Skip to main content
Log in

Combine Natural Stibnite with Bio-Carbon: A High-Capacity Composite Anode Material for Lithium-Ion Battery

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The organic components of biomass are the main material basis for the formation of carbon skeleton. Different components will evolve into different pore structures through different structures’ evolution during the preparation process. It has high specific capacity due to its high specific surface area, and grading porosity can provide sufficient active sites for lithium-ion. Therefore, in this paper, the Sb2S3 ore@LPC composite anode material was prepared by ball milling-melting method using cheap natural stibnite (Sb2S3 ore) and the activated lotus pollen porous carbon (LPC). The electronic conductivity of natural stibnite was modified by using pollen-derived carbon materials. Meanwhile, the high specific surface area of LPC can shorten the diffusion paths of lithium ions and electrons, while providing a larger active area for Sb2S3, which improves the stability of the composite anode material in the cycle process. The Sb2S3 ore@LPC composite anode material still maintains a reversible specific capacity of 590 mAh g−1 after 100 cycles at a current density of 200 mA g−1. The feasibility of using LPC as carbon source and natural stibnite to prepare composite anode electrode material is proved. The method conforms to the concept of green chemistry, which has the characteristics of simplicity and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Chen, Y. Hu, W. Lv, T. Lei, X. Wang, Z. Li, M. Zhang, J. Huang, X. Du, Y. Yan, W. He, C. Liu, M. Liao, W. Zhang, J. Xiong, and C. Yan, Nat. Commun. 10, 4973 https://doi.org/10.1038/s41467-019-12952-6 (2019).

    Article  Google Scholar 

  2. C. Chen, Q. Liang, G. Wang, D. Liu, and X. Xiong, Adv. Funct. Mater. https://doi.org/10.1002/adfm.202107249 (2021).

    Article  Google Scholar 

  3. R.E. Ciez and J.F. Whitacre, Nat. Sustain. 2, 148 https://doi.org/10.1038/s41893-019-0222-5 (2019).

    Article  Google Scholar 

  4. W. Luo, X. Ao, Z. Li, L. Lv, J. Li, G. Hong, Q.-H. Wu, and C. Wang, Electrochim. Acta 290, 185 https://doi.org/10.1016/j.electacta.2018.09.070 (2018).

    Article  Google Scholar 

  5. J.M. Son, S. Oh, S.H. Bae, S. Nam, and I.K. Oh, Adv. Energy Mater. https://doi.org/10.1002/aenm.201900477 (2019).

    Article  Google Scholar 

  6. J. Peng, K. Zhong, W. Huang, X. Hou, H. Gao, Z. Fang, and L. Li, Vacuum 191, 110331 https://doi.org/10.1016/j.vacuum.2021.110331 (2021).

    Article  Google Scholar 

  7. M.F. Iqbal, M.N. Ashiq, and M. Zhang, Energy Technol. https://doi.org/10.1002/ente.202000987 (2021).

    Article  Google Scholar 

  8. Z. Li, R. Sun, Z. Qin, X. Liu, C. Wang, H. Fan, Y. Zhang, and S. Lu, Mater. Chem. Front. 5, 4401 https://doi.org/10.1039/d1qm00085c (2021).

    Article  Google Scholar 

  9. X. Yuan, B. Zhu, J. Feng, C. Wang, X. Cai, and R. Qin, Chem. Eng. J. https://doi.org/10.1016/j.cej.2020.126897 (2021).

    Article  Google Scholar 

  10. Z.-W. Zhang, H.-J. Peng, M. Zhao, and J.-Q. Huang, Adv. Funct. Mater. https://doi.org/10.1002/adfm.201707536 (2018).

    Article  Google Scholar 

  11. X. Cao, Z. Li, H. Chen, C. Zhang, Y. Zhang, C. Gu, X. Xu, and Q. Li, Int. J. Hydrogen Energy 46, 18887 https://doi.org/10.1016/j.ijhydene.2021.08.163 (2021).

    Article  Google Scholar 

  12. J. Jjagwe, P.W. Olupot, E. Menya, and H.M. Kalibbala, J. Bioresour. Bioprod. 6, 292 https://doi.org/10.1016/j.jobab.2021.03.003 (2021).

    Article  Google Scholar 

  13. C. Senthil and C.W. Lee, Renew. Sustain. Energy Rev. 137, 110464 https://doi.org/10.1016/j.rser.2020.110464 (2021).

    Article  Google Scholar 

  14. J. Peng, J. Yu, D. Chu, X. Hou, X. Jia, B. Meng, K. Yang, J. Zhao, N. Yang, and J. Wu, Carbon. https://doi.org/10.1016/j.carbon.2022.07.012 (2022).

    Article  Google Scholar 

  15. T. Hou, B. Liu, X. Sun, A. Fan, Z. Xu, S. Cai, C. Zheng, G. Yu, and A. Tricoli, ACS Nano 15, 6735 https://doi.org/10.1021/acsnano.0c10121 (2021).

    Article  Google Scholar 

  16. C. Chen, Q. Liang, Z. Chen, W. Zhu, Z. Wang, Y. Li, X. Wu, and X. Xiong, Angew. Chem. Int. Ed. Engl. 60, 26718 https://doi.org/10.1002/anie.202110441 (2021).

    Article  Google Scholar 

  17. M.S. Whittingham, Prog. Solid State Chem. 12, 41 https://doi.org/10.1016/0079-6786(78)90003-1 (1978).

    Article  Google Scholar 

  18. R. Mogensen, S. Colbin, and R. Younesi, Batter. Supercaps 4, 791 https://doi.org/10.1002/batt.202000252 (2021).

    Article  Google Scholar 

  19. Y. Zhang, C. Lv, X. Wang, S. Chen, D. Li, Z. Peng, and D. Yang, ACS Appl. Mater. Interfaces 10, 40531 https://doi.org/10.1021/acsami.8b13805 (2018).

    Article  Google Scholar 

  20. Q. Zhou, L. Liu, Z. Huang, L. Yi, X. Wang, and G. Cao, J. Mater. Chem. A 4, 5505 https://doi.org/10.1039/C6TA01497F (2016).

    Article  Google Scholar 

  21. W. Zhao, M. Li, Y. Qi, Y. Tao, Z. Shi, Y. Liu, and J. Cheng, J. Colloid Interface Sci. 586, 404 https://doi.org/10.1016/j.jcis.2020.10.104 (2021).

    Article  Google Scholar 

  22. X. Yan, W. Guo, W. Li, G. Li, Z. Yue, J. Liu, H. Peng, Z. Yin, Z. Zhang, C. Mao, and G. Li, Chem. Eng. J. https://doi.org/10.1016/j.cej.2020.127688 (2021).

    Article  Google Scholar 

  23. S. Liang, Y.J. Cheng, J. Zhu, Y. Xia, and P. Müller-Buschbaum, Small Methods. https://doi.org/10.1002/smtd.202000218 (2020).

    Article  Google Scholar 

  24. M.K. Yazdi, V. Vatanpour, A. Taghizadeh, M. Taghizadeh, M.R. Ganjali, M.T. Munir, S. Habibzadeh, M.R. Saeb, and M. Ghaedi, Mater. Sci. Eng. C Mater. Biol. Appl. 114, 111023 https://doi.org/10.1016/j.msec.2020.111023 (2020).

    Article  Google Scholar 

  25. A. Maiti, S. Chatterjee, and A.J. Pal, ACS Appl. Energy Mater. 3, 810 https://doi.org/10.1021/acsaem.9b01951 (2019).

    Article  Google Scholar 

  26. H. Liu, Y. He, K. Cao, S. Wang, Y. Jiang, X. Liu, K.J. Huang, Q.S. Jing, and L. Jiao, Small 17, 2008133 https://doi.org/10.1002/smll.202008133 (2021).

    Article  Google Scholar 

  27. S. Wang, Y. Cheng, H. Xue, W. Liu, and L. Wang, J. Mater. Chem. A. https://doi.org/10.1039/D0TA11954G (2021).

    Article  Google Scholar 

  28. L. Huiyang, Z. Siying, L. Sha, Z. Qiaobao, Z. Jinbao, and Z. Li, Chem. J. Chin. Univ. Chin. 42, 2342 https://doi.org/10.3969/j.issn.1006-3110.2022.10.009 (2021).

    Article  Google Scholar 

  29. X. Ding, J. Shao, L. Lv, Y. Zhu, Y. Jiang, Q. Shi, Q. Qu, and H. Zheng, ChemNanoMat 8, e202100515 https://doi.org/10.1002/cnma.202100515 (2022).

    Article  Google Scholar 

  30. M. Pal, N.R. Mathews, and X. Mathew, J. Mater. Res. 32, 530 https://doi.org/10.1557/jmr.2016.470 (2017).

    Article  Google Scholar 

  31. S. Wang, S. Yuan, Y.-B. Yin, Y.-H. Zhu, X.-B. Zhang, and J.-M. Yan, Part. Part. Syst. Charact. 33, 493 https://doi.org/10.1002/ppsc.201500227 (2016).

    Article  Google Scholar 

  32. J. Yu, Y. Wei, B. Meng, L. Wang, L. Zhou, N. Yang, and L. Li, Vacuum 193, 110535 https://doi.org/10.1016/j.vacuum.2021.110535 (2021).

    Article  Google Scholar 

  33. R. Jia, L. Li, G. Shen, and D. Chen, Sci. China Mater. 65, 1443 https://doi.org/10.1007/s40843-021-1931-0 (2022).

    Article  Google Scholar 

  34. Y. Chen, X. Guo, A. Liu, H. Zhu, and T. Ma, Sustain. Energy Fuels 5, 3017 https://doi.org/10.1039/D1SE00265A (2021).

    Article  Google Scholar 

  35. X. Yuan, B. Zhu, J. Feng, C. Wang, X. Cai, and R. Qin, Chem. Eng. J. 405, 126897 https://doi.org/10.1016/j.cej.2020.126897 (2021).

    Article  Google Scholar 

  36. J.B. Cook, H.S. Kim, T.C. Lin, C.H. Lai, B. Dunn, and S.H. Tolbert, Adv. Energy Mater. 7, 1601283 https://doi.org/10.1002/aenm.201601283 (2017).

    Article  Google Scholar 

  37. X. Zhou, L. Bai, J. Yan, S. He, and Z. Lei, Electrochim. Acta 108, 17 https://doi.org/10.1016/j.electacta.2013.06.049 (2013).

    Article  Google Scholar 

  38. D. Sui, Y. Xie, W. Zhao, H. Zhang, Y. Zhou, X. Qin, Y. Ma, Y. Yang, and Y. Chen, J. Power Sources 384, 328 https://doi.org/10.1002/aenm.201601283 (2018).

    Article  Google Scholar 

  39. Y. Liang, W. Kang, C. Zhong, N. Deng, and B. Cheng, Chem. Eng. J. https://doi.org/10.1016/j.cej.2020.126449 (2021).

    Article  Google Scholar 

  40. N. Wang, Y. Hong, T.X. Liu, Q. Wang, and J. Huang, Ceram. Int. 47, 899 https://doi.org/10.1016/j.ceramint.2020.08.202 (2021).

    Article  Google Scholar 

  41. J. Xia, X. Zhang, Y. Yang, X. Wang, and J. Yao, Chem. Eng. J. https://doi.org/10.1016/j.cej.2020.127400 (2021).

    Article  Google Scholar 

  42. T. Li, C. He, and W. Zhang, J. Energy Chem. 52, 121 https://doi.org/10.1016/j.jechem.2020.04.042 (2021).

    Article  Google Scholar 

  43. H. Zhai, H. Jiang, Y. Qian, X. Cai, H. Liu, Y. Qiu, M. Jin, F. Xiu, X. Liu, and L. Lai, Mater. Chem. Phys. https://doi.org/10.1016/j.matchemphys.2019.122139 (2020).

    Article  Google Scholar 

  44. V. Mullaivananathan and N. Kalaiselvi, Carbon 144, 772 https://doi.org/10.1016/j.carbon.2019.01.001 (2019).

    Article  Google Scholar 

  45. M. Deng, S. Li, W. Hong, Y. Jiang, W. Xu, H. Shuai, H. Li, W. Wang, H. Hou, and X. Ji, RSC Adv. 9, 15210 https://doi.org/10.1039/c9ra02301a (2019).

    Article  Google Scholar 

  46. F. Xie, L. Zhang, Q. Gu, D. Chao, M. Jaroniec, and S.-Z. Qiao, Nano Energy 60, 591 https://doi.org/10.1016/j.nanoen.2019.04.008 (2019).

    Article  Google Scholar 

  47. Q. Wang, Y.-Y. Du, Y.-Q. Lai, F.-Y. Liu, L.-X. Jiang, and M. Jia, Int. J. Min. Metall. Mater. 28, 1629 https://doi.org/10.1007/s12613-021-2249-7 (2021).

    Article  Google Scholar 

  48. Q. Peng, J. Fu, G. Chen, D. Feng, and T. Zeng, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.162855 (2022).

    Article  Google Scholar 

  49. Z. Yang, M. Jiang, X. Wang, Y. Wang, and M. Cao, ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.1c15483 (2021).

    Article  Google Scholar 

  50. Z. Xiao, C. Lei, C. Yu, X. Chen, Z. Zhu, H. Jiang, and F. Wei, Energy Storage Mater. 24, 565 https://doi.org/10.1016/j.ensm.2019.06.031 (2020).

    Article  Google Scholar 

  51. B. Liu, Y. Jia, J. Li, H. Jiang, S. Yin, and J. Xu, J. Power Sources 450, 227667 https://doi.org/10.1016/j.jpowsour.2019.227667 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51974222, 52034011) and Natural Science Basic Research Plan in Shaanxi Province (2019JQ-764); Project (18JK0474) was supported by Shaanxi Provincial Education Department, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Yu, Xiuyun Chuan or Linbo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 242 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, B., Yu, J., Peng, J. et al. Combine Natural Stibnite with Bio-Carbon: A High-Capacity Composite Anode Material for Lithium-Ion Battery. JOM 75, 2626–2635 (2023). https://doi.org/10.1007/s11837-023-05817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05817-3

Navigation