Skip to main content
Log in

Numerical Analysis of Flash Ironmaking Process in a Newly Proposed Counter-Current Downer

  • Computational Modeling of Metallurgical Furnaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A counter-current downer is proposed as a new structure to improve the flash ironmaking technology (FIT). A computational fluid dynamics (CFD) model was established to predict the dilute gas–particle reacting flow, and a core–annulus structure was observed. Furthermore, counter-current and cocurrent downers have been compared in similar conditions. As a result, reduced iron of the counter-current downer had a higher reduction degree (99.8%) than that of the cocurrent downer (70.1%). The first two reaction steps (Fe2O3 → Fe3O4 and F3O4 → FeO) were swift, while the subsequent step (FeO → Fe) in the counter-current downer showed a significant difference due to the preponderant reduction potential and temperature. Different gas velocities (0.167–0.667 m/s) were also investigated, and the high-speed gas flow brought more particles with decreasing metal yield from 89.3% to 27.5%. However, more gas amounts always led to a higher reduction degree separately of captured and escaped particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.Y. Sohn, Metals 10, 54. (2020).

    Article  Google Scholar 

  2. Y.X. Qu, Y.X. Yang, Z.S. Zou, C. Zeilstra, K. Meijer, and R. Boom, ISIJ Int. 55, 952. (2015).

    Article  Google Scholar 

  3. Y.X. Qu, Y.X. Yang, Z.S. Zou, C. Zeilstra, K. Meijer, and R. Boom, Ironmak. Steelmak. 42, 763. (2015).

    Article  Google Scholar 

  4. F. Chen, Y. Mohassab, T. Jiang, and H.Y. Sohn, Metall. Mater. Trans. B 46, 1133. (2015).

    Article  Google Scholar 

  5. F. Chen, Y. Mohassab, S. Zhang, and H.Y. Sohn, Metall. Mater. Trans. B 46, 1716. (2015).

    Article  Google Scholar 

  6. Y.X. Qu, Y.X. Yang, Z.S. Zou, C. Zeilstra, K. Meijer, and R. Boom, ISIJ Int. 55, 149. (2015).

    Article  Google Scholar 

  7. D.Q. Fan, H.Y. Sohn, Y. Mohassab, and M. Elzohiery, Metall. Mater. Trans. B 47, 3489. (2016).

    Article  Google Scholar 

  8. Y. Yang, D. Li, L. Guo, Z. Wang, and Z. Guo, Appl. Therm. Eng. 168, 114899. (2020).

    Article  Google Scholar 

  9. B. Cheng, J. Xiong, M. Li, Y. Feng, W. Hou, and H. Li, Metals 10, 711. (2020).

    Article  Google Scholar 

  10. X. Zhang, W. Wu, and L. Yang, Chem. React. Eng. Technol. 11, 92. (1995).

    Google Scholar 

  11. K.B. Luo, W. Liu, J.X. Zhu, and J.M. Beeckmans, Powder Technol. 115, 36. (2001).

    Article  Google Scholar 

  12. P. Dong, Z. Wang, Z. Li, S. Li, W.G. Lin, and W. Song, Energy Fuels 26, 5193. (2012).

    Article  Google Scholar 

  13. D. Jia, H. Zhao, A.S. Berrouk, and C. Yang, Can. J. Chem. Eng. 92, 176. (2014).

    Article  Google Scholar 

  14. J.C. Schmid, T. Pröll, H. Kitzler, and C. Pfeifer, Biomass Convers. Biorefin. 2, 229. (2012).

    Article  Google Scholar 

  15. G. Peng, P. Dong, Z. Li, J. Wang, and W. Lin, Chem. Eng. J. 230, 406. (2013).

    Article  Google Scholar 

  16. Z. Shu, G. Peng, J. Wang, N. Zhang, and S. Li, Ind. Eng. Chem. Res. 53, 3378. (2014).

    Article  Google Scholar 

  17. S.S.J. Gillani, A. Ullah, M. Zaman, I.R. Chugtai, and M.H. Inayat, Particuology 35, 51. (2017).

    Article  Google Scholar 

  18. J. Liu, X. Liu, Z. Zhang, H. Zhao, and W. Ge, Particuology 50, 135. (2020).

    Article  Google Scholar 

  19. Z.X. Zhang, China University of Petroleum, Qing Dao, Unpublished Research (2015).

  20. Y. Wu, X. Shi, Y. Liu, C. Wang, J. Gao, and X. Lan, Powder Technol. 373, 384. (2020).

    Article  Google Scholar 

  21. H.Y. Sohn, and Y. Mohassab, J. Sustain. Metall. 2, 216. (2016).

    Article  Google Scholar 

  22. H.Y. Sohn, and S.E. Perez-Fontes, Int. J. Hydrogen Energy 41, 3284. (2016).

    Article  Google Scholar 

  23. S.A.J. Morsi, and A.J. Alexander, J. Fluid Mech. 55, 193. (1971).

    Article  Google Scholar 

  24. B.E. Launder, and D.B. Spalding, Lectures in Mathematical Model of Turbulence (Academic, New York, 1972), p 34.

    MATH  Google Scholar 

  25. T. Wakeman and W. Tabakoff, in Turbo Expo: Power for Land, Sea, and Air, Vol. 79580 (1982).

  26. B. Abolpour, M.M. Afsahi, A. Soltani Goharrizi, and M. Azizkarimi, Ironmak. Steelmak. 44, 750. (2016).

    Article  Google Scholar 

  27. B. Abolpour, M.M. Afsahi, and M. Azizkarimi, Miner. Process. Extr. Metall. 127, 29. (2017).

    Google Scholar 

  28. X. Wang, G. Fu, W. Li, and M. Zhu, ISIJ Int. 59, 2193. (2019).

    Article  Google Scholar 

  29. Y. Yang, L. Guo, D. Li, and Z. Guo, Appl. Therm. Eng. 115067, 171. (2020).

    Google Scholar 

  30. C. Wu, Y. Cheng, and Y. Jin, Ind. Eng. Chem. Res. 48, 12. (2009).

    Article  Google Scholar 

  31. C. Wu, Y. Cheng, and Y. Jin, Chem. Eng. Technol. 32, 482. (2009).

    Article  Google Scholar 

  32. N. Epstein, Handbook of Fluidization and Fluid-Particle Systems (Marcel Dekker, New York, 2003), p 3.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the China Postdoctoral Science Foundation, No. 2021TQ0108, and Fundamental Research Funds for the Central Universities, No. JKB01211715. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Shen, Z., Xu, J. et al. Numerical Analysis of Flash Ironmaking Process in a Newly Proposed Counter-Current Downer. JOM 74, 1499–1508 (2022). https://doi.org/10.1007/s11837-021-05003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05003-3

Navigation