Skip to main content

Advertisement

Log in

Shoot cultures of Hoppea fastigiata (Griseb.) C.B. Clarke as potential source of neuroprotective xanthones

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Hoppea fastigiata, an annual medicinal herb belonging to the Gentianaceae, is mostly found in South Asian countries, and is used by local tribes for various brain-related ailments. The genus possesses a unique class of compounds, xanthones, which are known for their potential against Alzheimer’s and Parkinson’s diseases. Limited availability and the potential pharmacological significance of the plants has led to the establishment of in vitro cultures of H. fastigiata and study of its neuroprotective principles. In vitro plantlets were established from the apical meristem of the plant in Murashige and Skoog medium with a combination of the phytohormones 6-benzylaminopurine (1 mg/L) and kinetin (0.1 mg/L), which was found to be efficacious with a growth index of 0.9 ± 0.01 after 30 days. Four different solvent extracts of in vitro cultures were evaluated for acetylcholinesterase (AChE) and monoamine oxidase A and B (MAO-A and MAO-B) inhibitory activities, amongst which the ethanolic extract showed the lowest IC50 value in all the assays. Three major compounds were isolated from the ethanolic extract and structurally confirmed as 1,5,7-trihydroxy-3-methoxyxanthone (1), 1,5-dihydroxy-3,7-dimethoxyxanthone (2) and 1,3,5-trihydroxy-8-methoxyxanthone (3). Compound 3 showed the strongest AChE inhibitory activity with mixed-type inhibition. Compounds 1 and 2 also showed promising AChE inhibitory properties with mixed and non-competitive types of inhibition, respectively. Compounds 1 and 2 showed inhibition of MAO-A (mixed and competitive, respectively) and compounds 2 and 3 showed inhibition of MAO-B (competitive and mixed, respectively). Extracts and isolated compounds showed good antioxidant capacities. The ethanolic extract and compound 2 showed the strongest antioxidant activities among the other solvent extracts and compounds, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klundt T, Bocola M, Lutge M, Beuerle T, Liu B, Beerhues L (2009) A single amino acid substitution converts benzophenone synthase into phenylpyrone synthase. J Biol Chem 284:30957–30964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mukherjee KS, Chakraborty CK, Laha S, Bhattacharya D, Chatterjee TP (1991) 1,7-Trihydroxy-3-methoxyxanthone from Hoppea fastigiata. Pharm Biol 29:123–125. doi:10.1016/0031-9422(91)85307-L

    Google Scholar 

  3. Mukherjee KS, Manna TK, Laha S, Chakraborty CK (1994) A new xanthone from Hoppea fastigiata. Pharm Biol 32:201–203

    Article  CAS  Google Scholar 

  4. Mukherjee KS, Chakraborty CK, Chatterjee TP, Bhattacharjee D, Laha S (1991) 1,5,7-Trihydroxy-3-methoxyxanthone from Hoppea fastigiata. Phytochemistry 30:1036–1037. doi:10.1016/0031-9422(91)85307-L

    Article  CAS  Google Scholar 

  5. Mukherjee KS, Laha S, Manna TK, Roy SC (1995) Further work on Limnophila rugosa and Hoppea fastigiata (Gentianaceae). J Indian Chem Soc 72:63–64

    CAS  Google Scholar 

  6. Brahmachari G, Gorai D, Mondal S, Gangopadhay A, Chatterjee D (2003) A new naturally occurring xanthone bearing rare oxygenation pattern from Hoppea fastigiata. J Chem Res 6:362–363. doi:10.3184/030823403103174146

    Article  Google Scholar 

  7. Urbain A, Marston A, Queiroz EF, Ndjoko K, Hostettmann K (2004) Xanthones from Gentiana campestris as new acetylcholinesterase inhibitors. Planta Med 70:1011–1014

    Article  CAS  PubMed  Google Scholar 

  8. Houghton PJ, Howes MJ (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 14:6–22

    Article  CAS  PubMed  Google Scholar 

  9. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Houghton PJ, Ren Y, Howes MJ (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199

    Article  CAS  PubMed  Google Scholar 

  11. Heinrich N, Teoh HL (2004) Galanthamine of snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92:147–162

    Article  CAS  PubMed  Google Scholar 

  12. Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Serrano-Dueñas M, Cardozo-Pelaez F, Sanchez-Ramos JR (2001) Effect of Banisteriopsis caapi extract on Parkinson’s disease. Sci Rev Altern Med 5:127–132

    Google Scholar 

  14. Yamada M, Yasuhara H (2004) Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology 25:215–221

    Article  CAS  PubMed  Google Scholar 

  15. Schulz V (2003) Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trial and guidelines fail to consider. Phytomedicine 10:74–79

    Article  CAS  PubMed  Google Scholar 

  16. Urbain A, Marston A, Sintra GL, Bravo J, Purev O, Purevsuren B, Batsuren D, Reist M, Carrupt PA, Hostettmann K (2008) Xanthones from Gentiana amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J Nat Prod 71:895–897

    Article  CAS  PubMed  Google Scholar 

  17. Khaw KY, Choi SB, Tan SC, Wahab HA, Chan KL, Murugaiyah V (2014) Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies. Phytomedicine 21:1303–1309

    Article  CAS  PubMed  Google Scholar 

  18. Ambasta SP (1999) The useful plants of India. National Institute of Science Communication, New Delhi

    Google Scholar 

  19. Moon UR, Sen SK, Mitra A (2014) Antioxidant capacities and acetylcholinesterase-inhibitory activity of Hoppea fastigiata. J Herbs Spices Med Plants 20:115–123. doi:10.1080/10496475.2013.840711

    Article  Google Scholar 

  20. Wungsintaweekul J, Choo-malee J, Charoonratana T, Keawpradub N (2012) Methyl jasmonate and yeast extract stimulate mitragynine production in Mitragyna speciosa (Roxb.) Korth. shoot culture. Biotechnol Lett 34:1945–1950

    Article  PubMed  Google Scholar 

  21. Gaid MM, Sircar D, Muller A, Beurle T, Liu B, Ernst L, Hansch R, Beerhues L (2012) Cinnamate:CoA ligase initiates the biosynthesis of benzoate derived xanthone phytoalexin in Hypericum calycinum cell cultures. Plant Physiol 160:1267–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. doi:10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  23. Re R, Pellegrinni N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  24. Benzie IEF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  25. Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc 2:875–877

    Article  CAS  PubMed  Google Scholar 

  26. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  27. Marston A, Kissling J, Hostettmann K (2002) A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem Anal 13:51–54

    Article  CAS  PubMed  Google Scholar 

  28. Aiyegoro OA, Van Dyk S (2011) The antioxidant properties, cytotoxicity and monoamine oxidase inhibition abilities of the crude dichloromethane extract of Tarchonanthus camphoratus L. leaves. Afr J Biotechnol 10:17297–17304. doi:10.5897/AJB11.2249

    Google Scholar 

  29. Shyamali S, Kazumi H (2007) Synergistic effects of both kinetin and both benzyl adenine improves regeneration of cotyledon explants of bottle gourd (Lagenaria siceraria) on ethylene production. In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds) Advances in plant ethylene research: proceedings of 7th international symposium on plant hormone ethylene. Springer, Netherlands, pp 153–155

    Chapter  Google Scholar 

  30. Kumar PP, Reid DM, Thorpe TA (1987) The role of ethylene and carbon-dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol Plant 69:244–252. doi:10.1111/j.1399-3054.1987.tb04282.x

    Article  CAS  Google Scholar 

  31. Suri SS, Ramawat KG (1995) In vitro hormonal regulation of laticifers differentiation in Calotropis procera. Ann Bot 75:477–480

    Article  CAS  Google Scholar 

  32. Ramawat KG, Mathur M (2007) Factors affecting production of secondary metabolites. In: Ramawat KG, Merillon JM (eds) Biotechnology: secondary metabolites. Science Publishers Inc., Enfield, pp 59–102

    Chapter  Google Scholar 

  33. Goyal S, Ramawat KG (2008) Synergistic effect of morphactin on cytokinin-induced production of isoflavonoids in cell cultures of Pueraria tuberosa (Roxb. ex. Wild.). Plant Growth Regul 55:175–181. doi:10.1007/s10725-008-9271-x

    Article  CAS  Google Scholar 

  34. Ramkrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731. doi:10.4161/psb.6.11.17613

    Article  Google Scholar 

  35. Qin J, Lan W, Liu Z, Huang J, Tang H, Wang H (2013) Synthesis and biological evaluation of 1,3 dihydroxyxanthone mannich base derivatives anticholinesterase agents. Chem Cent J 7:78

    Article  PubMed Central  PubMed  Google Scholar 

  36. Gnerre C, Thull U, Gaillard P, Carrupt P, Testa B, Fernandes E, Silva F, Pinto M, Pinto MMM, Wolfender J, Hostettmann K, Cruciani G (2001) Natural and synthetic xanthones as monoamine oxidase inhibitors: biological assay and 3-D QSAR. Helv Chim Acta 84:552–570. doi:10.1002/1522-2675(20010321)84:3<552:AID-HLCA552>3.0.CO;2-X

    Article  CAS  Google Scholar 

  37. Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 15:4324–4333

    Article  CAS  PubMed  Google Scholar 

  38. Lee BW, Lee JH, Lee ST, Lee HS, Lee WS, Jeong TS, Parka KH (2005) Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Biorgan Med Chem Lett 15:5548–5552

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Utkarsh Ravindra Moon thanks University Grant Commission, India for the award of an individual junior/senior research fellowship [F. No. 2-16/98 (SA-I), dated 4-21-2011]. Facilities created from an MHRD-sponsored research grant (4-25/2013/TS-I) were utilized in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinpunya Mitra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, U.R., Sircar, D., Barthwal, R. et al. Shoot cultures of Hoppea fastigiata (Griseb.) C.B. Clarke as potential source of neuroprotective xanthones. J Nat Med 69, 375–386 (2015). https://doi.org/10.1007/s11418-015-0904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-015-0904-x

Keywords

Navigation