Skip to main content

Advertisement

Log in

The Quest for High-Efficiency Thermoelectric Generators for Extracting Electricity from Waste Heat

  • Energy Storage: Materials, Devices & Structures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Humanity is facing a great challenge in finding energy options to fulfill its ever-increasing energy demands while simultaneously protecting the environment by decreasing greenhouse-gas emissions. This review explores the field of energy harvesting from alternative sources of renewable energy using thermoelectric generators (TEGs). TEGs are a new class of green renewable technology that enables the conversion of waste heat into electricity. The use of waste heat as the energy source for TEGs is an economical option as it is both free and readily available. This review covers various aspects of TEGs, including why they are needed, the basics of their operation, i.e., the principle of transformation of heat into electricity, various associated parameters and challenges faced, their important role in clean energy harvesting as a form of renewable energy, different storage options available for the harvested clean energy, and finally a brief discussion on applications where TEGs are already being used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Adapted from Ref. 156.

Fig. 6
Fig. 7

Adapted from Ref. 183.

Similar content being viewed by others

References

  1. R. York, Nat. Clim. Change 2, 441. (2012).

    Article  Google Scholar 

  2. M.D. Staples, R. Malina, and S.R.H. Barrett, Nat. Energy 2, 16202. (2017).

    Article  Google Scholar 

  3. G.J. Snyder and E.S. Toberer, in Materials for Sustainable Energy (Co-Published with Macmillan Publishers Ltd, UK, 2010), pp. 101–110.

  4. H. Roh, I. Kim, and D. Kim, Nano Energy 70, 104515. (2020).

    Article  Google Scholar 

  5. C.B. Williams and R.B. Yates, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS ’95 1, 369 (n.d.).

  6. F. Yildiz, and K.L. Coogler, J. Eng. Technol. 34, 8. (2017).

    Google Scholar 

  7. X. Lu, Y. Xu, G. Qiao, Q. Gao, X. Zhang, T. Cheng, and Z.L. Wang, Nano Energy 72, 104726. (2020).

    Article  Google Scholar 

  8. L. Huang, S. Lin, Z. Xu, H. Zhou, J. Duan, B. Hu, and J. Zhou, Adv. Mater. 32, 1902034. (2020).

    Article  Google Scholar 

  9. N. Van Toan, M.M.I.M. Hasnan, D. Udagawa, N. Inomata, M. Toda, S.M. Said, M.F.M. Sabri, and T. Ono, Energy Convers. Manag. 199, 111979. (2019).

    Article  Google Scholar 

  10. D.M. Rowe, Renew. Energy 16, 1251. (1999).

    Article  Google Scholar 

  11. R. Ahiska, H. Mamur, and I.E.T. Renew, Power Gener 7, 700. (2013).

    Article  Google Scholar 

  12. Ismail, I. Ahmed, and W. H, in (Benthan Science Publisher, 2009), pp. 27–39.

  13. S. Riffat, and X. Ma, Appl. Therm. Eng. 23, 913. (2003).

    Article  Google Scholar 

  14. H. Kim, Y. Tadesse, and S. Priya, Energy Harvesting Technologies (Springer, Boston, MA, 2009), pp 3–39.

    Book  Google Scholar 

  15. D. Enescu, in Green Energy Advances (IntechOpen, 2019).

  16. A. Shakouri, Annu. Rev. Mater. Res. 41, 399. (2011).

    Article  Google Scholar 

  17. E. Laux, S. Uhl, L. Jeandupeux, P.P. López, P. Sanglard, E. Vanoli, R. Marti, and H. Keppner, J. Electron. Mater. 47, 3193. (2018).

    Article  Google Scholar 

  18. Z.-G. Shen, L.-L. Tian, and X. Liu, Energy Convers. Manag. 195, 1138. (2019).

    Article  Google Scholar 

  19. A.H. Kazim, A.S. Booeshaghi, S.T. Stephens, and B.A. Cola, Sustain. Energy Fuels 1, 1381. (2017).

    Google Scholar 

  20. R. Zevenhoven, and A. Beyene, Energy 36, 3754. (2011).

    Article  Google Scholar 

  21. E.H. Wang, H.G. Zhang, B.Y. Fan, M.G. Ouyang, Y. Zhao, and Q.H. Mu, Energy 36, 3406. (2011).

    Article  Google Scholar 

  22. A.R.M. Siddique, S. Mahmud, and B. Van Heyst, Renew. Sustain. Energy Rev. 73, 730. (2017).

    Article  Google Scholar 

  23. D.K. Aswal, R. Basu, and A. Singh, Energy Convers. Manag. 114, 50. (2016).

    Article  Google Scholar 

  24. T.M. Tritt, H. Böttner, and L. Chen, MRS Bull. 33, 366. (2008).

    Article  Google Scholar 

  25. D. Zhang, Y. Wang, and Y. Yang, Small 15, 1805241. (2019).

    Article  Google Scholar 

  26. H.S. Kim, W. Liu, G. Chen, C.-W. Chu, and Z. Ren, Proc. Natl. Acad. Sci. 112, 8205. (2015).

    Article  Google Scholar 

  27. A. Muhamad Zuhud, F. Mochammad, and W. Widayat, Web Conf 73, 01009. (2018).

    Google Scholar 

  28. O.H. Ando Junior, A.L.O. Maran, and N.C. Henao, Renew. Sustain. Energy Rev. 91, 376. (2018).

    Article  Google Scholar 

  29. D. Champier, Energy Convers. Manag. 140, 167. (2017).

    Article  Google Scholar 

  30. X. Zhang, and L.-D. Zhao, J. Materiom. 1, 92. (2015).

    Article  Google Scholar 

  31. S.K. Suraparaju, G. Kartheek, G.V. Sunil Reddy, and S.K. Natarajan, IOP Conf. Ser. Earth Environ. Sci. 312, 012013. (2019).

    Article  Google Scholar 

  32. C.B. Vining, Nat. Mater. 8, 83. (2009).

    Article  Google Scholar 

  33. M.A. Alghoul, S.A. Shahahmadi, B. Yeganeh, N. Asim, A.M. Elbreki, K. Sopian, S.K. Tiong, and N. Amin, Energy Convers. Manag. 174, 138. (2018).

    Article  Google Scholar 

  34. A. P. David J, in Sept. 21-22, 2017 Cebu (Philippines) Back RTET-17, CABES-17, LBECSR-17 & ALHSS-17 (URUAE, 2017).

  35. Z.-H. Ge, L.-D. Zhao, D. Wu, X. Liu, B.-P. Zhang, J.-F. Li, and J. He, Mater. Today 19, 227. (2016).

    Article  Google Scholar 

  36. R.Y. Nuwayhid, A. Shihadeh, and N. Ghaddar, Energy Convers. Manag. 46, 1631. (2005).

    Article  Google Scholar 

  37. M.E. Kiziroglou, S.W. Wright, T.T. Toh, P.D. Mitcheson, T. Becker, and E.M. Yeatman, IEEE Trans. Ind. Electron. 61, 302. (2014).

    Article  Google Scholar 

  38. S. Aminorroaya Yamini, H. Wang, Z.M. Gibbs, Y. Pei, D.R.G. Mitchell, S.X. Dou, and G.J. Snyder, Acta Mater. 80, 365. (2014).

    Article  Google Scholar 

  39. A.D. LaLonde, Y. Pei, H. Wang, and G. Jeffrey Snyder, Mater. Today 14, 526. (2011).

    Article  Google Scholar 

  40. D. Parker, and D.J. Singh, Solid State Commun. 182, 34. (2014).

    Article  Google Scholar 

  41. C. Chen, L. Zhang, J. Li, F. Yu, D. Yu, Y. Tian, and B. Xu, J. Alloys Compd. 699, 751. (2017).

    Article  Google Scholar 

  42. A.T. Duong, V.Q. Nguyen, G. Duvjir, V.T. Duong, S. Kwon, J.Y. Song, J.K. Lee, J.E. Lee, S. Park, T. Min, J. Lee, J. Kim, and S. Cho, Nat. Commun. 7, 13713. (2016).

    Article  Google Scholar 

  43. Q. Zhang, E.K. Chere, Y. Wang, H.S. Kim, R. He, F. Cao, K. Dahal, D. Broido, G. Chen, and Z. Ren, Nano Energy 22, 572. (2016).

    Article  Google Scholar 

  44. R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M.-Y. Chou, M.T. Agne, J. He, G.J. Snyder, X. Shi, and L. Chen, Energy Environ. Sci. 10, 1928. (2017).

    Article  Google Scholar 

  45. M.C. Barma, M. Riaz, R. Saidur, and B.D. Long, Energy Convers. Manag. 98, 303. (2015).

    Article  Google Scholar 

  46. S. Rühle, M. Shalom, and A. Zaban, ChemPhysChem 11, 2290. (2010).

    Article  Google Scholar 

  47. H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429. (2008).

    Article  Google Scholar 

  48. B. Chen, C. Uher, L. Iordanidis, and M.G. Kanatzidis, Chem. Mater. 9, 1655. (1997).

    Article  Google Scholar 

  49. N. Zhao, T.P. Osedach, L.-Y. Chang, S.M. Geyer, D. Wanger, M.T. Binda, A.C. Arango, M.G. Bawendi, and V. Bulovic, ACS Nano 4, 3743. (2010).

    Article  Google Scholar 

  50. D.M. Freik, I.K. Yurchyshyn, and V.Y. Potyak, J. Vasyl Stefanyk Precarpathian National Univ. 1, 65. (2014).

    Article  Google Scholar 

  51. C. Twombly, Study of Thermoelectric Properties of Graphene Materials, 2015.

  52. A.H. Reshak, RSC Adv. 6, 72286. (2016).

    Article  Google Scholar 

  53. A.H. Reshak, RSC Adv. 6, 92887. (2016).

    Article  Google Scholar 

  54. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66. (2011).

    Article  Google Scholar 

  55. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554. (2008).

    Article  Google Scholar 

  56. J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510. (2012).

    Article  Google Scholar 

  57. E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624. (2010).

    Article  Google Scholar 

  58. Y.I. Ravich, B.A. Efimova, and I.A. Smirnov, Semiconducting Lead Chalcogenides (Springer, Boston, 1970).

    Book  Google Scholar 

  59. A.V. Powell, J. Appl. Phys. 126, 100901. (2019).

    Article  Google Scholar 

  60. A.A. Sherchenkov, Y.I. Shtern, M.Y. Shtern, and M.S. Rogachev, Nanotechnol. Russia 11, 387. (2016).

    Article  Google Scholar 

  61. P. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G.J. Snyder, and L. Chen, Energy Environ. Sci. 10, 183. (2017).

    Article  Google Scholar 

  62. W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, and X.F. Tang, Acta Mater. 58, 4705. (2010).

    Article  Google Scholar 

  63. J. He, M.G. Kanatzidis, and V.P. Dravid, Mater. Today 16, 166. (2013).

    Article  Google Scholar 

  64. I. Sil, S. Mukherjee, and K. Biswas, Environ. Earth Sci. Res. J. 4, 33. (2017).

    Google Scholar 

  65. D. T. Morelli, in Springer Handbook of Electronic and Photonic Materials (2017), pp. 1–1.

  66. Y.-L. Pei, J. He, J.-F. Li, F. Li, Q. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, and L.-D. Zhao, NPG Asia Mater. 5, e47. (2013).

    Article  Google Scholar 

  67. J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 115334. (2004).

    Article  Google Scholar 

  68. A. Popescu, A. Datta, G.S. Nolas, and L.M. Woods, J. Appl. Phys. 109, 103709. (2011).

    Article  Google Scholar 

  69. S.V. Faleev, and F. Léonard, Phys. Rev. B 77, 214304. (2008).

    Article  Google Scholar 

  70. R. Kretzschmar, and D.R. Wilkie, Proc. R. Soc. Lond. B Biol. Sci. 190, 315. (1975).

    Article  Google Scholar 

  71. Y. Wu, S.W. Finefrock, and H. Yang, Nano Energy 1, 651. (2012).

    Article  Google Scholar 

  72. G.D. Mahan, and J.O. Sofo, Proc. Natl. Acad. Sci. 93, 7436. (1996).

    Article  Google Scholar 

  73. J. Martins, L. M. Goncalves, J. Antunes, and F. P. Brito, in (2011).

  74. T. Hendricks and W. T. Choate, Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery (2006).

  75. G.J. Snyder, and E.S. Toberer, Materials for Sustainable Energy (Co-Published with Macmillan Publishers Ltd, UK, 2010), pp 101–110.

    Book  Google Scholar 

  76. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics (Springer, Berlin, 2001).

    Book  MATH  Google Scholar 

  77. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373. (2014).

    Article  Google Scholar 

  78. Y. Yin, K. Baskaran, and A. Tiwari, Phys. Stat. Sol. (A) 216, 1800904. (2019).

    Article  Google Scholar 

  79. M. Wolf, R. Hinterding, and A. Feldhoff, Entropy 21, 1058. (2019).

    Article  Google Scholar 

  80. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42. (2012).

    Article  Google Scholar 

  81. A.H. Reshak, RSC Adv. 6, 54001. (2016).

    Article  Google Scholar 

  82. S. Wang, J.R. Salvador, J. Yang, P. Wei, B. Duan, and J. Yang, NPG Asia Mater. 8, e285. (2016).

    Article  Google Scholar 

  83. S. Choi, K. Kurosaki, G. Li, Y. Ohishi, H. Muta, S. Yamanaka, and S. Maeshima, AIP Adv. 6, 125015. (2016).

    Article  Google Scholar 

  84. Y. Liu, X. Li, Q. Zhang, L. Zhang, D. Yu, B. Xu, and Y. Tian, Materials 9, 257. (2016).

    Article  Google Scholar 

  85. R. Akram, Y. Yan, D. Yang, X. She, G. Zheng, X. Su, and X. Tang, Intermetallics 74, 1. (2016).

    Article  Google Scholar 

  86. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, and T. Zhu, Nat. Commun. 6, 8144. (2015).

    Article  Google Scholar 

  87. J. Shen, C. Fu, Y. Liu, X. Zhao, and T. Zhu, Energy Storage Mater. 10, 69. (2018).

    Article  Google Scholar 

  88. S. Saini, H.S. Yaddanapudi, K. Tian, Y. Yin, D. Magginetti, and A. Tiwari, Sci. Rep. 7, 44621. (2017).

    Article  Google Scholar 

  89. M. Bittner, L. Helmich, F. Nietschke, B. Geppert, O. Oeckler, and A. Feldhoff, J. Eur. Ceram. Soc. 37, 3909. (2017).

    Article  Google Scholar 

  90. G. Tan, L.-D. Zhao, F. Shi, J.W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006. (2014).

    Article  Google Scholar 

  91. G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, and L.-D. Zhao, J. Am. Chem. Soc. 138, 13647. (2016).

    Article  Google Scholar 

  92. D. Ginting, C.-C. Lin, R. Lydia, H.S. So, H. Lee, J. Hwang, W. Kim, R. Al Rahal Al Orabi, and J.-S. Rhyee, Acta Mater. 131, 98. (2017).

    Article  Google Scholar 

  93. T. Fu, X. Yue, H. Wu, C. Fu, T. Zhu, X. Liu, L. Hu, P. Ying, J. He, and X. Zhao, J. Materiom. 2, 141. (2016).

    Article  Google Scholar 

  94. Z.-H. Ge, X. Liu, D. Feng, J. Lin, and J. He, Adv. Energy Mater. 6, 1600607. (2016).

    Article  Google Scholar 

  95. P. Peng, Z.N. Gong, F.S. Liu, M.J. Huang, W.Q. Ao, Y. Li, and J.Q. Li, Intermetallics 75, 72. (2016).

    Article  Google Scholar 

  96. A.K. Bohra, R. Bhatt, A. Singh, R. Basu, S. Bhattacharya, K.N. Meshram, S. Ahmad, A.K. Debnath, A.K. Chauhan, P. Bhatt, K. Shah, K. Bhotkar, S. Sharma, D.K. Aswal, K.P. Muthe, and S.C. Gadkari, Energy Convers. Manag. 145, 415. (2017).

    Article  Google Scholar 

  97. Y. Pan, and J.-F. Li, NPG Asia Mater. 8, e275. (2016).

    Article  Google Scholar 

  98. X. Yan, W. Zheng, F. Liu, S. Yang, and Z. Wang, Sci. Rep. 6, 37722. (2016).

    Article  Google Scholar 

  99. M. Hong, T.C. Chasapis, Z.-G. Chen, L. Yang, M.G. Kanatzidis, G.J. Snyder, and J. Zou, ACS Nano 10, 4719. (2016).

    Article  Google Scholar 

  100. B. Sun, X. Jia, D. Huo, H. Sun, Y. Zhang, B. Liu, H. Liu, L. Kong, B. Liu, and H. Ma, J. Phys. Chem. C 120, 10104. (2016).

    Article  Google Scholar 

  101. S. Deng, H. Liu, D. Li, J. Wang, F. Cheng, L. Shen, and S. Deng, J. Electron. Mater. 46, 2662. (2017).

    Article  Google Scholar 

  102. B. Sun, X. Jia, D. Huo, H. Sun, Y. Zhang, B. Liu, H. Liu, L. Kong, and H. Ma, Mod. Phys. Lett. B 30, 1650087. (2016).

    Article  Google Scholar 

  103. G. Ding, Y. Hu, D. Li, and X. Wang, Res. Phys. 15, 102631. (2019).

    Google Scholar 

  104. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414. (2012).

    Article  Google Scholar 

  105. M. Rull-Bravo, A. Moure, J.F. Fernández, and M. Martín-González, RSC Adv. 5, 41653. (2015).

    Article  Google Scholar 

  106. D. Narducci, Appl. Phys. Lett. 99, 102104. (2011).

    Article  Google Scholar 

  107. M. Dresselhaus, in (2013), pp. 36–39.

  108. C. A. Gould, N. Y. A. Shammas, S. Grainger, and I. Taylor, in 2008 26th International Conference on Microelectronics (IEEE, 2008), pp. 329–332.

  109. G. Min, and D.M. Rowe, IEEE Trans. Energy Convers. 22, 528. (2007).

    Article  Google Scholar 

  110. M. Kocoloski, C. Eger, and R. McCarty, in ACEEE Summer Study on Energy Efficiency in Industry (Omnipress, 2007), pp. 55–68.

  111. H. Ikeda, and F. Salleh, Appl. Phys. Lett. 96, 012106. (2010).

    Article  Google Scholar 

  112. H. Mizuno, S. Mossa, and J.-L. Barrat, Sci. Rep. 5, 14116. (2015).

    Article  Google Scholar 

  113. M. Verdier, K. Termentzidis, and D. Lacroix, J. Appl. Phys. 119, 175104. (2016).

    Article  Google Scholar 

  114. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163. (2008).

    Article  Google Scholar 

  115. R. McCarty, J. Electron. Mater. 42, 1504. (2013).

    Article  Google Scholar 

  116. T.M. Tritt, and M.A. Subramanian, MRS Bull. 31, 188. (2006).

    Article  Google Scholar 

  117. C. Gould and R. Manyala, in In A Guide to Small-Scale Energy Harvesting Techniques (2019).

  118. L.D. Hicks, and M.S. Dresselhaus, Phys. Rev. B 47, 12727. (1993).

    Article  Google Scholar 

  119. P. Vaqueiro, and A.V. Powell, J. Mater. Chem. 20, 9577. (2010).

    Article  Google Scholar 

  120. L.T. Hung, N. Van Nong, L. Han, R. Bjørk, P.H. Ngan, T.C. Holgate, B. Balke, G.J. Snyder, S. Linderoth, and N. Pryds, Energy Technol. 3, 1143. (2015).

    Article  Google Scholar 

  121. C. Wood, Rep. Prog. Phys. 51, 459. (1988).

    Article  Google Scholar 

  122. A.F. Ioffe, L.S. Stil’bans, E.K. Iordanishvili, T.S. Stavitskaya, A. Gelbtuch, and G. Vineyard, Phys. Today 12, 42. (1959).

    Article  Google Scholar 

  123. T.M. Tritt, Annu. Rev. Mater. Res. 41, 433. (2011).

    Article  Google Scholar 

  124. Y. Pan, Y.R. Li, Y. Zhao, and D.L. Akins, J. Chem. Ed. 92, 1860. (2015).

    Article  Google Scholar 

  125. L.-D. Zhao, V.P. Dravid, and M.G. Kanatzidis, Energy Environ. Sci. 7, 251. (2014).

    Article  Google Scholar 

  126. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, and D.T. Morelli, Nat. Nanotechnol. 8, 471. (2013).

    Article  Google Scholar 

  127. L. Chen, F. Meng, and F. Sun, Sci. China Technol. Sci. 59, 442. (2016).

    Article  Google Scholar 

  128. I.A. de Castro Villela, and J.L. Silveira, Appl. Therm. Eng. 27, 840. (2007).

    Article  Google Scholar 

  129. D. Samson, T. Otterpohl, M. Kluge, U. Schmid, and T. Becker, J. Electron. Mater. 39, 2092. (2010).

    Article  Google Scholar 

  130. M. Ashraf, and N. Masoumi, IEEE Trans. Very Large Scale Integration Syst. 24, 26. (2016).

    Article  Google Scholar 

  131. C. Watkins, B. Shen, and R. Venkatasubramanian, in ICT 2005. 24th International Conference on Thermoelectrics, 2005. (IEEE, 2005), pp. 265–267.

  132. T. Torfs, V. Leonov, C. Van Hoof, and B. Gyselinckx, in 2006 5th IEEE Conference on Sensors (IEEE, 2006), pp. 427–430.

  133. L. Mateu, C. Codrea, N. Lucas, M. Pollak, and P. Spies, in 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007) (IEEE, 2007), pp. 366–372.

  134. Y. Zhang, F. Zhang, Y. Shakhsheer, J.D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E.J. Carlson, A. Wood, B.H. Calhoun, and B.P. Otis, IEEE J. Solid-State Circuits 48, 199. (2013).

    Article  Google Scholar 

  135. J.P. Carmo, L.M. Goncalves, and J.H. Correia, IEEE Trans. Ind. Electron. 57, 861. (2010).

    Article  Google Scholar 

  136. K. Zeb, S.M. Ali, B. Khan, C.A. Mehmood, N. Tareen, W. Din, U. Farid, and A. Haider, Renew. Sustain. Energy Rev. 75, 1142. (2017).

    Article  Google Scholar 

  137. T. Kousksou, J.-P. Bédécarrats, D. Champier, P. Pignolet, and C. Brillet, J. Power Sources 196, 4026. (2011).

    Article  Google Scholar 

  138. N.R. Kristiansen, and H.K. Nielsen, J. Electron. Mater. 39, 1746. (2010).

    Article  Google Scholar 

  139. N.R. Kristiansen, G.J. Snyder, H.K. Nielsen, and L. Rosendahl, J. Electron. Mater. 41, 1024. (2012).

    Article  Google Scholar 

  140. P. Aranguren, D. Astrain, A. Rodríguez, and A. Martínez, Appl. Energy 152, 121. (2015).

    Article  Google Scholar 

  141. Q. Luo, P. Li, L. Cai, P. Zhou, D. Tang, P. Zhai, and Q. Zhang, J. Electron. Mater. 44, 1750. (2015).

    Article  Google Scholar 

  142. A. Date, A. Date, C. Dixon, and A. Akbarzadeh, Renew. Sustain. Energy Rev. 33, 371. (2014).

    Article  Google Scholar 

  143. M.G. Molina, L.E. Juanicó, and G.F. Rinalde, Int. J. Hydrog Energy 37, 10057. (2012).

    Article  Google Scholar 

  144. D. Kraemer, K. McEnaney, M. Chiesa, and G. Chen, Sol. Energy 86, 1338. (2012).

    Article  Google Scholar 

  145. L.L. Baranowski, G.J. Snyder, and E.S. Toberer, Energy Environ. Sci. 5, 9055. (2012).

    Article  Google Scholar 

  146. D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater. 10, 532. (2011).

    Article  Google Scholar 

  147. M.T. De Leon, H. Chong, and M. Kraft, Proc. Eng. 47, 76. (2012).

    Article  Google Scholar 

  148. M.L. Olsen, E.L. Warren, P.A. Parilla, E.S. Toberer, C.E. Kennedy, G.J. Snyder, S.A. Firdosy, B. Nesmith, A. Zakutayev, A. Goodrich, C.S. Turchi, J. Netter, M.H. Gray, P.F. Ndione, R. Tirawat, L.L. Baranowski, A. Gray, and D.S. Ginley, Energy Proc. 49, 1460. (2014).

    Article  Google Scholar 

  149. L.V. Allmen, G. Bailleul, T. Becker, J.-D. Decotignie, M.E. Kiziroglou, C. Leroux, P.D. Mitcheson, J. Muller, D. Piguet, T.T. Toh, A. Weisser, S.W. Wright, and E.M. Yeatman, IEEE Trans. Ind. Electron. 64, 7284. (2017).

    Article  Google Scholar 

  150. T. Chow, C. Li, and Z. Lin, in Solar Energy Materials and Solar Cells (2010), pp. 212–220.

  151. L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Creti, P. Siciliano, and A. Perrone, in 2010 IEEE Sensors (IEEE, 2010), pp. 747–750.

  152. M.D. Estes, J. Yang, B. Duane, S. Smith, C. Brooks, A. Nordquist, and F. Zenhausern, Analyst 137, 5510. (2012).

    Article  Google Scholar 

  153. M. Komori, K. Komiya, T. Shirakawa, T.J. Morikawa, and T. Yoshimura, Anal. Bioanal. Chem. 411, 3789. (2019).

    Article  Google Scholar 

  154. J. Xie, C. Lee, and H. Feng, J. Microelectromech. Syst. 19, 317. (2010).

    Article  Google Scholar 

  155. J. Yang, and T. Caillat, MRS Bull. 31, 224. (2006).

    Article  Google Scholar 

  156. V. Valdez and M. Berana, in Proceedings of the World Congress on Engineering (WCE, London, UK, 2017).

  157. X. Niu, J. Yu, and S. Wang, J. Power Sources 188, 621. (2009).

    Article  Google Scholar 

  158. E.F. Thacher, B.T. Helenbrook, M.A. Karri, and C.J. Richter, Proc. Inst. Mech. Eng. D J. Autom. Eng. 221, 95. (2007).

    Article  Google Scholar 

  159. C.-T. Hsu, D.-J. Yao, K.-J. Ye, and B. Yu, J. Renew. Sustain. Energy 2, 013105. (2010).

    Article  Google Scholar 

  160. J. Fleming, W. Ng, and S. Ghamaty, J. Aircr. 41, 674. (2004).

    Article  Google Scholar 

  161. S. Yu, Q. Du, H. Diao, G. Shu, and K. Jiao, Appl. Energy 138, 276. (2015).

    Article  Google Scholar 

  162. W. Liu, Q. Jie, H.S. Kim, and Z. Ren, Acta Mater. 87, 357. (2015).

    Article  Google Scholar 

  163. R. Saidur, M. Rezaei, W.K. Muzammil, M.H. Hassan, S. Paria, and M. Hasanuzzaman, Renew. Sustain. Energy Rev. 16, 5649. (2012).

    Article  Google Scholar 

  164. M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan, M.B. Ali Bashir, and M. Mohamad, Renew. Sustain. Energy Rev. 30, 337. (2014).

    Article  Google Scholar 

  165. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renew. Sustain. Energy Rev. 32, 486. (2014).

    Article  Google Scholar 

  166. L.E. Bell, Science 321, 1457. (2008).

    Article  Google Scholar 

  167. R. Kishore, and S. Priya, Materials 11, 1433. (2018).

    Article  Google Scholar 

  168. S. Vale, L. Heber, P.J. Coelho, and C.M. Silva, Energy Convers. Manag. 133, 167. (2017).

    Article  Google Scholar 

  169. H.B. Gao, G.H. Huang, H.J. Li, Z.G. Qu, and Y.J. Zhang, Appl. Therm. Eng. 96, 297. (2016).

    Article  Google Scholar 

  170. A.H. Reshak, J. Alloys Compd. 670, 1. (2016).

    Article  Google Scholar 

  171. A.H. Reshak, Mater. Res. Bull. 94, 22. (2017).

    Article  Google Scholar 

  172. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429. (2011).

    Article  Google Scholar 

  173. A.H. Reshak, J. Magn. Magn. Mater. 422, 287. (2017).

    Article  Google Scholar 

  174. J. Tang, H.-T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, Nano Lett. 10, 4279. (2010).

    Article  Google Scholar 

  175. C. Wang, F. Chen, K. Sun, R. Chen, M. Li, X. Zhou, Y. Sun, D. Chen, and G. Wang, Rev. Sci. Instrum. 89, 101501. (2018).

    Article  Google Scholar 

  176. G. Zhang, Q. Yu, and X. Li, Dalton Trans. 39, 993. (2010).

    Article  Google Scholar 

  177. O. Yamashita, S. Tomiyoshi, and K. Makita, J. Appl. Phys. 93, 368. (2003).

    Article  Google Scholar 

  178. V. Zemskov, A. Belaya, U. Beluy, and G. Kozhemyakin, J. Cryst. Growth 212, 161. (2000).

    Article  Google Scholar 

  179. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458. (2004).

    Article  Google Scholar 

  180. Z. Tian, S. Lee, and G. Chen, Annu. Rev. Heat Transf. 17, 425. (2014).

    Article  Google Scholar 

  181. A.Y. Faraji, A. Date, R. Singh, and A. Akbarzadeh, Energy Proc. 57, 2112. (2014).

    Article  Google Scholar 

  182. R. Yang, and G. Chen, Phys. Rev. B 69, 195316. (2004).

    Article  Google Scholar 

  183. N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail, Energy Rep. 6, 264. (2020).

    Article  Google Scholar 

  184. J. Pradeep, S. Krishnakumar, and M. Sowmiya, IOP Conf. Ser. Mater. Sci. Eng. 923, 012077. (2020).

    Article  Google Scholar 

  185. S.K. Sahu, A.K. Bohra, P.G. Abichandani, A. Singh, S. Bhattacharya, R. Bhatt, R. Basu, P. Sarkar, S.K. Gupta, K.P. Muthe, and S.C. Gadkari, Mater. Sci. Energy Technol. 2, 429. (2019).

    Google Scholar 

  186. B. Shen, R. Hendry, J. Cancheevaram, C. Watkins, M. Mantini, and R. Venkatasubramanian, in ICT 2005. 24th International Conference on Thermoelectrics, 2005. (IEEE, 2005), pp. 529–531.

  187. E.J. Carlson, K. Strunz, and B.P. Otis, IEEE J. Solid-State Circuits 45, 741. (2010).

    Article  Google Scholar 

  188. A. Paraskevas, and E. Koutroulis, Energy Convers. Manag. 108, 355. (2016).

    Article  Google Scholar 

  189. S. Yoon, S. Carreon-Bautista, and E. Sanchez-Sinencio, IEEE Trans Circuits Syst. II Express Briefs 65, 1974. (2018).

    Google Scholar 

  190. D.P. Dubal, N.R. Chodankar, D.-H. Kim, and P. Gomez-Romero, Chem. Soc. Rev. 47, 2065. (2018).

    Article  Google Scholar 

  191. M.Y. Al-Haik, A.A. Alothman, and M.R. Hajj, Energy Harvest. Syst. 5, 73. (2018).

    Article  Google Scholar 

  192. W. Zhu, C. Xie, Y. Shi, W. Li, and Z. Tang, Energy Sci. Eng. 8, 3717. (2020).

    Article  Google Scholar 

  193. R. J. Parise, in Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) (Cat. No.00CH37022) (American Inst. Aeronaut. & Astronautics, n.d.), pp. 120–127.

  194. W. Guan, S. Long, M. Liu, Z. Li, Y. Hu, and Q. Liu, J. Phys. D Apply. Phys. 40, 2754. (2007).

    Article  Google Scholar 

  195. C. Sargentis, K. Giannakopoulos, A. Travlos, and D. Tsamakis, Phys. E Low-Dimens. Syst. Nanostruct. 38, 85. (2007).

    Article  Google Scholar 

  196. M.Y. Haik, A.I. Ayesh, T. Abdulrehman, and Y. Haik, Mater. Lett. 124, 67. (2014).

    Article  Google Scholar 

  197. A. Sleiman, M.C. Rosamond, M. Alba Martin, A. Ayesh, A. Al Ghaferi, A.J. Gallant, M.F. Mabrook, and D.A. Zeze, Appl. Phys. Lett. 100, 023302. (2012).

    Article  Google Scholar 

  198. R.K. Gupta, D.Y. Kusuma, P.S. Lee, and M.P. Srinivasan, Mater. Lett. 68, 287. (2012).

    Article  Google Scholar 

  199. S. Kaliappan, and N. Sarveswaran, Int. J. Sci. Res. 2, 265. (2013).

    Google Scholar 

  200. R. Singh, S. Tundee, and A. Akbarzadeh, Sol. Energy 85, 371. (2011).

    Article  Google Scholar 

  201. K. Karthick, S. Suresh, G.C. Joy, and R. Dhanuskodi, Energy Sustain. Devel. 48, 107. (2019).

    Article  Google Scholar 

  202. C.E. Kinsella, S.M. O’Shaughnessy, M.J. Deasy, M. Duffy, and A.J. Robinson, Appl. Energy 114, 80. (2014).

    Article  Google Scholar 

  203. Y.-S. Noh, J.-I. Seo, W.-J. Choi, J.-H. Kim, H. Van Phuoc, H.-S. Kim, and S.-G. Lee, in 2021 IEEE International Solid- State Circuits Conference (ISSCC) (IEEE, 2021), pp. 266–268.

  204. B.S. Yilbas, and A.Z. Sahin, Energy 35, 5380. (2010).

    Article  Google Scholar 

  205. Z.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, Prog. Nat. Sci. Mater. Int. 22, 535. (2012).

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the Department of Science and Technology (DST), Government of India, for providing funding under the TARE scheme to allow us to continue our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnima Hazra.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data presented in this review are based on published literature.

Consent to participate

We confirm that the authors participated in the study and are fully aware of their ethical commitments.

Consent to publish

All the authors consent to the publication of this manuscript in the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y., Singh, S.K. & Hazra, P. The Quest for High-Efficiency Thermoelectric Generators for Extracting Electricity from Waste Heat. JOM 73, 4070–4084 (2021). https://doi.org/10.1007/s11837-021-04976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04976-5

Navigation