Skip to main content

Advertisement

Log in

Adventitious root cultures of Clitoria ternatea L. and its potential as a memory enhancer alternative

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Clitoria ternatea L., known as the butterfly pea plant, is from the Fabaceae family and is commonly used in traditional medicine or as a brain tonic in Asia. The root extracts of C. ternatea have been previously studied for its neuroprotective properties linked to memory enhancement of the mammalian brain, indirectly delaying the occurrence of neurodegenerative diseases. The current study aims to establish in vitro adventitious root cultures of C. ternatea via cotyledon explants and to identify the phytoconstituents of the induced adventitious roots. In this study, the highest percentage of induction (95.24%) was achieved in half-strength MS medium supplemented with 2.50 mg/L NAA (1-naphthaleneacetic acid) after 6 weeks of culture. Results also indicated that the supplementation of 1.50 mg/L NAA induced the highest number of adventitious roots (12.86 ± 2.14), while 2.50 mg/L 4-Cl-IAA (4-chloroindole-3-acetic acid) yielded higher adventitious root length (0.75 ± 0.13 cm) in comparison with the other auxin treatments. Microscopic analysis indicated thicker in vitro root morphology for all NAA treatments in comparison with the roots of in vitro seedling. Ethanolic extract of in vitro-generated adventitious roots showed potential anti-acetylcholinesterase activities (IC50 = 1519.89 ± 0.18 μg/mL) albeit being lower than the control (IC50 = 70.37 ± 0.01 μg/mL), while gas chromatography–mass spectrometry analysis identified the presence of pentacyclic triterpenes, phytosterols and fatty acids in the adventitious root culture that are linked to the mammalian neuroprotective properties of C. ternatea. The current investigation reports on the potential of C. ternatea root cultures being further utilized to produce valuable metabolites linked to the mammalian memory enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Snafi AE (2016) Pharmacological importance of Clitoria ternateaa review. IOSR J Pharm 6(3):68–83

    CAS  Google Scholar 

  • Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M (2012) Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem Biol Drug Des 80(3):434–439

    CAS  PubMed  Google Scholar 

  • Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115(7):1053–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baskaran P, Kumari A, Ncube B, Van SJ (2016) Acetylcholinesterase-inhibition and antibacterial activity of Mondia whitei adventitious roots and ex vitro-grown somatic embryogenic biomass. Front Pharmacol 7:335

    PubMed  PubMed Central  Google Scholar 

  • Cenkci S, Kargioglu M, Dayan S, Konuk M (2008) In vitro propagation of an endangered plant species, Thermopsis turcica (Fabaceae). Biologia 63(5):652–657

    Google Scholar 

  • Chen X, Qu Y, Sheng L, Liu J, Huang H, Xu L (2014) A simple method suitable to study de novo root organogenesis. Front Plant Sci 5:208

    PubMed  PubMed Central  Google Scholar 

  • Damodaran T, Tan BWL, Liao P, Ramanathan S, Keat LG, Hassan Z (2018) Clitoria ternatea L. root extract ameliorated the cognitive and hippocampal long-term potentiation deficits induced by chronic cerebral hypoperfusion in the rat. J Ethnopharmacol 224:381–390

    PubMed  Google Scholar 

  • Ellman GL, Courtney KD, JrV A, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    CAS  PubMed  Google Scholar 

  • Fan M, Liu Z, Zhou L, Lin T, Liu Y, Luo L (2011) Effects of plant growth regulators and saccharide on in vitro plant and tuberous root regeneration of Cassava (Manihot esculenta Crantz). J Plant Growth Regul 30(1):11–19

    CAS  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N (2014) Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L. Appl Biochem Biotechnol 174(6):2086–2095

    CAS  PubMed  Google Scholar 

  • Ferrer A, Altabella T, Arró M, Boronat A (2017) Emerging roles for conjugated sterols in plants. Prog Lipid Res 67:27–37

    CAS  PubMed  Google Scholar 

  • Galen C, Rabenold JJ, Liscum E (2007) Light-sensing in roots. Plant Signal Behav 2(2):106–108

    PubMed  PubMed Central  Google Scholar 

  • Geiss G, Gutierrez L, Bellini C (2018) Adventitious root formation: New insights and perspectives. Annu Plant Rev Online. https://doi.org/10.1002/9781119312994.apr0400

    Article  Google Scholar 

  • Gupta GK, Chahal J, Bhatia M (2010) Clitoria ternatea (L.): old and new aspects. J Pharm Res 3(11):2610–2614

    Google Scholar 

  • Hsieh YF, Jain M, Wang J, Gallo M (2017) Direct organogenesis from cotyledonary node explants suitable for Agrobacterium-mediated transformation in peanut (Arachis hypogaea L.). Plant Cell Tissue Organ Cult 128(1):161–175

    CAS  Google Scholar 

  • Jung JKHM, McCouch SRM (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131(3):1411–1417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komersová A, Komers ČA (2007) New findings about Ellman’s method to determine cholinesterase activity. Z Naturforsch C 62(1–2):150–154

    PubMed  Google Scholar 

  • Kraus TA, Grosso MA, Basconsuelo SC, Bianco CA, Malpassi RN (2007) Morphology and anatomy of shoot, root, and propagation systems in Hoffmannseggia glauca. Plant Biol 9(06):705–712

    CAS  PubMed  Google Scholar 

  • Lin YC, Hung CM, Tsai JC, Lee JC, Chen YLS, Wei CW, Kao JY, Way TD (2010) Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMP-activated protein kinase (AMPK). J Agric Food Chem 58(17):9511–9517

    CAS  PubMed  Google Scholar 

  • Margret AA, Begum TN, Parthasarathy S, Suvaithenamudhan S (2015) A strategy to employ Clitoria ternatea as a prospective brain drug confronting monoamine oxidase (MAO) against neurodegenerative diseases and depression. Nat Prod Bioprospect 5(6):293–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathada RV, Jevoor PS, Ravishankar R (2012) Effect of Clitoria ternatea Linn plant root extract on the hippocampal area Ca3 and pancreas of juvenile diabetic rats—a preliminary investigation. Spatula DD 2(1):9–16

    Google Scholar 

  • Mehla J, Pahuja M, Gupta P, Dethe S, Agarwal A, Gupta YK (2013) Clitoria ternatea ameliorated the intracerebroventricularly injected streptozotocin induced cognitive impairment in rats: behavioral and biochemical evidence. Psychopharmacology 230(4):589–605

    CAS  PubMed  Google Scholar 

  • Mhaskar AV, Krishnan P, Vishwakarma KS, Maheshwari VL (2011) In vitro regeneration of Clitoria ternatea L. through axillary bud culture. Intl J Pharmacol Biol Sci 5(1):17–23

    CAS  Google Scholar 

  • Ming NG, Binte Mostafiz S, Johon NS, Zulkifli A, Saliha N, Wagiran A (2019) Combination of plant growth regulators, maltose, and partial desiccation treatment enhance somatic embryogenesis in selected Malaysian rice cultivar. Plants 8(6):144

    CAS  PubMed Central  Google Scholar 

  • Morris JB (2009) Characterization of butterfly pea (Clitoria ternatea L.) accessions for morphology, phenology, reproduction and potential nutraceutical, pharmaceutical trait utilization. Genet Resour Crop Evol 56:421–427

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  • Murthy HN, Hahn EJ, Paek KY (2008) Adventitious roots and secondary metabolism. Chin J Biotechnol 24(5):711–716

    CAS  Google Scholar 

  • Narayani M, Srivastava S (2017) Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16(6):1227–1252

    CAS  Google Scholar 

  • Pandey V, Cherian E, Patani G (2010) Effect of growth regulators and culture conditions on direct root induction of Rauwolfia serpentina L. (Apocynaceae) Benth by leaf explants. Trop J Pharm Res 9(1):27–34

    CAS  Google Scholar 

  • Park SJ, Kim DH, Jung JM, Kim JM, Cai M, Liu X, Hong JG, Lee CH, Lee KR, Ryu JH (2012) The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur J Pharmacol 676(1–3):64–70

    CAS  PubMed  Google Scholar 

  • Patel K, Patel DK (2017) Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: a concise report. J Tradit Complement Med 7(3):360–366

    PubMed  Google Scholar 

  • Piao T, Ma Z, Li X, Liu J (2015) Taraxasterol inhibits IL-1β-induced inflammatory response in human osteoarthritic chondrocytes. Eur J Pharmacol 756:38–42

    CAS  PubMed  Google Scholar 

  • Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Świerczyńska J, Góralski G, Ślesak H, Bohdanowicz J (2008) Ultrastructure and histochemical analysis of extracellular matrix surface network in kiwifruit endosperm-derived callus culture. Plant Cell Rep 27(7):1137–1145

    CAS  PubMed  Google Scholar 

  • Raghu KS, Shamprasad BR, Kabekkodu SP, Paladhi P, Joshi MB, Valiathan MS, Guruprasad KP, Satyamoorthy K (2017) Age dependent neuroprotective effects of medhya rasayana prepared from Clitoria ternatea Linn. in stress induced rat brain. J Ethnopharmacol 197:173–183

    PubMed  Google Scholar 

  • Rai KS (2010) Neurogenic potential of Clitoria ternatea aqueous root extract—a basis for enhancing learning and memory. Int J Med Health Biomed Bioeng Pharm Eng 4(10):508–513

    Google Scholar 

  • Rai KS, Murthy KD, Karanth KS, Nalini K, Rao MS, Srinivasan KK (2002) Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus. Fitoterapia 73(7–8):685–689

    CAS  PubMed  Google Scholar 

  • Ravi L, Krishnan K (2017) Cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J Cell Biol 12(1):20–27

    CAS  Google Scholar 

  • Rout GR (2005) Micropropagation of Clitoria ternatea Linn. (Fabaceae)—an important medicinal plant. In Vitro Cell Dev Biol Plant 41(4):516–519

    Google Scholar 

  • Shahzad A, Faisal M, Anis M (2007) Micropropagation through excised root culture of Clitoria ternatea and comparison between in vitro–regenerated plants and seedlings. Ann Appl Biol 150(3):341–349

    CAS  Google Scholar 

  • Sultana N, Khalid A (2010) Phytochemical and enzyme inhibitory studies on indigenous medicinal plant Rhazya stricta. Nat Prod Res 24(4):305–314

    CAS  PubMed  Google Scholar 

  • Suwito H, Heffen WL, Cahyana H, Suwarso WP (2016) Isolation, transformation, anticancer, and apoptosis activity of lupeyl acetate from Artocarpus integra. In: AIP Conference Proceedings (Vol. 1718, No. 1, p. 080004). AIP Publishing.https://doi.org/10.1063/1.4943339

  • Swain SS, Sahu L, Pal A, Barik DP, Pradhan C, Chand PK (2012) Hairy root cultures of butterfly pea (Clitoria ternatea L.): Agrobacterium× plant factors influencing transformation. World J Microbiol Biotechnol 28(2):729–739

    CAS  PubMed  Google Scholar 

  • Takasaki M, Konoshima T, Tokuda K, Masuda K, Arai Y, Shiojima K, Ageta H (1999) Anti-carcinogenic activity of Taraxacum plant. II Biol Pharm Bull 22(6):606–610

    CAS  PubMed  Google Scholar 

  • Taranalli AD, Cheeramkuzhy TC (2000) Influence of Clitoria ternatea extracts on memory and central cholinergic activity in rats. Pharm Biol 38(1):51–56

    CAS  PubMed  Google Scholar 

  • Thiem B (2003) In vitro propagation of isoflavone-producing Pueraria lobate (Willd.) Ohwi. Plant Sci 165(5):1123–1128

    CAS  Google Scholar 

  • Tihlaříková E, Neděla V, Đorđević B (2019) In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci Rep 9(1):2300

    PubMed  PubMed Central  Google Scholar 

  • Vasisht K, Dhobi M, Khullar S, Mandal SK, Karan M (2016) Norneolignans from the roots of Clitoria ternatea L. Tetrahedron Lett 57(16):1758–1762

    CAS  Google Scholar 

  • Wang L, Ruan YL (2013) Regulation of cell division and expansion by sugar and auxin signalling. Front Plant Sci 4:163

    PubMed  PubMed Central  Google Scholar 

  • Xu F, Huang X, Wu H, Wang X (2018) Beneficial health effects of lupenone triterpene: a review. Biomed Pharmacother 103:198–203

    CAS  PubMed  Google Scholar 

  • Yan YH, Li JL, Zhang XQ, Yang WY, Wan Y, Ma YM, Zhu YQ, Peng Y, Huang LK (2014) Effect of naphthalene acetic acid on adventitious rootdevelopment and associated physiological changes in stem cutting of Hemarthria compressa. PLoS ONE 9(3):e90700

    PubMed  PubMed Central  Google Scholar 

  • Yu-qing Z, Meng-jie Z, Deng Z, Jun-jie Z, Jing-jian L, Xiao-yang C (2018) In vitro plant regeneration of Zenia insignis Chun. Open life Sci 13(1):34–41

    PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Bae TW, Boo KH, Sun HJ, Song IJ, Pham CH, Ganesan M, Yang DH, Kang HG, Ko SM, Riu KZ (2011) Ginsenoside production and morphological characterization of wild ginseng (Panax ginseng Meyer) mutant lines induced by γ-irradiation (60Co) of adventitious roots. J Ginseng Res 35(3):283

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Ministry of Higher Education Malaysia for funding the project under the Fundamental Research Grant Scheme (Grant code: 203/PBIOLOGI/6711902). They thank Universiti Sains Malaysia and the Agricultural Crop Trust (Malaysia) for the support towards this project.

Funding

The project was funded by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (Grant code: 203/PBIOLOGI/6711902).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RXL. The first draft of the manuscript was written by RXL and BLC. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bee Lynn Chew.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, R.X., Hassan, Z., Subramaniam, S. et al. Adventitious root cultures of Clitoria ternatea L. and its potential as a memory enhancer alternative. Plant Biotechnol Rep 15, 163–176 (2021). https://doi.org/10.1007/s11816-021-00664-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-021-00664-7

Keywords

Navigation