Skip to main content
Log in

Effect of Y2O3 Addition on Microstructural Characteristics and Microhardness of Laser-Cladded Ti-6Al-4V Alloy Coating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the effect of Y2O3 addition on the quality, microstructure, and microhardness of multi-track laser-cladded Ti-6Al-4V coating using coaxial powder feeding was investigated. These parameters were characterised via dye penetration, x-ray diffractometry, scanning electron microscopy, energy dispersive spectrometry, electron probe microanalysis, microhardness measurements, and ball-on-disc tribometer. It is observed that Y2O3 addition improved the coating quality by completely eliminating the formation of pores in multi-tracked Ti-6Al-4V coatings. The microstructure of the coating without and with Y2O3 primarily consists of acicular martensite (α′-Ti). Furthermore, the continuity of original β-Ti grain boundary is broken by the introduction of Y2O3. In addition, the Y2O3 is adsorbed and pinned at the original β-Ti grain boundaries resulting in the refinement of the β-Ti grains. It is believed that the refinement in the original β-Ti grains occurs via inhibition of the movement of the grain solid–liquid interface through dragging action. This phenomenon hinders grain growth by acting as a heterogeneous nucleus rather than increasing nucleation rate because it exhibits high lattice misfit degree. Compared with the coating without the Y2O3, the microhardness and wear stability of the Y2O3-supplemented coating was improved because of grain boundary strengthening, fine-grained strengthening, addition of high hardness Y2O3, and elimination of pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. P. Singh, H. Pungotra, and N.S. Kalsi, On the Characteristics of Titanium Alloys for the Aircraft Applications, Mater. Today, 2017, 4(8), p 8971–8982

    CAS  Google Scholar 

  2. N. Kherrouba, D. Carron, M. Bouabdallah et al., Effect of Solution Treatment on the Microstructure, Micromechanical Properties, Kinetic Parameters of the β → α Phase Transformation During Continuous Cooling of Ti-6Al-4V Titanium Alloy, J. Mater. Eng. Perform., 2019, 28, p 6921–6930

    CAS  Google Scholar 

  3. S.Y. Liu and Y.C. Shin, Additive Manufacturing of Ti6Al4V Alloy: A Review, Mater. Des., 2019, 164, p 107552

    CAS  Google Scholar 

  4. M. Yamaguchi, H. Inui, and K. Ito, High-Temperature Structural Intermetallics, Acta Mater., 2000, 48(1), p 307–322

    CAS  Google Scholar 

  5. B.K.C. Ganesh, W. Sha, N. Ramanaiah et al., Effect of Shotpeening on Sliding Wear and Tensile Behavior of Titanium Implant Alloys, Mater. Des., 2014, 56, p 480–486

    CAS  Google Scholar 

  6. X.D. Ren, W.F. Zhou, F.F. Liu et al., Microstructure Evolution and Grain Refinement of Ti-6Al-4V Alloy by Laser Shock Processing, Appl. Surf. Sci., 2016, 363, p 44–49

    CAS  Google Scholar 

  7. J.H. Yao, Y. Wang, G.L. Wu et al., Growth Characteristics and Properties of Micro-arc Oxidation Coating on SLM-produced TC4 Alloy for Biomedical Applications, Appl. Surf. Sci., 2019, 479, p 727–737

    CAS  Google Scholar 

  8. Y.N. Liu, R.L. Sun, W. Niu et al., Effects of CeO2 on Microstructure and Properties of TiC/Ti2Ni Reinforced Ti-Based Laser Cladding Composite Coatings, Opt. Lase. Eng., 2019, 120, p 84–94

    Google Scholar 

  9. J.M. Wilson, C. Piya, Y.C. Shin et al., Remanufacturing of Turbine Blades by Laser Direct Deposition with Its Energy and Environmental Impact Analysis, J. Clean. Prod., 2014, 80, p 170–178

    Google Scholar 

  10. R. Cottam and M. Brandt, Laser Cladding of Ti-6Al-4V Powder on Ti-6Al-4V Substrate: Effect of Laser Cladding Parameters on Microstructure, Phys. Proc., 2011, 12, p 323–329

    CAS  Google Scholar 

  11. Y.R. Choi, S.D. Sun, Q. Liu et al., Influence of Deposition Strategy on the Microstructure and Fatigue Properties of Laser Metal Deposited Ti-6Al-4V Powder on Ti-6Al-4V Substrate, Int. J. Fatigue, 2020, 130, p 105236

    CAS  Google Scholar 

  12. M. Nabhani, S.R. Reza, and M. Barekat, Corrosion Study of Laser Cladded Ti-6Al-4V Alloy in Different Corrosive Environments, Eng. Fall. Anal., 2019, 97, p 234–241

    CAS  Google Scholar 

  13. O. Yilmaz, N. Gindy, and J. Gao, A Repair and Overhaul Methodology for Aeroengine Components, Robot. Com-Int. Manuf., 2010, 26(2), p 190–201

    Google Scholar 

  14. R.D. Zhu, Z.Y. Li, X.X. Li et al., Microstructure and Properties of the Low-Power-Laser Clad Coatings on Magnesium Alloy with Different Amount of Rare Earth Addition, Appl. Surf. Sci., 2015, 353, p 405–413

    CAS  Google Scholar 

  15. Y.H. Zhao, S. Jie, and J.F. Li, Effect of Rare Earth Oxide on the Properties of Laser Cladding Layer and Machining Vibration Suppressing in Side Milling, Appl. Surf. Sci., 2014, 321, p 387–395

    CAS  Google Scholar 

  16. Y.S. Tian, C.Z. Chen, L.X. Chen et al., Effect of RE Oxides on the Microstructure of the Coatings Fabricated on Titanium Alloys by Laser Alloying Technique, Scr. Mater., 2006, 54(5), p 847–852

    CAS  Google Scholar 

  17. M.M. Quazi, M.A. Fazal, A.S.M.A. Haseeb et al., Effect of Rare Earth Elements and Their Oxides on Tribo-mechanical Performance of Laser Claddings: A Review, J. Rare Earth, 2016, 34(6), p 549–564

    CAS  Google Scholar 

  18. J.P. Qu, C.J. Zhang, J.C. Han et al., Microstructural Evolution and Mechanical Properties of Near α-Ti Matrix Composites Reinforced by Hybrid (TiB + Y2O3) with Bimodal Size, Vacuum, 2017, 144, p 203–206

    CAS  Google Scholar 

  19. A.K. Das, S.M. Shariff, and A.R. Choudhury, Effect of Rare Earth Oxide (Y2O3) Addition on Alloyed Layer Synthesized on Ti-6Al-4V Substrate with Ti + SiC + h-BN Mixed Precursor by Laser Surface Engineering, Tribol. Int., 2016, 95, p 35–43

    CAS  Google Scholar 

  20. J. Li, X. Luo, and G.J. Li, Effect of Y2O3 on the Sliding Wear Resistance of TiB/TiC-Reinforced Composite Coatings Fabricated by Laser Cladding, Wear, 2014, 310(1–2), p 72–82

    CAS  Google Scholar 

  21. W.J. Lu, L. Xiao, D. Xu et al., Microstructural Characterization of Y2O3 in In Situ Synthesized Titanium Matrix Composites, J. Alloys Compd., 2007, 433(1–2), p 140–146

    CAS  Google Scholar 

  22. A. Li, S. Ma, Y.J. Yang et al., Microstructure and Mechanical Properties of Y2O3 Reinforced Ti6Al4V Composites Fabricated by Spark Plasma Sintering, J. Alloys Compd., 2018, 768, p 49–56

    CAS  Google Scholar 

  23. H. Mustafa, M. Mezera, D.T.A. Matthews et al., Effect of Surface Roughness on the Ultrashort Pulsed Laser Ablation Fluence Threshold of Zinc and Steel, Appl. Surf. Sci., 2019, 488, p 10–21

    CAS  Google Scholar 

  24. H.C. Man, S. Zhang, F.T. Cheng et al., In Situ Synthesis of TiC Reinforced Surface MMC on Al6061 by Laser Surface Alloying, Scr. Mater., 2002, 46(3), p 229–234

    CAS  Google Scholar 

  25. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24(8), p 981–988

    Google Scholar 

  26. T. Ungár, S. Ott, P.G. Sanders et al., Dislocations, Grain Size and Planar Faults in Nanostructured Copper Determined by High Resolution x-Ray Diffraction and a New Procedure of Peak Profile Analysis, Acta Mater., 1998, 46(10), p 3693–3699

    Google Scholar 

  27. M. Bellardita, A.D. Paola, B. Megna et al., Determination of the Crystallinity of TiO2 Photocatalysts, J. Photochem. Photobiol. A Chem., 2018, 367, p 312–320

    CAS  Google Scholar 

  28. J.H. Yang, S.L. Xiao, Y.Y. Chen et al., Effects of Nano-Y2O3 Addition on the Microstructure Evolution and Tensile Properties of a Near-α Titanium Alloy, Mater. Sci. Eng. A, 2019, 761, p 137977

    CAS  Google Scholar 

  29. S. Roy, S. Suwas, S. Tamirisakandala et al., Development of Solidification Microstructure in Boron-Modified Alloy Ti-6Al-4V-0.1B, Acta Mater., 2011, 59(14), p 5494–5510

    CAS  Google Scholar 

  30. T. Ahmed and H.J. Rack, Phase Transformations During Cooling in α + β Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1–2), p 206–211

    Google Scholar 

  31. H. Tan, M.L. Guo, A.T. Clare et al., Microstructure and Properties of Ti-6Al-4V Fabricated by Low-Power Pulsed Laser Directed Energy Deposition, J. Mater. Sci. Technol., 2019, 35(9), p 2027–2037

    Google Scholar 

  32. X.L. Zhao, S.J. Li, M. Zhang et al., Comparison of the Microstructures and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting and Electron Beam Melting, Mater. Des., 2016, 95, p 21–31

    CAS  Google Scholar 

  33. B.A. Obadele, P.A. Olubambi, A. Andrews et al., Electrochemical Behaviour of Laser-Clad Ti6Al4V with CP Ti in 0.1 M Oxalic Acid Solution, J. Alloys Compd., 2015, 646, p 753–759

    CAS  Google Scholar 

  34. J. Kumar, A.V. Rao, S.G.S. Raman et al., Creep-Fatigue Damage Simulation at Multiple Length Scales for an Aeroengine Titanium Alloy, Int. J. Fatigue, 2018, 116, p 505–512

    CAS  Google Scholar 

  35. F. Weng, C.Z. Chen, and H.J. Yu, Research Status of Laser Cladding on Titanium and Its Alloys: A Review, Mater. Des., 2014, 58, p 412–425

    CAS  Google Scholar 

  36. J.J. Yang, H.C. Yu, Y. Jie et al., Formation and Control of Martensite in Ti-6Al-4V Alloy Produced by Selective Laser Melting, Mater. Des., 2016, 108, p 308–318

    CAS  Google Scholar 

  37. C.J. Zhang, F.T. Kong, S.L. Xiao et al., Evolution of Microstructure and Tensile Properties of In Situ Titanium Matrix Composites with Volume Fraction of (TiB + TiC) Reinforcements, Mater. Sci. Eng. A, 2012, 548, p 152–160

    CAS  Google Scholar 

  38. Z.Y. Zhao, G.F. Wang, Y.L. Zhang et al., Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Prepared by Multipass Equal Channel Angular Pressing, J. Mater. Eng. Perform., 2020, 29, p 905–913

    CAS  Google Scholar 

  39. C. Guo, Z.R. Yu, C. Liu et al., Effects of Y2O3 Nanoparticles on the High-Temperature Oxidation Behavior of IN738LC Manufactured by Laser Powder Bed Fusion, Corros. Sci., 2020, 171, p 108715

    CAS  Google Scholar 

  40. T.S. Deng, S. Li, Y.Q. Liang et al., Effects of Scandium and Silicon Addition on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy, J. Mater. Res. Technol., 2020, 9(3), p 5676–5688

    CAS  Google Scholar 

  41. B.L. Bramfitt, The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron, Metall. Mater. Trans. B, 1970, 1(7), p 1987–1995

    CAS  Google Scholar 

  42. Y.R. Li, J.M. Wang, and J.Y. Wang, Theoretical Investigation of Phonon Contributions to Thermal Expansion Coefficients for Rare Earth Monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu), J. Eur. Ceram. Soc., 2020, 40(7), p 2658–2666

    CAS  Google Scholar 

  43. C.G.D. Andrés, F.G. Caballero, C. Capdevila et al., Application of Dilatometric Analysis to the Study of Solid–Solid Phase Transformations in Steels, Mater. Charact., 2002, 48(1), p 101–111

    Google Scholar 

  44. H. Attar, K.G. Prashanth, A.K. Chaubey et al., Comparison of Wear Properties of Commercially Pure Titanium Prepared by Selective Laser Melting and Casting Processes, Mater. Lett., 2015, 142, p 38–41

    CAS  Google Scholar 

  45. M.X. Shen, B. Li, Z.N. Zhang et al., Abrasive Wear Behavior of PTFE for Seal Applications Under Abrasive-Atmosphere Sliding Condition, Friction, 2020, 8(4), p 755–767

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51905536) and the Fundamental Research Funds for the Central Universities of China (Grant Numbers 3122019084 and 3122018D013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Xiao, H., Zhang, Z. et al. Effect of Y2O3 Addition on Microstructural Characteristics and Microhardness of Laser-Cladded Ti-6Al-4V Alloy Coating. J. of Materi Eng and Perform 29, 8221–8235 (2020). https://doi.org/10.1007/s11665-020-05316-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05316-5

Keywords

Navigation