Skip to main content

Advertisement

Log in

Producing hydrocarbon fuel from the plastic waste: Techno-economic analysis

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Dumping plastic waste into landfills can lead to severe health and environmental problems. Plastic waste can be treated by the pyrolysis process to produce fuel. A techno-economic and feasibility assessment was performed for plastic-waste pyrolysis followed by hydrodeoxygenation to upgrade the fuel using the software Aspen Plus. A simulation was conducted using Aspen Plus to estimate the plant’s mass and energy balance; it is assumed that 1,000 dry metric tons of plastic waste is processed per day. Plastic waste contains 40% polystyrene (PS), 20% polyethylene (PE), 20% polypropylene (PP), and 20% polyethylene terephthalate (PET). The process is simulated in five steps: pretreatment, pyrolysis, hydrogen production, and hydrodeoxygenation of oil and energy generation. The mass and the energy yields of this process are 36% and 42%, respectively. The capital investment of the plant and the production cost were calculated based on the Aspen Plus model. Based on the economic estimation, the capital investment of this process is $118 million and the production cost is $27 million. For the 20-year project, the minimum selling price (MSP) of the fuel was calculated to be $0.60/gal. Sensitivity analysis was performed to verify the economic assumptions on the MSP. The MSP is highly sensitive to the feedstock cost, plant capacity, and product yield. As the plant capacity or product yield increases, the MSP decreases significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. A. Sharuddin, F. Abnisa, W. M. Daud and M. K. Aroua, Energy Convers. Manage., 115, 308 (2016).

    Article  Google Scholar 

  2. A. Nizami, M. Rehan, O. K. Ouda, K. Shahzad, Y. Sadef, T. Iqbal and I. M. Ismail, Chem. Eng. Trans., 45, 337 (2015).

    Google Scholar 

  3. O. K. Ouda, S. Raza, A. Nizami, M. Rehan, R. Al-Waked and N. Korres, Renew. Sustain. Energy Rev., 61, 328 (2016).

    Article  Google Scholar 

  4. A. Buekens and H. Huang, Resour. Conserv. Recycling, 23(3), 163 (1998).

    Article  Google Scholar 

  5. A. Le Courtois, Private Sector & Development, 15, 1 (2012).

    Google Scholar 

  6. F. Abnisa and W. M. Daud, Energy Convers. Manage., 87, 71 (2014).

    Article  CAS  Google Scholar 

  7. L. Sørum, M. Grønli and J. Hustad, Fuel, 80(9), 1217 (2001).

    Article  Google Scholar 

  8. A. V. Bridgwater, Biomass Bioenergy, 38, 68 (2012).

    Article  CAS  Google Scholar 

  9. R. Miandad, M. Barakat, A. S. Aburiazaiza, M. Rehan, I. Ismail and A. Nizami, Int. Biodeterior. Biodegrad., 119, 239 (2017).

    Article  CAS  Google Scholar 

  10. M. Rehan, R. Miandad, M. Barakat, I. Ismail, T. Almeelbi, J. Gardy, A. Hassanpour, M. Khan, A. Demirbas and A. Nizami, Int. Biodeterior. Biodegrad., 119, 162 (2017).

    Article  CAS  Google Scholar 

  11. M. Syamsiro, H. Saptoadi, T. Norsujianto, P. Noviasri, S. Cheng, Z. Alimuddin and K. Yoshikawa, Energy Procedia, 47, 180 (2014).

    Article  CAS  Google Scholar 

  12. P. J. Donaj, W. Kaminsky, F. Buzeto and W. Yang, Waste Manage., 32(5), 840 (2012).

    Article  CAS  Google Scholar 

  13. I. Ahmad, M. I. Khan, H. Khan, M. Ishaq, R. Tariq, K. Gul and W. Ahmad, Int. J. Green Energy, 12(7), 663 (2015).

    Article  CAS  Google Scholar 

  14. J. A. Onwudili, N. Insura and P. T. Williams, J. Anal. Appl. Pyrol., 86(2), 293 (2009).

    Article  CAS  Google Scholar 

  15. A. López, I. De Marco, B. Caballero, M. Laresgoiti, A. Adrados and A. Aranzabal, Appl. Catal. B: Environ., 104(3–4), 211 (2011).

    Article  Google Scholar 

  16. N. Miskolczi, L. Bartha and G. Deák, Polym. Degrad. Stab., 91(3), 517 (2006).

    Article  CAS  Google Scholar 

  17. A. Marcilla, M. Beltrán and R. Navarro, Appl. Catal. B: Environ., 86(1–2), 78 (2009).

    Article  CAS  Google Scholar 

  18. A. Fivga and I. Dimitriou, Energy, 149, 865 (2018).

    Article  CAS  Google Scholar 

  19. J. Sahu, K. Mahalik, H. K. Nam, T. Y. Ling, T. S. Woon, B. A. Rahman, M. Shahimi, Y. Mohanty, N. Jayakumar and S. Jamuar, Environ. Prog. Sustain. Energy, 33(1), 298 (2014).

    Article  CAS  Google Scholar 

  20. H. AlMohamadi, AIMS Energy, 9(1), 50 (2021).

    Article  CAS  Google Scholar 

  21. J. L. Carrasco, S. Gunukula, A. A. Boateng, C. A. Mullen, W. J. DeSisto and M. C. Wheeler, Fuel, 193, 477 (2017).

    Article  CAS  Google Scholar 

  22. S. Channiwala and P. Parikh, Fuel, 81(8), 1051 (2002).

    Article  CAS  Google Scholar 

  23. S. D. Phillips, J. K. Tarud, M. J. Biddy and A. Dutta, Ind. Eng. Chem. Res., 50(20), 11734 (2011).

    Article  CAS  Google Scholar 

  24. S. J. Eaton, S. H. Beis, S. A. Karunarathne, H. P. Pendse and M. C. Wheeler, Energy Fuels, 29(5), 3224 (2015).

    Article  CAS  Google Scholar 

  25. M. M. Wright, D. E. Daugaard, J. A. Satrio and R. C. Brown, Fuel, 89, S2 (2010).

    Article  CAS  Google Scholar 

  26. K. Onarheim, Y. Solantausta and J. Lehto, Energy Fuels, 29(1), 205 (2015).

    Article  CAS  Google Scholar 

  27. H. AlMohamadi, S. Gunukula, W. J. DeSisto and M. C. Wheeler, Biofuels, Bioproducts and Biorefining, 12(1), 45 (2018).

    Article  CAS  Google Scholar 

  28. R. Miandad, M. Barakat, A. S. Aburiazaiza, M. Rehan and A. Nizami, Process Saf. Environ. Prot., 102, 822 (2016).

    Article  CAS  Google Scholar 

  29. Y. Liu, J. Qian and J. Wang, Fuel Process Technol., 63(1), 45 (2000).

    Article  CAS  Google Scholar 

  30. Y. Xingzhong, Feedstock recycling and pyrolysis of waste plastics: Converting waste plastics into diesel and other fuels, 729 (2006).

  31. U. R. Gracida-Alvarez, O. Winjobi, J. C. Sacramento-Rivero and D. R. Shonnard, ACS Sustain. Chem. Eng., 7(22), 18254 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Scientific Research Deanship, the Islamic University of Madinah, for the support provided with Tamayyuz 2 grant number 585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamad Almohamadi.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almohamadi, H., Alamoudi, M., Ahmed, U. et al. Producing hydrocarbon fuel from the plastic waste: Techno-economic analysis. Korean J. Chem. Eng. 38, 2208–2216 (2021). https://doi.org/10.1007/s11814-021-0876-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0876-3

Keywords

Navigation