Skip to main content
Log in

Coverings of random ellipsoids, and invertibility of matrices with i.i.d. heavy-tailed entries

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let A = (aij) be an n × n random matrix with i.i.d. entries such that Ea11 = 0 and Ea 211 = 1. We prove that for any δ > 0 there is L > 0 depending only on δ, and a subset N of B n2 of cardinality at most exp(δn) such that with probability very close to one we have

$$A\left( {B_2^n} \right)\subset\mathop \cup \limits_{y \in A\left( \mathcal{N} \right)} \left( {y + L\sqrt n B_2^n} \right)$$

. In fact, a stronger statement holds true. As an application, we show that for some L' > 0 and u [0, 1) depending only on the distribution law of a11, the smallest singular value sn of the matrix A satisfies

$$\mathbb{P}\left\{ {{s_n}\left( A \right) \leq \varepsilon {n^{ - 1/2}}} \right\} \leq L'\varepsilon + {u^n}$$

for all ε > 0. The latter result generalizes a theorem of Rudelson and Vershynin which was proved for random matrices with subgaussian entries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Adamczak, A. E. Litvak, A. Pajor and N. Tomczak-Jaegermann, Quantitative estimates of the convergence of the empirical covariance matrix in Log-concave Ensembles, Journal of the American Mathematical Society 234 (2010), 535–561.

    MathSciNet  MATH  Google Scholar 

  2. R. Adamczak, A. E. Litvak, A. Pajor and N. Tomczak-Jaegermann, Sharp bounds on the rate of convergence of empirical covariance matrix, Comptes Rendus Mathématique. Académie des Sciences. Paris 349 (2011), 195–200.

    Article  MathSciNet  MATH  Google Scholar 

  3. Z. D. Bai and Y. Q. Yin, Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix, Annals of Probability 21 (1993), 1275–1294.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM Journal on Matrix Analysis and Applications 9 (1988), 543–560.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Guedon, A. E. Litvak, A. Pajor and N. Tomczak-Jaegermann, On the interval of fluctuation of the singular values of random matrices, Journal of the European Mathematical Society 19 (2017), 1469–1505.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Götze, A. Naumov and A. Tikhomirov, On minimal singular values of random matrices with correlated entries, Random Matrices: Theory and Applications 4 (2015), 1550006.

    Article  MathSciNet  MATH  Google Scholar 

  7. W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (1963), 13–30.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Koltchinskii and S. Mendelson, Bounding the smallest singular value of a random matrix without concentration, International Mathematics Research Notices 23 (2015), 12991–13008.

    MathSciNet  MATH  Google Scholar 

  9. R. Latala, Some estimates of norms of random matrices, Proceedings of the American Mathematical Society 133 (2005), 1273–1282.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Le, E. Levina and R. Vershynin, Concentration and regularization of random graphs, Random Structures & Algorithms 51 (2017), 538–561.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. E. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Advances in Mathematics 195 (2005), 491–523.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Mendelson and G. Paouris, On the singular values of random matrices, Journal of the European Mathematical Society 16 (2014), 823–834.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-dimensional Normed Spaces, Lecture Notes in Mathematics, Vol. 1200, Springer, Berlin, 1986.

  14. H. H. Nguyen and S. O’Rourke, The elliptic law, International Mathematics Research Notices 17 (2015), 7620–7689.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Rempala and J. Wesolowski, Asymptotics for products of independent sums with an application toWishart determinants, Statistics & Probability Letters 74 (2005), 129–138.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. A. Rogozin, On the increase of dispersion of sums of independent random variables, (Russian) Teorija Verojatnosteĭ i ee Primenenija 6 (1961), 106–108.

    MathSciNet  Google Scholar 

  17. M. Rudelson, Lecture notes on non-aymptotic random matrix theory, Notes from the AMS Short Course on Random Matrices, 2013.

    Google Scholar 

  18. M. Rudelson and R. Vershynin, Non-asymptotic theory of random matrices: extreme singular values, in Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 1576–1602.

    Google Scholar 

  19. M. Rudelson and R. Vershynin, Smallest singular value of a random rectangular matrix, Communications on Pure and Applied Mathematics 62 (2009), 1707–1739.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Rudelson and R. Vershynin, The Littlewood–Offord problem and invertibility of random matrices, Advances in Mathematics 218 (2008), 600–633.

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Srivastava and R. Vershynin, Covariance estimation for distributions with 2 + e moments, Annals of Probability 41 (2013), 3081–3111.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Tao and V. Vu, Inverse Littlewood–Offord theorems and the condition number of random discrete matrices, Annals of Mathematics 169 (2009), 595–632.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Tao and V. Vu, Random matrices: the circular law, Communications in Contemporary Mathematics 10 (2008), 261–307.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Tao and V. Vu, Random matrices: the distribution of the smallest singular values, Geometric and Functional Analysis 20 (2010), 260–297.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Tao and V. Vu, Smooth analysis of the condition number and the least singular value, Mathematics of Computation 79 (2010), 2333–2352.

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Thorisson, Coupling, Stationarity, and Regeneration, Probability and its Applications (New York), Springer, New York, 2000.

    Google Scholar 

  27. K. Tikhomirov, The limit of the smallest singular value of random matrices with i.i.d. entries, Advances in Mathematics 284 (2015), 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. E. Tikhomirov, The smallest singular value of random rectangular matrices with no moment assumptions on entries, Israel Journal of Mathematics 212 (2016), 289–314.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, in Compressed Sensing: Theory and Applications, Cambridge University Press, Cambridge, 2012, pp. 210–268.

    Chapter  Google Scholar 

  30. P. Yaskov, Lower bounds on the smallest eigenvalue of a sample covariance matrix, Electronic Communications in Probability 19 (2014), 10pp.

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Q. Yin, Z. D. Bai and P. R. Krishnaiah, On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix, Probability Theory and Related Fields 78 (1988), 509–521.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Tikhomirov.

Additional information

E. R. was partially supported by U.S. Air Force grant F035062.

K. T. was partially supported by PIMS Graduate Scholarship and by Dean’s Excellence Award, Faculty of Science, UofA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebrova, E., Tikhomirov, K. Coverings of random ellipsoids, and invertibility of matrices with i.i.d. heavy-tailed entries. Isr. J. Math. 227, 507–544 (2018). https://doi.org/10.1007/s11856-018-1732-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1732-y

Navigation