Skip to main content
Log in

Effect of Rapid Heating on Microstructure and Tensile Properties of a Novel Coating-Free Oxidation-Resistant Press-Hardening Steel

  • Advanced High-Strength Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We explored the feasibility and benefits of rapidly heating (at over 100°C/s) a novel coating-free oxidation-resistant press-hardening steel (PHS). Experiments indicated that a total heating time of 120 s was sufficient to achieve complete austenitization at 930°C with a heating rate of 100°C/s for a 2-mm-thick coating-free PHS blank. Tensile testing results showed that ultimate tensile strength of 1722 MPa and uniform elongation of 5.1% were obtained after rapid heating, soaking, water quenching, and baking, representing a significant improvement over values for the baseline PHS 22MnB5 (1583 MPa and 4.1%) subjected to the same treatment. In addition, the thickness of the oxide layer on the coating-free PHS after rapid heating and soaking (120 s) in ambient atmosphere was less than 5 μm, being much thinner than that on the 22MnB5 (36 μm). Finally, the potential benefits of adopting a rapid heating schedule for the coating-free PHS are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Karbasian, and A.E. Tekkaya, J. Mater. Process. Technol. 210, 2103. (2010).

    Article  Google Scholar 

  2. K. Mori, P.F. Bariani, B.A. Behrens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, J. Yanagimoto, and C.I.R.P. Ann, Manuf. Technol. 66, 755. (2017).

    Article  Google Scholar 

  3. J. Min, J. Lin, Y.A. Min, and F. Li, Mater. Sci. Eng. A 550, 375. (2012).

    Article  Google Scholar 

  4. K.S. Jhajj, S.R. Slezak, and K.J. Daun, Appl. Therm. Eng. 83, 98. (2015).

    Article  Google Scholar 

  5. Z. Wang, Z.H. Cao, J.F. Wang, and M.X. Huang, Scr. Mater. 192, 19. (2021).

    Article  Google Scholar 

  6. H. Yi, Z. Chang, H. Cai, P. Du, and D. Yang, Acta Metall Sin. 56, 429. (2020).

    Google Scholar 

  7. F.M. Castro Cerda, B. Schulz, S. Papaefthymiou, A. Artigas, A. Monsalve, and R.H. Petrov, Metals 6, 321. (2016).

    Article  Google Scholar 

  8. N. Chen, Z. Wan, H.P. Wang, J. Li, J. Solomon, and B.E. Carlson, Mater. Des. 195, 108986. (2020).

    Article  Google Scholar 

  9. Y. Karimi, S. Hossein Nedjad, H. Shirazi, M. Nili Ahmadabadi, H. Hamed-Zargari, and K. Ito, Mater. Sci. Eng. A 736, 392. (2018).

    Article  Google Scholar 

  10. S. Liu, Z. Xiong, H. Guo, C. Shang, and R.D.K. Misra, Acta Mater. 124, 159. (2017).

    Article  Google Scholar 

  11. X. Wan, G. Liu, Z. Yang, and H. Chen, Scr. Mater. 198, 113819. (2021).

    Article  Google Scholar 

  12. X. Wan, G. Liu, R. Ding, N. Nakada, Y.-W. Chai, Z. Yang, C. Zhang, and H. Chen, Scr. Mater. 166, 68. (2019).

    Article  Google Scholar 

  13. G. Liu, T. Li, Z. Yang, C. Zhang, J. Li, and H. Chen, Acta Mater. 201, 266. (2020).

    Article  Google Scholar 

  14. Z.R. Hou, X.M. Zhao, W. Zhang, H.L. Liu, and H.L. Yi, Mater Sci Technol. 34, 1168. (2018).

    Article  Google Scholar 

  15. J. Wang, E. Charles, S. Jatinder, H. Curt, and S.A.E. Int, J. Mater. Manuf. 125(2), 488. (2016).

    Google Scholar 

  16. J. Min, L.G. Hector Jr., L. Zhang, L. Sun, J.E. Carsley, and J. Lin, Mater. Des. 95, 370. (2016).

    Article  Google Scholar 

  17. Y. Hou, J. Min, N. Guo, J. Lin, J.E. Carsley, T.B. Stoughton, H. Traphöner, T. Clausmeyer, and A.E. Tekkaya, J. Mater. Process. Technol. 287, 116314. (2021).

    Article  Google Scholar 

  18. X.L. Wei, Z.S. Chai, Q. Lu, J. Hu, Z.Y. Liu, Q.Q. Lai, J.F. Wang, and W. Xu, Mater. Sci. Eng. A 819, 141464. (2021).

    Article  Google Scholar 

  19. M.C. Jo, J. Park, S.S. Sohn, S. Kim, J. Oh, and S. Lee, Mater. Sci. Eng. A 707, 65. (2017).

    Article  Google Scholar 

  20. Q. Lu, J.C. Pang, and J. Wang, Steel for hot stamping with enhanced oxidation resistance, WO2019127240A1, 2019.

  21. Z.R. Hou, T. Opitz, X.C. Xiong, X.M. Zhao, and H.L. Yi, Scr. Mater. 162, 492. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

J.Y. Min and Z.R. Hou acknowledge financial support from the National Natural Science Foundation of China (No. 51805375) and the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (No. 2020RALKFKT019). The authors thank Dr. Yonggang Liu from Ma Steel and Luning Wang from Benxi Steel for providing industrial coils of the coating-free PHS and the baseline 22MnB5 for this study, and Jinlong Zhu from General Motors China Science Lab for assistance with tensile specimen preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junying Min, Jianfeng Wang or Qi Lu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Min, J., Wang, J. et al. Effect of Rapid Heating on Microstructure and Tensile Properties of a Novel Coating-Free Oxidation-Resistant Press-Hardening Steel. JOM 73, 3195–3203 (2021). https://doi.org/10.1007/s11837-021-04877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04877-7

Navigation