Skip to main content
Log in

Magnetic Field-Assisted Laser Cladding of Cobalt-Based Alloy on 300 M Steel

  • Surface Engineering for Improved Corrosion or Wear Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A cobalt-based alloy coating was prepared on the surface of 300 M steel using magnetic field-assisted laser cladding technology. The effects of different frequencies of an alternating magnetic field on the properties of the coating, such as the microstructure, phase characteristics, mechanical properties, thermal stress, and wear and corrosion resistance were investigated. The results showed that the electromagnetic field optimized the microstructure of the coating, and the microstructural refinement was most significant at a magnetic field of 65 Hz. As the magnetic field frequency increased, the degree of microstructural refinement decreased. Modification of the magnetic field frequency did not produce any change in the phase composition of the laser cladding coating. However, the application of a magnetic field reduces the thermal expansion coefficient and elastic modulus of the coating, thus decreasing its thermal stress. The laser cladding coating formed in a magnetic field exhibited enhanced resistance to wear and corrosion. In particular, the coating formed in a magnetic field with a frequency of 65 Hz exhibited a lower friction coefficient and less surface plastic deformation. Further, the corrosion resistance of the coating improved significantly owing to the magnetic field effect, leading to a substantial improvement in the mechanical performance of the laser cladding coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.A. Siddiqui, and A.K. Dubey, Opt. Laser Technol. 134, 106619 (2021).

    Article  Google Scholar 

  2. L. Zhu, P. Xue, Q. Lan, G. Meng, Y. Ren, Z. Yang, P. Xu, and Z. Liu, Opt. Laser Technol. 138, 106915 (2021).

    Article  Google Scholar 

  3. F. Zhao, T. Guo, Y. Zhang, X. Wei, R. Zhang, X. Nan, K. Dong, and D. Hu, Steel Res. Int. 94(1), 2200398 (2023).

    Article  Google Scholar 

  4. Y. Xie, W. Chen, L. Liang, B. Huang, and J. Zhuang, Weld. World. 66, 1551 (2022).

    Article  Google Scholar 

  5. C. Li, D. Zhang, X. Gao, H. Gao, and X. Han, Weld. World. 66, 423 (2022).

    Article  Google Scholar 

  6. K. Qi, Y. Yang, G. Hu, X. Lu, and J. Li, Surf. Coat. Technol. 397, 125983 (2020).

    Article  Google Scholar 

  7. H. Wang, M. Zhang, R. Sun, S. Cui, and J. Mo, J. Mater. Process. Technol. 319, 118078 (2023).

    Article  Google Scholar 

  8. Q. Zhang, Q. Wang, B. Han, M. Li, C. Hu, and J. Wang, J. Alloys Compd. 947, 169517 (2023).

    Article  Google Scholar 

  9. H.Z. Wang, Y.H. Cheng, J.Y. Yang, Q.Q. Wang, and J. Non-Cryst, Solids. 550, 120351 (2020).

    Google Scholar 

  10. Y.J. Tian, and M. Pang, J. Mater. Sci. 58, 9038 (2023).

    Article  Google Scholar 

  11. Y. Liu, Y. Ding, L. Yang, R. Sun, T. Zhang, and X. Yang, J. Manuf. Process. 66, 341 (2021).

    Article  Google Scholar 

  12. T. Yu, L. Yang, Y. Zhao, J. Sun, and B. Li, Opt. Laser Technol. 108, 321 (2018).

    Article  Google Scholar 

  13. C. Ding, X. Cui, J. Jiao, and P. Zhu, Materials 11, 2401 (2018).

    Article  Google Scholar 

  14. G. Bidron, A. Doghri, T. Malot, F. Fournier-dit-Chabert, M. Thomas, and P. Peyre, J. Mater. Process. Technol. 277, 116461 (2020).

    Article  Google Scholar 

  15. G. Li, Z. Wang, L. Yao, D. Xie, and G. Chen, Surf. Coat. Technol. 445, 128732 (2022).

    Article  Google Scholar 

  16. Q. Wang, L.L. Zhai, L. Zhang, J.W. Zhang, and C.Y. Ban, J. Mater. Res. Technol. 17, 2145 (2022).

    Article  Google Scholar 

  17. L.L. Zhai, C.Y. Ban, and J.W. Zhang, Opt. Laser Technol. 114, 81 (2019).

    Article  Google Scholar 

  18. K. Huo, J. Zhou, F. Dai, and J. Xu, Appl. Surf. Sci. 545, 149078 (2021).

    Article  Google Scholar 

  19. T.A. El-Bassyouni, J. Jpn. Inst. Light Met. 33(12), 733 (1983).

    Article  Google Scholar 

  20. L.L. Zhai, C.Y. Ban, and J.W. Zhang, Surf. Coat. Technol. 358, 531 (2019).

    Article  Google Scholar 

  21. L. Zhai, Q. Wang, J. Zhang, and C. Ban, Ceram. Int. 45(14), 16873 (2019).

    Article  Google Scholar 

  22. D.D.L. Chung, and M. Ozturk, J. Build. Eng. 52, 104393 (2022).

    Article  Google Scholar 

  23. H.H. Liu, L.B. Wang, W.J. Liu, L.Y. Li, and J.F. Yue, Int. J. Adv. Manuf. Technol. 97, 3459 (2018).

    Article  Google Scholar 

  24. T. Zhang, J. Zhou, J. Lv, X. Meng, P. Li, and S. Huang, J. Mater. Process. Technol. 307, 117658 (2022).

    Article  Google Scholar 

  25. Y. Zhang, Z. Zeng, L. Yao, L. Qiao, L. Yin, and Y. Lu, Int. J. Appl. Electrom 53, 283 (2017).

    Google Scholar 

  26. P. Waldow, and I. Wolff, IEEE Trans. Microwave Theory Tech 33, 1076 (1985).

    Article  Google Scholar 

  27. K. Qi, Y. Yang, W. Liang, K. Jin, and L. Xiong, Surf. Coat. Technol. 423, 127575 (2022).

    Article  Google Scholar 

  28. A. Leyland, and A. Matthews, Wear 246, 1 (2000).

    Article  Google Scholar 

  29. R.A. Miller, and C.E. Lowell, Thin Solid Films 95, 265 (1982).

    Article  Google Scholar 

  30. F. Liu, X. Lin, M. Song, K. Song, F. Wang, Q. Li, Y. Han, and W. Huang, Steel Res. Int. 88, 1 (2017).

    Google Scholar 

  31. Q. Guo, S. Chen, M. Wei, J. Liang, C. Liu, and M. Wang, J. Mater. Eng. Perform. 29, 6439 (2020).

    Article  Google Scholar 

  32. M. Masanta, S.M. Shariff, and A.R. Choudhury, Mat. Sci. Eng A-Struct. 528, 5327 (2011).

    Article  Google Scholar 

  33. H. Wu, S. Zhang, C.L. Wu, C.H. Zhang, X.Y. Sun, and X.L. Bai, Surf. Coat. Technol. 460, 129425 (2019).

    Article  Google Scholar 

  34. J. Yang, F. Wu, B. Bai, G. Wang, L. Yang, S. Zhou, and J. Lei, Surf. Coat. Technol. 381, 125215 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Shandong Provincial Natural Science Foundation, China (ZR2023QE084) and the doctoral fund of Shandong Jianzhu University, Shandong province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Qi.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interests that represent a conflict of interest in connection with the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, K., Jiang, L. Magnetic Field-Assisted Laser Cladding of Cobalt-Based Alloy on 300 M Steel. JOM 76, 238–249 (2024). https://doi.org/10.1007/s11837-023-06161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06161-2

Navigation