Skip to main content
Log in

Effect of Variable Specific Energy Laser Remelting on the Morphology, Microstructure, and Mechanical Properties of Ta/Ni-Based Composite Coatings

  • Advanced Materials for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, laser remelting was used to prepare Ta/Ni-based composite coatings using a combination of Ta-doping in a Ni-based powder. The effects of laser remelting specific energy and Ta-doping content on the surface morphology, phase composition, microstructure, bonding interface, microhardness, and wear resistance of the cladding layers were investigated. The unmelted powder particles on the coating surface disappeared after laser remelting. Laser remelting significantly decreased the grain size of the Ta/Ni-based composite coating, and the bright white microstructure of the doped Ta hindered crystal growth. With increase in the specific energy of the remelts, the internal porosity of the coating significantly decreased, overall grain size of the upper part of the composite coating gradually increased, central columnar crystal content gradually increased, overall crystal size of the lower part first decreased and then increased, and Ta and Ni diffused more fully at the bonding interface between the matrix and the coating, which decreased the difference in the chemical composition of the two sides of the bonding interface. The Ta/Ni-based composite remelted layers had significantly improved microhardness and wear resistance compared to before remelting, and both these parameters tended to increase and then decrease with increasing remelting specific energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Zheng, M. Cong, D. Liu, H. Dong, and Y. Liu, Int. J. Adv. Manuf. Technol. 100, 599 (2019).

    Article  Google Scholar 

  2. L. Zhu, P. Xue, Q. Lan, G. Meng, Y. Ren, Z. Yang, P. Xu, and Z. Liu, Opt. Laser Technol. 138, 106915 (2021).

    Article  Google Scholar 

  3. G.A. Farotade, A.P.I. Popoola, and S.L. Pityana, Surf. Rev. Lett. 25, 1950005 (2018).

    Article  Google Scholar 

  4. Y. Cai, Z. Luo, M. Feng, Z. Liu, Z. Huang, and Y. Zeng, Surf. Coat. Technol. 291, 222 (2016).

    Article  Google Scholar 

  5. Q. Wang, Q. Li, L. Zhang, D.X. Chen, H. Jin, J.D. Li, J.W. Zhang, and C.Y. Ban, Ceram. Int. 48, 7905 (2022).

    Article  Google Scholar 

  6. Z. Gao, H. Ren, Y. Yuan, Z. Gao, E. Liu, and C. Zhang, Micron 150, 103146 (2021).

    Article  Google Scholar 

  7. R. Li, Z. Li, J. Huang, and Y. Zhu, Appl. Surf. Sci. 258, 7956 (2012).

    Article  Google Scholar 

  8. N.L. Do Vale, C.A. Fernandes, R.A. de Santos, T.F.A. Santos, S.L. Urtiga Filho JOM 73, 2868 (2021).

  9. H. Liu, X. Du, H. Guo, J. Liu, P. Chen, H. Yang, and J. Hao, Optik 228, 166194 (2021).

    Article  Google Scholar 

  10. Y. Jia, W. Sun, and K. Wang, WSRJ 6, 8 (2020).

    Google Scholar 

  11. C. Cui, M. Wu, X. Miao, Y. Gong, and Z. Zhao, J. Mater. Res. Technol. 15, 2405 (2021).

    Article  Google Scholar 

  12. X. Lei, C. Huajun, L. Hailong, and Z. Yubo, Int. J. Adv. Manuf. Technol. 90, 1383 (2017).

    Article  Google Scholar 

  13. F. Weng, C. Chen, and H. Yu, Mater. Des. 58, 412 (2014).

    Article  Google Scholar 

  14. W. Yuan, R. Li, Z. Chen, J. Gu, and Y. Tian, Surf. Coat. Technol. 405, 126582 (2021).

    Article  Google Scholar 

  15. G. Singh, M. Kaur, and R. Upadhyaya, J. Therm. Spray Technol. 28, 1081 (2019).

    Article  Google Scholar 

  16. Y. Cao, N. Farouk, M. Taheri, A.V. Yumashev, S.F.K. Bozorg, and O.O. Ojo, Surf. Coat. Technol. 412, 127010 (2021).

    Article  Google Scholar 

  17. T. Yu, J. Chen, Y. Wen, and Q. Deng, Appl. Surf. Sci. 547, 149171 (2021).

    Article  Google Scholar 

  18. Z. Yu, L. Li, D. Zhang, G. Shi, G. Yang, Z. Xu, and Z. Zhang, Chin. J. Mech. Eng. 34, 92 (2021).

    Article  Google Scholar 

  19. Z. Zhang, Y. Zhao, Y. Chen, Z. Su, J. Shan, A. Wu, Y.S. Sato, H. Gu, and X. Tang, Mater. Des. 198, 109346 (2021).

    Article  Google Scholar 

  20. F. Fu, Y. Zhang, G. Chang, and J. Dai, Optik 127, 200 (2016).

    Article  Google Scholar 

  21. J. Ning, D.E. Sievers, H. Garmestani, and S.Y. Liang, J. Manuf. Process. 49, 135 (2020).

    Article  Google Scholar 

  22. C. Guo, J. Zhou, J. Zhao, L. Wang, Y. Yu, J. Chen, and H. Zhou, Tribol. Lett. 44, 187 (2011).

    Article  Google Scholar 

  23. X. Zhang, X. Cui, G. Jin, Q. Ding, D. Zhang, X. Wen, L. Jiang, S. Wan, and H. Tian, J. Alloys Compd. 891, 161756 (2022).

    Article  Google Scholar 

  24. A. Farnia, F. MalekGhaini, J.C. Rao, V. Ocelík, and J.T.M. De Hosson, Surf. Coat. Technol. 213, 278 (2012).

    Article  Google Scholar 

  25. G. Jiang, C. Cui, L. Chen, Y. Wu, and X. Cui, Materials 14, 7437 (2021).

    Article  Google Scholar 

  26. Z. Shengbin, J. Chenpeng, Y. Yuxue, W. Lixin, H. Yiming, and Y. Lijun, J. Alloys Compd. 908, 164612 (2022).

    Article  Google Scholar 

  27. Y. Zhao, K. Feng, C. Shen, and Z. Li, Mater. Lett. 257, 126614 (2019).

    Article  Google Scholar 

  28. J. Lei, C. Shi, S. Zhou, Z. Gu, and L.-C. Zhang, Surf. Coat. Technol. 334, 274 (2018).

    Article  Google Scholar 

  29. A. Iqbal, G. Zhao, H. Suhaimi, N. He, G. Hussain, and W. Zhao, Int. J. Adv. Manuf. Technol. 111, 2475 (2020).

    Article  Google Scholar 

  30. J.M. Flynn, A. Shokrani, S.T. Newman, and V. Dhokia, Int. J. Mach. Tools Manuf. 101, 79 (2016).

    Article  Google Scholar 

  31. J.L. Dávila, P.I. Neto, P.Y. Noritomi, R.T. Coelho, and J.V.L. da Silva, Int. J. Adv. Manuf. Technol. 110, 3377 (2020).

    Article  Google Scholar 

  32. U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, and M. Dolen, Int. J. Adv. Manuf. Technol. 113, 623 (2021).

    Article  Google Scholar 

  33. G. Zeng, S.H. Zahiri, S. Gulizia, Y. Chen, X.-B. Chen, and I. Cole, J. Mater. Res. 36, 3679 (2021).

    Article  Google Scholar 

  34. L. Li, A. Haghighi, and Y. Yang, J. Manuf. Process. 33, 150 (2018).

    Article  Google Scholar 

  35. Y. Cai, Y. Cui, L. Zhu, R. Tian, K. Geng, H. Li, and J. Han, Surf. Eng. 37, 1496 (2021).

    Article  Google Scholar 

  36. X. Xu, J.L. Du, K.Y. Luo, M.X. Peng, F. Xing, L.J. Wu, and J.Z. Lu, Surf. Coat. Technol. 422, 127500 (2021).

    Article  Google Scholar 

  37. S. Zhou, Y. Xu, B. Liao, Y. Sun, X. Dai, J. Yang, and Z. Li, Opt. Laser Technol. 103, 8 (2018).

    Article  Google Scholar 

  38. D. Cong, H. Zhou, Z. Ren, Z. Zhang, H. Zhang, C. Meng, and C. Wang, Mater. Des. 55, 597 (2014).

    Article  Google Scholar 

  39. B. Das, M. Gopinath, A.K. Nath, and P.P. Bandyopadhyay, Optik 227, 166030 (2021).

    Article  Google Scholar 

  40. B. Xin, X. Zhou, G. Cheng, J. Yao, and Y. Gong, Opt. Laser Technol. 127, 106087 (2020).

    Article  Google Scholar 

  41. Z. Kuai, Z. Li, B. Liu, W. Liu, and S. Yang, Mater. Chem. Phys. 285, 125901 (2022).

    Article  Google Scholar 

  42. H. Wang, Y. Cheng, J. Yang, and Q. Wang, Surf. Coat. Technol. 414, 127081 (2021).

    Article  Google Scholar 

  43. T. Han, Y. Liu, M. Liao, D. Yang, N. Qu, Z. Lai, and J. Zhu, J. Mater. Sci. Technol. 99, 18 (2022).

    Article  Google Scholar 

  44. S. Zhou, J. Lei, X. Dai, J. Guo, Z. Gu, and H. Pan, Int. J. Refract. Met. Hard Mater. 60, 17 (2016).

    Article  Google Scholar 

  45. P. Fan and G. Zhang, Int. J. Refract. Met. Hard Mater. 87, 105133 (2020).

    Article  Google Scholar 

  46. W. Xi, B. Song, Z. Wang, T. Yu, J. Wang, and Y. Dai, Surf. Coat. Technol. 408, 126789 (2021).

    Article  Google Scholar 

  47. K. Wang, D. Du, G. Liu, B. Chang, J. Ju, S. Sun, and H. Fu, J. Alloys Compd. 802, 373 (2019).

    Article  Google Scholar 

  48. D. Shang, J. Zhang, A. Feng, Y. Zhou, J. Tang, and F. Chen, Chin. J. Lasers 47, 0902004 (2020).

    Article  Google Scholar 

  49. Y. Li, S. Dong, S. Yan, X. Liu, E. Li, P. He, and B. Xu, Opt. Laser Technol. 112, 30 (2019).

    Article  Google Scholar 

  50. K. Huo, J. Zhou, F. Dai, and J. Xu, Appl. Surf. Sci. 545, 149078 (2021).

    Article  Google Scholar 

  51. Y. Huang, X. Zeng, Q. Hu, and S. Zhou, Appl. Surf. Sci. 255, 3940 (2009).

    Article  Google Scholar 

  52. Y. Shi, Y. Li, J. Liu, and Z. Yuan, Opt. Laser Technol. 99, 256 (2018).

    Article  Google Scholar 

  53. Y. Jiang, Y. Cheng, X. Zhang, J. Yang, X. Yang, and Z. Cheng, Optik 203, 164044 (2020).

    Article  Google Scholar 

  54. S. Sun, H. Fu, X. Ping, J. Lin, Y. Lei, W. Wu, and J. Zhou, Appl. Surf. Sci. 455, 160 (2018).

    Article  Google Scholar 

  55. T. Yu, Q. Deng, G. Dong, and J. Yang, Appl. Surf. Sci. 257, 5098 (2011).

    Article  Google Scholar 

  56. Q. Xiao, W. Lei Sun, K. Xin Yang, X. Feng Xing, Z. Hao Chen, H. Nan Zhou, and J. Lu, Surf. Coat. Technol. 420, 127341 (2021).

    Article  Google Scholar 

  57. L. Xu, J. Xing, S. Wei, Y. Zhang, and R. Long, Wear 262, 253 (2007).

    Article  Google Scholar 

  58. W. Kaiming, L. Yulong, F. Hanguang, L. Yongping, S. Zhenqing, and M. Pengfei, Surf. Eng. 34, 267 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support to this work from the Key Laboratory Open Fund of Xinjiang Autonomous Region (2020520002), Research and Innovation Project of Xinjiang Autonomous Region (XJ2022G011), the University Science Research Planning Project of Xinjiang Autonomous Region (XJEDU2021Y008), Xinjiang Autonomous Region Fund Project (2021D01C103), and Research Fund of Xinjiang Institute of Engineering (2019xgy152112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangtong Yu or Wenlei Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Sun, W., Zhang, G. et al. Effect of Variable Specific Energy Laser Remelting on the Morphology, Microstructure, and Mechanical Properties of Ta/Ni-Based Composite Coatings. JOM 75, 4158–4170 (2023). https://doi.org/10.1007/s11837-023-05799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05799-2

Navigation