Skip to main content
Log in

Bio-mediated Synthesis of ZnS–ZnO Nanocomposite from Cucumis melo Pulp and Chicken Feathers: Photodegradation of Dyes and Antibacterial Activities

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

An innovative way was found for the synthesis of efficient photocatalyst in the form of ZnS–ZnO nanocomposite from Cucumis melo pulp and chicken feather powder as a source of fuel and oxygen and sulfur, respectively, by combustion followed by hydrothermal method and is reported in this work. Different analytical techniques are employed, such as XRD, SEM, TEM, PL EDS, FT-IR, DRS, and EIS techniques for structural, morphological, optical, and electrochemical properties. The SEM analysis confirmed ZnS–ZnO nanocomposite formation. The XRD data of ZnS–ZnO nanocomposite resembled pure crystalline ZnO and ZnS nanoparticles. DRS confirmed the band gap of the synthesized material, which was calculated using a K-M plot and found to be 3.29 eV, 3.38 eV, and 3.12 eV for ZnO, ZnS nanoparticles, and ZnS-ZnO nanocomposite, respectively. The synthesized ZnS–ZnO nanocomposite showed enhanced photocatalytic activity towards MB [92%], RhB [98.4%], and CR [90.9%] dyes in water under UV light source. Radicals formation was confirmed by the ESR technique. TOC analysis was done to verify the degradation of dyes. ZnS–ZnO nanocomposite also exhibited potent or robust antibacterial activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data supporting these studies finding are available from the corresponding author upon reasonable request.

References

  1. F. Davar, A. Majedi, A. Mirzaei, Green synthesis of ZnO nanoparticles and its application in the degradation of some dyes. J. Am. Ceram. Soc. 98, 1739–1746 (2015)

    Article  CAS  Google Scholar 

  2. V.V. Gawade, N.L. Gavade, H.M. Shinde, S.B. Babar, A.N. Kadam, K.M. Garadkar, Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. J. Mater. Sci. Mater. Electron. 28, 14033–14039 (2017)

    Article  CAS  Google Scholar 

  3. S.S.M. Hassan, W.I.M.E. Azab, H.R. Ali, M.S.M. Mansour, Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv. Natl. Sci: Nanosci Nanotechnol 6, 045012 (2015)

    ADS  Google Scholar 

  4. H. Sadiq, F. Sher, S. Sehar, E.C. Lima, S. Zhang, H.M.N. Iqbal, F. Zafar, M. Nuhanović, Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 335, 116567 (2021)

    Article  CAS  Google Scholar 

  5. M. Abdullah, P. John, Z. Ahmad, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa, A.G. Abid, K.Y. Butt, S. Ahmed, Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Appl. Nanosci. (Switzerland). 11, 2361–2370 (2021)

    Article  ADS  CAS  Google Scholar 

  6. D. Suresh, R.M. Shobharani, P.C. Nethravathi, M.A. Pavan Kumar, H. Nagabhushana, S.C. Sharma, Artocarpus gomezianus aided green synthesis of ZnO nanoparticles: luminescence, photocatalytic and antioxidant properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 141, 128–134 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. C. Liu, Y. Wang, D. Meng, X. Yu, Y. Wang, J. Liu, C. Lu, K. Xu, Enhanced visible light photocatalytic performance of ZnO/ZnS/CuS ternary nanocomposites. Mater. Lett. 122, 197–200 (2014)

    Article  CAS  Google Scholar 

  8. Y. Li, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6, 5164–5173 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. T.S. Aldeen, H.E. Ahmed-Mohamed, M. Maaza, ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids 160, 110313 (2022)

    Article  CAS  Google Scholar 

  10. M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djuriŝić, W.K. Chan, H. Su, K.S. Wong, Effect of native defects on photocatalytic properties of ZnO. J. Phys. Chem. C 115, 11095–11101 (2011)

    Article  CAS  Google Scholar 

  11. A. El-Golli, M. Fendrich, N. Bazzanella, C. Dridi, A. Miotello, M. Orlandi, Wastewater remediation with ZnO photocatalysts: green synthesis and solar concentration as an economically and environmentally viable route to application. J. Environ. Manag. 286, 112226 (2021)

    Article  CAS  Google Scholar 

  12. R.D.C. Soltani, G. Shams Khoramabadi, H. Godini, Z. Noorimotlagh, The application of ZnO/SiO2 nanocomposite for the photocatalytic degradation of a textile dye in aqueous solutions in comparison with pure ZnO nanoparticles. Desalin. Water Treat. 56(9), 2551–2558 (2015)

    Article  CAS  Google Scholar 

  13. S. Reais, R. Mohammadi, Z. Khammar, G. Paimard, S. Abdalbeygi, Z. Sarlak, M. Rouhi, Photocatalytic detoxification of aflatoxin B1 in an aqueous solution and soymilk using nano metal oxides under UV light: KINETIC and isotherm models. Lwt 154, 112638 (2022)

    Article  Google Scholar 

  14. P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. 448, 481–488 (2018)

    Article  ADS  CAS  Google Scholar 

  15. M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che, M.A. Fox, Photocatalysis on native and platinum-loaded TiO2 and ZnO catalysts—origin of different reactivities on wet and dry metal oxides. Bull. Chem. Soc. Jpn 64(2), 543–551 (1991)

    Article  CAS  Google Scholar 

  16. J. Villaseñor, P. Reyes, G. Pecchi, Photodegradation of pentachlorophenol on ZnO. J. Chem. Technol. Biotechnol. 72(2), 105–110 (1998)

    Article  Google Scholar 

  17. P.V. Kamat, R. Huehn, R. Nicolaescu, A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. J. Phys. Chem. B 106(4), 788–794 (2002)

    Article  CAS  Google Scholar 

  18. P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, R.E. Kroon, O.M. Ntwaeaborwa, Luminescent, magnetic and optical properties of ZnO–ZnS nanocomposites. Phys. B Condense Matter. 507, 13–20 (2017)

    Article  ADS  CAS  Google Scholar 

  19. G.K. Weldegebrieal, Synthesis method, the antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: a review. Inorg. Chem. Commun. 120, 108140 (2020)

    Article  CAS  Google Scholar 

  20. N. Pauzi, N.M. Zain, N.A.A. Yusof, Gum arabic as a natural stabilizing agent in green synthesis of ZnO nanofluids for antibacterial application. J. Environ. Chem. Eng. 8, 103331 (2020)

    Article  CAS  Google Scholar 

  21. M. Shabaani, S. Rahaiee, M. Zare, S.M. Jafari, Green synthesis of ZnO nanoparticles using loquat seed extract; biological functions and photocatalytic degradation properties. LWT. 134, 110133 (2020)

    Article  CAS  Google Scholar 

  22. X. Jin, J. Chen, F. Chen, H. Duan, Z. Wang, J. Li, Solid-state synthesis of ZnO/ZnS photocatalyst with efficient organic pollutant degradation performance. Catalysts 12(9), 981 (2022)

    Article  CAS  Google Scholar 

  23. W. Liu, T. He, Y. Wang, Ge. Ning, Xu. Zhenggang, X. Chen, Hu. Xinjiang, Wu. Yaohui, Y. Zhao, Synergistic adsorption-photocatalytic degradation effect and norfloxacin mechanism of ZnO/ZnS@ BC under UV-light irradiation. Sci. Rep. 10(1), 11903 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. W. Xitao, Lv. Rong, W. Kang, Synthesis of ZnO@ ZnS–Bi2 S3 core–shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance. J. Mater. Chem. A 2(22), 8304–8313 (2014)

    Article  Google Scholar 

  25. H. Chemingui, T. Missaoui, J.C. Mzali, T. Yildiz, M. Konyar, M. Smiri, N. Saidi, A. Hafiane, H.C. Yatmaz, Facile green synthesis of zinc oxide nanoparticles (ZnO NPs): antibacterial and photocatalytic activities. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab3cd6

    Article  Google Scholar 

  26. T.U. Doan-Thi, T.T. Nguyen, Y.D. Thi, K.H. Ta-Thi, B.T. Phan, K.N. Pham, Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 10, 23899–23907 (2020). https://doi.org/10.1039/d0ra04926c

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Saif, A. Tahir, T. Asim, Y. Chen, M. Khan, S.F. Adil, Green synthesis of ZnO hierarchical microstructures by Cordia myxa and their antibacterial activity. Saudi J. Biol. Sci. 26, 1364–1371 (2019). https://doi.org/10.1016/j.sjbs.2019.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Ramesh, M. Anbuvannan, G. Viruthagiri, Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 864–870 (2015). https://doi.org/10.1016/j.saa.2014.09.105

    Article  ADS  CAS  PubMed  Google Scholar 

  29. F.T. Thema, E. Manikandan, M.S. Dhlamini, M. Maaza, Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 161, 124–127 (2015)

    Article  CAS  Google Scholar 

  30. Z. Ahsani-Namin, R. Norouzbeigi, H. Shayesteh, Green mediated combustion synthesis of copper zinc oxide using Eryngium planum leaf extract as a natural green fuel: excellent adsorption capacity towards Congo red dye. Ceram. Int. 48(14), 20961–20973 (2022)

    Article  CAS  Google Scholar 

  31. S. Isarankura-Na-Ayutthaya, S. Tanpichai, J. Wootthikanokkhan, Keratin extracted from chicken feather waste: extraction preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. J. Polym. Environ. 23, 506–516 (2015). https://doi.org/10.1007/s10924-015-0725-8

    Article  CAS  Google Scholar 

  32. V. Muthukumaraswamy-Rangaraj, A. Achazhiyath-Edathil, P. Kadirvelayutham, F. Banat, Chicken feathers as an intrinsic source to develop ZnS/carbon composite for Li-ion battery anode material. Mater. Chem. Phys. 248, 122953 (2020)

    Article  CAS  Google Scholar 

  33. C. Mallikarjunaswamy, V. Lakshmi-Ranganatha, R. Ramu, Udayabhanu, G. Nagaraju, Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. J. Mater. Sci. Mater. Electron. 31, 1004–1021 (2020). https://doi.org/10.1007/s10854-019-02612-2

    Article  CAS  Google Scholar 

  34. D. Jiang, J. Xue, L. Wu, W. Zhou, Y. Zhang, X. Li, Photocatalytic performance enhancement of CuO/Cu2O heterostructures for photodegradation of organic dyes: Effects of CuO morphology. Appl. Catal. B 211, 199–204 (2017). https://doi.org/10.1016/j.apcatb.2017.04.034

    Article  CAS  Google Scholar 

  35. J.H. Li, R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, J. Ding, Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat. 64, 504–509 (2009). https://doi.org/10.1016/j.porgcoat.2008.08.013

    Article  CAS  Google Scholar 

  36. M. Sundararajan, P. Sakthivel, A.C. Fernandez, Structural, optical and electrical properties of ZnO-ZnS nanocomposites prepared by simple hydrothermal method. J. Alloys Compd. 768, 553–562 (2018)

    Article  CAS  Google Scholar 

  37. R.K. Tukhtaev et al., Production of powder electroluminophors based on zinc sulfide under combustion conditions, in Doklady physical chemistry, vol. 395, (Kluwer Academic Publishers-Plenum Publishers, 2004)

    Google Scholar 

  38. G. Murugadoss, V. Ramasamy, Structural and optical study of mixed structure of ZnO(hexagonal)/ ZnS(cubic) nanocomposites. Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 290–294 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. S. Munyai, L.M. Mahlaule-Glory, N.C. Hintsho-Mbita, Green synthesis of Zinc sulphide (ZnS) nanostructures using S. frutescences plant extract for photocatalytic degradation of dyes and antibiotics. Mater. Res. Express. 9, 015001 (2022)

    Article  ADS  CAS  Google Scholar 

  40. M. Schmitt, C. Dietlin, J. Lalevée, Towards visible LED illumination: ZnO–ZnS nanocomposite particles. ChemistrySelect 5, 985–987 (2020). https://doi.org/10.1002/slct.201904699

    Article  CAS  Google Scholar 

  41. A.R. Harikrishnan, P. Dhar, P.K. Agnihotri, S. Gedupudi, S.K. Das, Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids. Eur. Phys. J. E 40, 1–14 (2017)

    Article  CAS  Google Scholar 

  42. N.T.K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114(15), 7610–7630 (2014)

    Article  CAS  PubMed  Google Scholar 

  43. A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 91, 1326–1337 (2007). https://doi.org/10.1016/j.solmat.2007.05.005

    Article  CAS  Google Scholar 

  44. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 3, 1–6 (2013)

    Article  Google Scholar 

  45. P.V. Raleaooa, A. Roodt, G.G. Mhlongo, D.E. Motaung, R.E. Kroon, O.M. Ntwaeaborwa, Luminescent, magnetic and optical properties of ZnO-ZnS nanocomposites. Physica B 507, 13–20 (2017)

    Article  ADS  CAS  Google Scholar 

  46. A. Sadollahkhani, I. Kazeminezhad, J. Lu, O. Nur, L. Hultman, M. Willander, Synthesis, structural characterization and photocatalytic application of ZnO@ ZnS core shell nanoparticles. RSC Adv. 4, 36940 (2014)

    Article  ADS  CAS  Google Scholar 

  47. P.S. Nandisha, A. Sowbhagya, Bio-mediated synthesis of CuO nano bundles from Gomutra (cow urine): synthesis, characterization, photodegradation of the malachite green dye and SBH mediated reduction of 4-nitrophenol. Mater. Sci. Eng. B 295, 116607 (2023)

    Article  CAS  Google Scholar 

  48. P.S. Nandisha, Sowbhagya, S. Yallappa, Synthesis and characterization of ternary NiO@Bi2MoO6–MoS heterojunction with enhanced photodegradation efficiency towards indigo carmine dye. Solid State Sci. 139, 107157 (2023)

    Article  CAS  Google Scholar 

  49. S. Ali, S. Saleem, M. Salman, M. Khan, Synthesis, structural and optical properties of ZnS–ZnO nanocomposites. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122900

    Article  Google Scholar 

  50. A.M. Mohammed, S.S. Mohtar, F. Aziz, M. Aziz, A. Ul-Hamid, Cu2O/ZnO-PANI ternary nanocomposite as an efficient photocatalyst for the photodegradation of Congo Red dye. J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105065

    Article  Google Scholar 

  51. W. Shi, N. Chopra, Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation. ACS Appl. Mater. Interfaces 4, 5590–5607 (2012). https://doi.org/10.1021/am301488c

    Article  CAS  PubMed  Google Scholar 

  52. D. Ayodhya, G. Veerabhadram, A review on recent advances in photodegradation of dyes using doped and heterojunction-based semiconductor metal sulfide nanostructures for environmental protection. Mater Today Energy 9, 83–113 (2018). https://doi.org/10.1016/j.mtener.2018.05.007

    Article  Google Scholar 

  53. S. Chakraborty, J.J. Farida, R. Simon, S. Kasthuri, N.L. Mary, Averrhoe carrambola fruit extract assisted green synthesis of ZnO nanoparticles for the photodegradation of congo red dye. Surfaces Interfaces. (2020). https://doi.org/10.1016/j.surfin.2020.100488

    Article  Google Scholar 

  54. A.Q. Malik, T. Ul, G. Mir, O. Amin, M. Sathish, D. Kumar, Synthesis, characterization, photocatalytic effect of CuS–ZnO nanocomposite on photodegradation of Congo red and phenol pollutant. Inorg. Chem. Commun. 143, 109797 (2022). https://doi.org/10.1016/J.INOCHE.2022.109797

    Article  CAS  Google Scholar 

  55. M. Abdullah, P. John, Z. Ahmad, M.N. Ashiq, S. Manzoor, M.I. Ghori, M.U. Nisa, A.G. Abid, K.Y. Butt, S. Ahmed, Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Appl. Nanosci. 11, 2361–2370 (2021)

    Article  ADS  CAS  Google Scholar 

  56. S. Munyai, L.M. Mahlaule-Glory, N.C. Hintsho-Mbita, Green synthesis of Zinc sulphide (ZnS) nanostructures using S. frutescences plant extract for photocatalytic degradation of dyes and antibiotics. Mater. Res. Express 9, 015001 (2022)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to G. Shanker, professor, Gajendra babu, Vinay. G, Eti Chetan, research scholars, Department of Chemistry, Bangalore University, Bengaluru, INDIA, for continuous support to our research work.

Author information

Authors and Affiliations

Authors

Contributions

PSN work design, original draft writing, experimental work, and formal analysis. S work on design, editing, and revision of the draft. BU spectral analysis, editing, and revision of the draft. MH formal analysis and spectral analysis, and revision of the draft. KLN formal analysis, editing, revision of the draft.

Corresponding author

Correspondence to Sowbhagya.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Ethical Approval

This article does not contain any studies involving animals performed by any authors. Also, this article has no studies involving human participants functioned by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandisha, P.S., Sowbhagya, Pasha, M.A. et al. Bio-mediated Synthesis of ZnS–ZnO Nanocomposite from Cucumis melo Pulp and Chicken Feathers: Photodegradation of Dyes and Antibacterial Activities. Korean J. Chem. Eng. 41, 515–531 (2024). https://doi.org/10.1007/s11814-024-00058-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00058-9

Keywords

Navigation