: JAI Press Inc.

    Google Scholar 

  • Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102–116. https://doi.org/10.1037/0003-066X.51.2.102.

    Article  Google Scholar 

  • Nietfeld, J. L., & Schraw, G. (2002). The role of knowledge and strategy training on metacognitive monitoring. The Journal of Educational Research, 95, 131–142.

    Article  Google Scholar 

  • Orsini, C., Evans, P., & Jerez, O. (2015). How to encourage intrinsic motivation in the clinical teaching environment? A systematic review from the self-determination theory. Journal of Educational Evaluation for Health Professions, 12, 8. https://doi.org/10.3352/jeehp.2015.12.8.

    Article  Google Scholar 

  • Oszoy, G. (2011). An investigation of the relationship between metacognition and mathematics achievement. Asia Pacific Education Review, 12, 227–235. https://doi.org/10.1007/s12564-010-9129-6.

    Article  Google Scholar 

  • Ozcan, Z. C. (2014). Assessment of metacognition in mathematics: Which one of two methods is a better predictor of mathematics achievement? International Online Journal of Educational Studies, 6(1), 49–57. https://doi.org/10.15345/iojes.2014.01.006.

    Article  Google Scholar 

  • Perfect, T., & Schwartz, B. (2002). Applied metacognition. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pieters, S., Roeyers, H., Rosseel, Y., Van Waelvelde, H., & Desoete, A. (2015). Identifying subtypes among children with developmental coordination disorder and mathematical learning disabilities, using model-based clustering. Journal of learning disabilities. 48(1), 83–95. https://doi.org/10.1177/0022219413491288.

    Article  Google Scholar 

  • Pressley, M. (2000). Development of grounded theories of complex cognitive processing: exhaustive within- and between study analyses of thinking-aloud data. In G. Schraw & J. C. Impara (Eds.), Issues in the measurement of metacognition (pp. 262–296). Lincoln: Buros Institute of Mental Measurements.

    Google Scholar 

  • Ryan, R. M., & Deci, E. L. (2017). Self-determination theory. Basic psychological needs in motivation, development and wellness. New York: Guilford Press.

    Google Scholar 

  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM: The International Journal on Mathematics Education, 42, 149–161. https://doi.org/10.1007/s11858-010-0240-2.

    Article  Google Scholar 

  • Schneider, W., & Löffler, E. (2016). The development of metacognitive knowledge in children and adolescents. In J. Dunlosky & S. K. Tauber (Eds.), The Oxford handbook of metamemory (pp. 491–518). New York: Oxford University Press.

    Google Scholar 

  • Schraw, G., Kuch, F., & Gutierrez, A. P. (2013). Measure for measure: Calibrating ten commonly used calibration scores. Learning and Instruction, 24, 48–57.

    Article  Google Scholar 

  • Schraw, G., Kuch, F., Gutierrez, A. P., & Richmond, A. S. (2014). Exploring a three-level model of calibration accuracy. Journal of Educational Psychology, 106, 1192–1202.

    Article  Google Scholar 

  • Seaton, M., Marsh, H. W., Parker, P. D., Craven, R. G., & Yeung, A. S. (2015). The Reciprocal Effects Model revisited. Gifted Child Quarterly, 59, 143–156. https://doi.org/10.1177/0016986215583870.

    Article  Google Scholar 

  • Siemann, J., & Petermann, F. (2018). Evaluation of the Triple Code Model of numerical processing—Reviewing past neuroimaging and clinical findings. Research in Developmental Disabilities, 72, 106–117. https://doi.org/10.1016/j.ridd.2017.11.001.

    Article  Google Scholar 

  • Sperling, R. A., Howard, B. C., Miller, L. A., & Murphy, C. (2002). Measures of children’s knowledge and regulation of cognition. Contemporary Educational Psychology, 27, 51–79.

    Article  Google Scholar 

  • Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived ability, and intrinsic value. Intelligence, 34, 363–374. https://doi.org/10.1016/j.intell.2005.11.004.

    Article  Google Scholar 

  • Stolp, S., & Zabrucky, K. M. (2009) Contributions of metacognitive and self regulated learning theories to investigations of calibration of comprehension. International Electronic Journal of Elementary Education, 2(1), 7–31.

    Google Scholar 

  • Tarricone, P. (2011). The taxonomy of metacognition. Hove: Psychology Press.

    Google Scholar 

  • Taylor, G., Jungert, T., Mageau, G. A., Schattke, K., Dedic, H., Rosenfield, S., & Koestner, R. (2014). A self-determination theory approach to predicting school achievement over time: The unique role of Intrinsic Motivation. Contemporary Educational Psychology, 39, 342–358. https://doi.org/10.1016/j.cedpsych.2014.08.002.

    Article  Google Scholar 

  • Townsend, C. L., & Heit, E. (2011). Jugdments of learning and improvement. Memory & Cognition, 39, 204–216. https://doi.org/10.3758/s13421-010-0019-2.

    Article  Google Scholar 

  • Vanderswalmen, R., Vrijders, J., & Desoete, A. (2010). Metacognition and spelling performance in college students. In A. Efklides & P. Misailidi (Eds.), Trends and prospects in metacognition research (pp. 367–394). New York: Springer.

    Chapter  Google Scholar 

  • Vansteenkiste, M., Sierens, E., Soenens, B., Luyckx, K., & Lens, W. (2009). Motivational profiles from a self-determination perspective: The quality of motivation matters. Journal of Educational Psychology, 101, 671–688. https://doi.org/10.1037/a0015083.

    Article  Google Scholar 

  • Veenman, M. V. J. (2011). Alternative assessment of strategy use with self-report instruments: A discussion. Metacognition and Learning, 6, 205–211. https://doi.org/10.1007/s11409-011-9080-x.

    Article  Google Scholar 

  • Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14.

    Article  Google Scholar 

  • Vermeer, H. J., Boekaerts, M., & Seegers, G. (2000). Motivational and gender differences: Sixth-grade students’ mathematical problem-solving behavior. Journal of Educational Psychology, 92, 308–315. https://doi.org/10.1037/0022-0663.92.2.308.

    Article  Google Scholar 

  • Verschaffel, L. (1999). Realistic mathematical modelling and problem solving in the upper elementary school: Analysis and improvement. In J. H. M. Hamers, J. E. H. Van Luit & B. Csapo (Eds.), Teaching and learning thinking skills. Contexts of learning (pp. 215–240). Lisse: Swets & Zeitlinger.

    Google Scholar 

  • Wang, A. H., Shen, F., & Byrnes, J. P. (2013). Does the opportunity–propensity framework predict the early mathematics skills of low-income pre-kindergarten children? Contemporary Educational Psychology, 38, 259–270. https://doi.org/10.1016/j.cedpsych.2013.04.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemie Desoete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desoete, A., Baten, E., Vercaemst, V. et al. Metacognition and motivation as predictors for mathematics performance of Belgian elementary school children. ZDM Mathematics Education 51, 667–677 (2019). https://doi.org/10.1007/s11858-018-01020-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-018-01020-w

Keywords

Navigation