Skip to main content
Log in

Effect of Y2O3 on the Microstructures and Properties of Magnetic Field-Assisted Laser-Clad Co-Based Alloys

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To improve the performance of laser cladding coatings, magnetic field-assisted laser cladding technology was combined with rare earth oxide Y2O3 to form composite laser cladding coatings on 300 M steel. The results of the experiment reveal that the magnetic field and Y2O3 had a magnetostrictive effect on the cladding coatings, and it had a significant impact on the lattice parameters. In the magnetic field, Y2O3 is beneficial to improve the uniformity of the element distribution and refine the grains, thereby improving the mechanical properties of the coatings. The effects of Y2O3 and the magnetic field on the wear and corrosion resistance of the cladding coatings were investigated through dry friction and electrochemical corrosion tests. The results revealed that the cladding coatings with a magnetic field and 3 wt.% Y2O3 had the best wear and corrosion resistance. The combined effect of the magnetic field and Y2O3 has a positive effect on the prevention of cracks and enhances the performance of the laser cladding coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Zhang, X. Gu, H. Gong, X. Gu, and X. Zhao, Effect of Nb Content on Microstructure and Properties of FeCoNi2CrMnV0.5Nbx High-entropy Alloy Coatings by Laser Cladding, J. Mater. Res. Technol., 2022, 21, p 3357–3370.

    Article  CAS  Google Scholar 

  2. L. Zhu, P. Xue, Q. Lan, G. Meng, Y. Ren, Z. Yang, P. Xu, and Z. Liu, Recent Research and Development Status of Laser Cladding: A Review, Opt. Laser Technol., 2021, 138, p 106915.

    Article  CAS  Google Scholar 

  3. T. Liao, Z. Wang, X. Wu, Q. Liu, Y. Guo, K. Ding, and X. Shang, Effect of V on Microstructure, Wear and Corrosion Properties in AlCoCrMoVx High Entropy Alloy Coatings by Laser Cladding, J. Mater. Res. Technol., 2023, 23, p 4420–4431.

    Article  CAS  Google Scholar 

  4. X. Han, C. Li, X. Chen, and S. Jia, Numerical Simulation and Experimental Study on the Composite Process of Submerged Arc Cladding and Laser Cladding, Surf. Coat. Technol., 2022, 439, p 128432.

    Article  CAS  Google Scholar 

  5. Z. Li, L. Chai, Y. Tang, C. Zhang, L. Qi, K. Zhang, C. Peng, and C. Huang, 316L Stainless Steel Repaired Coatings by Weld Surfacing and Laser Cladding on a 27SiMn Steel: A Comparative Study of Microstructures, Corrosion, Hardness and Wear Performances, J. Mater. Res. Technol., 2023, 23, p 2043–2053.

    Article  CAS  Google Scholar 

  6. Y. Feng, X. Pang, K. Feng, Y. Feng, and Z. Li, Residual Stress Distribution and Wear Behavior in Multi-pass Laser Cladded Fe-based Coating Reinforced by M3(C, B), J. Mater. Res. Technol., 2021, 15, p 5597–5607.

    Article  CAS  Google Scholar 

  7. Y. Lu, G. Huang, Y. Wang, H. Li, Z. Qin, and X. Lu, Crack-free Fe-based Amorphous Coating Synthesized by Laser Cladding, Mater. Lett., 2018, 210, p 46–50.

    Article  CAS  Google Scholar 

  8. J. Liang, Y. Liu, J. Li, Y. Zhou, and X. Sun, Epitaxial Growth and Oxidation Behavior of an Overlay Coating on a Ni-base Single-Crystal Superalloy by Laser Cladding, J. Mater. Sci. Technol., 2019, 35(2), p 344–350.

    Article  CAS  Google Scholar 

  9. Y.A. Liu, Y. Ding, L.J. Yang, R.L. Sun, T.G. Zhang, and X.J. Yang, Research and Progress of Laser Cladding on Engineering Alloys: A Review, J. Manuf. Process., 2021, 66, p 341–363.

    Article  Google Scholar 

  10. Y. Hu, F. Ning, W. Cong, Y. Li, X. Wang, and H. Wang, Ultrasonic Vibration-assisted Laser Engineering Net Shaping of ZrO2-Al2O3 Bulk Parts: Effects on Crack Suppression, Microstructure, and Mechanical Properties, Ceram. Int., 2018, 44(3), p 2752–2760.

    Article  CAS  Google Scholar 

  11. P. Zhang, J. Chu, G. Qu, and D. Wang, Numerical Simulation of Convex Shape Beam Spot on Stress Field of Plasma-sprayed MCrAlY Coating During Laser Cladding Process, Int. J. Adv. Manuf. Technol., 2022, 118(1), p 207–217.

    Article  Google Scholar 

  12. L. Yanan, S. Ronglu, N. Wei, Z. Tiangang, and L. Yiwen, Effects of CeO2 on Microstructure and Properties of TiC/Ti2Ni Reinforced Ti-based Laser Cladding Composite Coatings, Opt. Lasers Eng., 2019, 120, p 84–94.

    Article  Google Scholar 

  13. L.L. Zhai, C.Y. Ban, and J.W. Zhang, Microstructure, Microhardness and Corrosion Resistance of NiCrBSi Coatings under Electromagnetic Field Auxiliary Laser Cladding, Surf. Coat. Technol., 2019, 358, p 531–538.

    Article  CAS  Google Scholar 

  14. K. Qi, Y. Yang, R. Sun, G.F. Hu, X. Lu, J.D. Li, W.X. Liang, K. Jin, and L. Xiong, Effect of Magnetic Field on Crack Control of Co-based Alloy Laser Cladding, Opt. Laser Technol., 2021, 141, p 107129.

    Article  CAS  Google Scholar 

  15. K. Qi, Y. Yang, W. Liang, K. Jin, and L. Xiong, Influence of the Anomalous Elastic Modulus on the Crack Sensitivity and Wear Properties of Laser Cladding under the Effects of a Magnetic Field and Cr Addition, Surf. Coat. Technol., 2021, 423, p 127575.

    Article  CAS  Google Scholar 

  16. A.K. Das, Effect of Rare Earth Oxide Additive in Coating Deposited by Laser Cladding: A Review, Mater. Today Procee., 2022, 52, p 1558–1564.

    Article  CAS  Google Scholar 

  17. C. Wang, Y. Gao, R. Wang, D. Wei, M. Cai, and Y. Fu, Microstructure of Laser-clad Ni60 Cladding Layers Added with Different Amounts of Rare-earth Oxides on 6063 Al Alloys, J. Alloy. Compd., 2018, 740, p 1099–1107.

    Article  CAS  Google Scholar 

  18. H. Wang, T. Chen, W. Cong, and D. Liu, Laser Cladding of Ti-Based Ceramic Coatings on Ti6Al4V Alloy: Effects of CeO2 Nanoparticles Additive on Wear Performance, Coat., 2019, 9, p 109.

    Article  Google Scholar 

  19. L. Wang, S. Chen, X. Sun, J. Chen, J. Liang, and M. Wang, Effects of Y2O3 on the Microstructure Evolution and Electromagnetic Interference Shielding Mechanism of Soft Magnetic FeCoSiMoNiBCu Alloys by Laser Cladding, Addit. Manuf., 2022, 55, p 102811.

    CAS  Google Scholar 

  20. K. Qi and Y. Yang, Microstructure, Wear, and Corrosion Resistance of Nb-modified Magnetic Field-assisted Co-based Laser Cladding Coatings, Surf. Coat. Technol., 2022, 434, p 128195.

    Article  CAS  Google Scholar 

  21. Y. Song, N. Shi, S. Deng, X. Xing, and J. Chen, Negative Thermal Expansion in Magnetic Materials, Prog. Mater. Sci., 2021, 121, p 100835.

    Article  CAS  Google Scholar 

  22. Y.J. Li, S.Y. Dong, S.X. Yan, E.Z. Li, X.T. Liu, P. He, and B.S. Xu, Deep Pit Repairing of Nodular Cast Iron by Laser Cladding NiCu/Fe-36Ni Low-expansion Composite Alloy, Mater. Charact., 2019, 151, p 273–279.

    Article  CAS  Google Scholar 

  23. Z. Zhang, Q. Yang, Z. Yu, H. Wang, and T. Zhang, Influence of Y2O3 Addition on the Microstructure of TiC Reinforced Ti-based Composite Coating Prepared by Laser Cladding, Mater. Charact., 2022, 189, p 111962.

    Article  CAS  Google Scholar 

  24. H. Zhu, M. Hao, J. Zhang, W. Ji, X. Lin, J. Zhang, and Y. Ning, Development and Thermal Management of 10 kW CW, Direct Diode Laser Source, Opt. Laser Technol., 2016, 76, p 101–105.

    Article  Google Scholar 

  25. N.J. Harrison, I. Todd, and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68.

    Article  CAS  Google Scholar 

  26. S. Geng, P. Jiang, X. Shao, L. Guo, and X. Gao, Heat Transfer and Fluid Flow and their Effects on the Solidification Microstructure in Full-penetration Laser Welding of Aluminum Sheet, J. Mater. Sci. Technol., 2020, 46, p 50–63.

    Article  CAS  Google Scholar 

  27. T. Zhang, J. Zhou, J. Lv, X. Meng, P. Li, and S. Huang, A Novel Hybrid Ultrasonic and Electromagnetic Field Assisted Laser Cladding: Experimental Study and Synergistic Effects, J. Mater. Process. Technol., 2022, 307, p 117658.

    Article  CAS  Google Scholar 

  28. L. Yang, Z. Li, Y. Zhang, S. Wei, Y. Wang, and Y. Kang, In-situ TiC-Al3Ti Reinforced Al-Mg Composites with Y2O3 Addition Formed by Laser Cladding on AZ91D, Surf. Coat. Technol., 2020, 383, p 125249.

    Article  CAS  Google Scholar 

  29. H. Liu, S. Sun, T. Zhang, G. Zhang, H. Yang, and J. Hao, Effect of si Addition on Microstructure and Wear Behavior of AlCoCrFeNi High-entropy Alloy Coatings Prepared by Laser Cladding, Surf. Coat. Technol., 2021, 405, p 126522.

    Article  CAS  Google Scholar 

  30. W. Cui, F. Niu, Y. Tan, and G. Qin, Microstructure and Tribocorrosion Performance of Nanocrystalline TiN Graded Coating on Biomedical Titanium Alloy, Trans. Nonferrous Metals Soc. China, 2019, 29(5), p 1026–1035.

    Article  CAS  Google Scholar 

  31. M. Du, L. Wang, Z. Gao, X. Yang, T. Liu, and X. Zhan, Microstructure and Element Distribution Characteristics of Y2O3 Modulated WC Reinforced Coating on Invar Alloys by Laser Cladding, Opt. Laser Technol., 2022, 153, p 108205.

    Article  CAS  Google Scholar 

  32. D. Toboła, T. Liskiewicz, L. Yang, T. Khan, and L. Boroń, Effect of Mechanical and Thermochemical Tool Steel Substrate Pre-treatment on Diamond-like Carbon (DLC) Coating Durability, Surf. Coat. Technol., 2021, 422, p 127483.

    Article  Google Scholar 

  33. Z. Gao, H. Geng, Z. Qiao et al., In situ TiBX/TiXNiY/TiC Reinforced Ni60 Composites by Laser Cladding and its Effect on the Tribological Properties, Ceram. Int., 2023, 49(4), p 6409–6418.

    Article  CAS  Google Scholar 

  34. C. Cui, M. Wu, X. Miao, Z. Zhao, and Y. Gong, Microstructure and Corrosion Behavior of CeO2/FeCoNiCrMo High-entropy Alloy Coating Prepared by Laser Cladding, J. Alloys Compd., 2022, 890, p 161826.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Shandong Provincial Natural Science Foundation, China (ZR2023QE084), and the doctoral fund of Shandong Jianzhu University, Shandong province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Qi.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interests that represent a conflict of interest in connection with the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, K., Jiang, L. Effect of Y2O3 on the Microstructures and Properties of Magnetic Field-Assisted Laser-Clad Co-Based Alloys. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08670-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08670-2

Keywords

Navigation