Skip to main content
Log in

Approximate Spielman-Teng theorems for the least singular value of random combinatorial matrices

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

An approximate Spielman-Teng theorem for the least singular value sn(Mn) of a random n × n square matrix Mn is a statement of the following form: there exist constants C, c > 0 such that for all η > 0, Pr(sn(Mn) ≤ η) ≲ nCη + exp(−nc). The goal of this paper is to develop a simple and novel framework for proving such results for discrete random matrices. As an application, we prove an approximate Spielman-Teng theorem for {0, 1}-valued matrices, each of whose rows is an independent vector with exactly n/2 zero components. This improves on previous work of Nguyen and Vu, and is the first such result in a ‘truly combinatorial’ setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. D. Bai, J. W. Silverstein and Y. Q. Yin, A note on the largest eigenvalue of a large dimensional sample covariance matrix, Journal of Multivariate Analysis 26 (1988), 166–168.

    Article  MathSciNet  Google Scholar 

  2. N. A. Cook, On the singularity of adjacency matrices for random regular digraphs, Probability Theory and Related Fields 167 (2017), 143–200.

    Article  MathSciNet  Google Scholar 

  3. N. A. Cook, The circular law for random regular digraphs, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 55 (2019), 2111–2167.

    Article  MathSciNet  Google Scholar 

  4. K. P. Costello, T. Tao and V. H. Vu, Random symmetric matrices are almost surely nonsingular, Duke Mathematical Journal 135 (2006), 395–413.

    Article  MathSciNet  Google Scholar 

  5. A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM Journal on Matrix Analysis and Applications 9 (1988), 543–560.

    Article  MathSciNet  Google Scholar 

  6. C. G. Esseen, On the Kolmogorov-Rogozin inequality for the concentration function, Probability Theory and Related Fields 5 (1966), 210–216.

    MathSciNet  MATH  Google Scholar 

  7. A. Ferber, V. Jain, K. Luh and W. Samotij, On the counting problem in inverse Littlewood-Offord theory, Journal of the London Mathematical Society, to appear, https://doi.org/10.1112/jlms.12409.

  8. J. Huang, Invertibility of adjacency matrices for random d-regular graphs, Duke Mathematical Journal, to appear, https://arxiv.org/abs/1807.06465.

  9. V. Jain, Quantitative invertibility of random matrices: a combinatorial perspective, https://arxiv.org/abs/1908.11255.

  10. V. Jain, The strong circular law: a combinatorial view, Random Matrices: Theory and Applications, to appear. https://doi.org/10.1142/S2010326321500313.

  11. J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ±1-matrix is singular, Journal of the American Mathematical Society 8 (1995), 223–240.

    MathSciNet  MATH  Google Scholar 

  12. J. Komlós, On determinant of (0, 1) matrices, Studia Scientiarum Mathematicarum Hungarica 2 (1967), 7–21.

    MathSciNet  MATH  Google Scholar 

  13. M. Kwan, B. Sudakov and T. Tran, Anticoncentration for subgraph statistics, Journal of the London Mathematical Society 99 (2019), 757–777.

    Article  MathSciNet  Google Scholar 

  14. B. Landon, P. Sosoe and H.-T. Yau, Fixed energy universality of Dyson Brownian motion, Advances in Mathematics 346 (2019), 1137–1332.

    Article  MathSciNet  Google Scholar 

  15. R. Latala, Some estimates of norms of random matrices, Proceedings of the American Mathematical Society 133 (2005), 1273–1282.

    Article  MathSciNet  Google Scholar 

  16. A. E. Litvak, A. Lytova, K. Tikhomirov, N. Tomczak-Jaegermann and P. Youssef, Adjacency matrices ofrandom digraphs: singularity and anti-concentration, Journal of Mathematical Analysis and Applications 445 (2017), 1447–1491.

    Article  MathSciNet  Google Scholar 

  17. A. E. Litvak, A. Lytova, K. Tikhomirov, N. Tomczak-Jaegermann and P. Youssef, The smallest singular value of a shifted d-regular random square matrix, Probability Theory and Related Fields 173 (2019), 1301–1347.

    Article  MathSciNet  Google Scholar 

  18. A. E. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Advances in Mathematics 195 (2005), 491–523.

    Article  MathSciNet  Google Scholar 

  19. A. Mészáros, The distribution of sandpile groups of random regular graphs, Transactions of the American Mathematical Society 373 (2020), 6529–6594.

    Article  MathSciNet  Google Scholar 

  20. H. H. Nguyen, On the singularity of random combinatorial matrices, SIAM Journal on Discrete Mathematics 27 (2013), 447–458.

    Article  MathSciNet  Google Scholar 

  21. H. H. Nguyen and V. H. Vu, Small ball probability, inverse theorems, and applications, in Erdős Centennial, Bolyai Society Mathematical Studies, Vol. 25, Janos Bolyai Mathematical Society, Budapest, 2013, pp. 409–463.

    Chapter  Google Scholar 

  22. H. H. Nguyen and V. Vu, Circular law for random discrete matrices of given row sum, Journal of Combinatorics 4 (2013), 1–30.

    Article  MathSciNet  Google Scholar 

  23. H. H. Nguyen and M. M. Wood, Cokernels of adjacency matrices of random r-regular graphs, https://arxiv.org/abs/1806.10068.

  24. R. O’Donnell, Analysis of Boolean Functions, Cambridge University Press, New York, 2014.

    Book  Google Scholar 

  25. E. Rebrova and K. Tikhomirov, Coverings of random ellipsoids, and invertibility of matrices with i.i.d. heavy-tailed entries, Israel Journal of Mathematics 227 (2018), 507–544.

    Article  MathSciNet  Google Scholar 

  26. M. Rudelson, Invertibility of random matrices: norm of the inverse, Annals of Mathematics 168 (2008), 575–600.

    Article  MathSciNet  Google Scholar 

  27. M. Rudelson, Lecture notes on non-asymptotic theory of random matrices, https://www.jointmathematicsmeetings.org/meetings/national/jmm2013/amssc-rudelson.pdf.

  28. M. Rudelson and R. Vershynin, The Littlewood-Offord problem and invertibility of random matrices, Advances in Mathematics 218 (2008), 600–633.

    Article  MathSciNet  Google Scholar 

  29. M. Rudelson and R. Vershynin, Non-asymptotic theory of random matrices: extreme singular values, in Proceedings of the International Congress of Mathematicians 2010. Vol. III, Hindustan Book Agency, New Delhi, 2010, pp. 1576–1602.

    MATH  Google Scholar 

  30. D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time, Journal of the ACM 51 (2004), 385–463.

    Article  MathSciNet  Google Scholar 

  31. T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics, Vol. 132, American Mathematical Society, Providence, RI, 2012.

    Book  Google Scholar 

  32. T. Tao and V. Vu, Random matrices: the circular law, Communications in Contemporary Mathematics 10 (2008), 261–307.

    Article  MathSciNet  Google Scholar 

  33. T. Tao and V. H. Vu, Additive Combinatorics, Cambridge Studies in Advanced Mathematics, Vol. 105, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  34. T. Tao and V. H. Vu, On the singularity probability of random Bernoulli matrices, Journal of the American Mathematical Society 20 (2007), 603–628.

    Article  MathSciNet  Google Scholar 

  35. T. Tao and V. H. Vu, Inverse Littlewood-Offord theorems and the condition number of random discrete matrices, Annals of Mathematics 169 (2009), 595–632.

    Article  MathSciNet  Google Scholar 

  36. K. Tikhomirov, Singularity of random Bernoulli matrices, Annals of Mathematics 191 (2020), 593–634.

    Article  MathSciNet  Google Scholar 

  37. R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, in Compressed Sensing, Cambridge University Press, Cambridge, 2012, pp. 210–268.

    Chapter  Google Scholar 

  38. R. Vershynin, Invertibility of symmetric random matrices, Random Structures & Algorithms 44 (2014), 135–182.

    Article  MathSciNet  Google Scholar 

  39. Y.-Q. Yin, Z.-D. Bai and P. R. Krishnaiah, On the limit of the largest eigenvalue of the large dimensional sample covariance matrix, Probability theory and related fields 78 (1988), 509–521.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Kyle Luh for comments on a preliminary version of this paper, and Jake Lee Wellens for helpful conversations. I am also grateful to the anonymous referee for careful reading of the manuscript and numerous valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishesh Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V. Approximate Spielman-Teng theorems for the least singular value of random combinatorial matrices. Isr. J. Math. 242, 461–500 (2021). https://doi.org/10.1007/s11856-021-2144-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2144-y

Navigation