Skip to main content
Log in

Oxygen-vacancy-rich spinel CoFe2O4 nanocrystals anchored on cage-like carbon for high-performance oxygen electrocatalysis

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We report spinel-type CoFe2O4 nanocrystals (NCs) synthesized through facile hydrothermal growth and their attachment on a cage-like carbon (CC) for efficient and durable oxygen evolution/reduction reaction (OER/ORR) performance. As a catalyst, the so-constructed CoFe2O4 NCs show significantly higher OER performance than bare CoFe2O4 and CC, leading to an overpotential of 1.59 V for the OER at a current density of 10 mA/cm. Furthermore, CoFe2O4 NCs on CC electrodes also exhibit good ORR performance, which is comparable to Pt/C, significantly higher than that of bare carbon fiber paper, and acts as a bifunctional electrocatalyst. The CoFe2O4 NCs anchored on the CC electrodes exhibit remarkably long-term stability, which is evaluated by continuous cycling (over 5,000 cycles), without any morphological change, but preserving all the materials within the electrode. The results indicate that the CoFe2O4 NCs have a promising potential for efficient, cost-effective, and durable oxygen electrocatalysis at large scales using earth-abundant materials and low-cost fabrication processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Y. Ma, S. Y. Wu and F. Wang, ACS Appl. Mater. Interfaces, 50, 56086 (2020).

    Article  CAS  Google Scholar 

  2. K. Y. Zou, N. Li, Y. Z. Chen and J. J. Sun, ACS Appl. Nano Mater., 6, 5732 (2020).

    Article  CAS  Google Scholar 

  3. Q. Y. Liu, X. Y. Yi and X. Han, Fire Technol., 56, 2509 (2020).

    Article  Google Scholar 

  4. R. H. Tammam, A. M. Fekry and M. M. Saleh, Korean J. Chem. Eng., 11, 1932 (2019).

    Article  CAS  Google Scholar 

  5. Y. Zhan, C. H. Xu and J. Y. Lee, J. Mater. Chem. A, 2, 16217 (2014).

    Article  CAS  Google Scholar 

  6. A. Muthurasu, B. Dahal and H. Y. Kim, ACS Appl. Mater. Interfaces, 37, 41704 (2020).

    Article  CAS  Google Scholar 

  7. E. Davari and D. G. Ivey, Sustain. Energy Fuels, 2, 39 (2018).

    Article  CAS  Google Scholar 

  8. S. S. Shinde, C. H. Lee and J. H. Lee, ACS Nano, 1, 347 (2017).

    Article  CAS  Google Scholar 

  9. S. X. Yang, Y. H. Yu and M. L. Dou, Angew. Chem., 41, 14866 (2019).

    Article  Google Scholar 

  10. L. Sharma, R. Gond and P. Barpanda, ACS Catal., 1, 43 (2020).

    Article  CAS  Google Scholar 

  11. J. T. Ren and Z. Y. Yuan, ACS Sustain. Chem. Eng., 11, 11121 (2019).

    Google Scholar 

  12. D. U. Lee, P. Xu and Z. W. Chen, J. Mater. Chem. A, 4, 7107 (2016).

    Article  CAS  Google Scholar 

  13. K. E. Fritz, Y. C. Yan and J. Suntivich, Nano Res., 12, 2307 (2019).

    Article  CAS  Google Scholar 

  14. D. D. Wang, X. Chen and W. S. Yang, Nanoscale, 5, 5312 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. R. H. Tammam, A. M. Fekry and M. M. Saleh, Korean J. Chem. Eng., 36, 1932 (2019).

    Article  CAS  Google Scholar 

  16. D. Takimoto, K. Fukuda and W. Sugimoto, Electrocatalysis, 8, 144 (2017).

    Article  CAS  Google Scholar 

  17. Q. M. He, R. Kun and Z. Y. Wen, ACS Appl. Mater. Interfaces, 9, 36927 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. W. Bian, Z. Yang and R. Yang, J. Power Sources, 250, 196 (2014).

    Article  CAS  Google Scholar 

  19. J. Yin, L. Shen and P. X. Xi, J. Mater. Res., 33, 590 (2018).

    Article  CAS  Google Scholar 

  20. C. P. Wang, H. Su and J. M. Zhang, ACS Appl. Mater. Interfaces, 10, 28679 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. H. B. Wu and X. W. Lou, Sci. Adv., 3, 9252 (2017).

    Article  CAS  Google Scholar 

  22. H. S. Fan, Y. F. Zhang and J. Xu, Nano Energy, 33, 168 (2017).

    Article  CAS  Google Scholar 

  23. J. G. Kim, Y. Noh and S. Lee, Nanoscale, 9, 5119 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. K. Alireza, Y. Serdar and R. B. Prabhakar, ACS Appl. Mater. Interfaces, 7, 17851 (2015).

    Article  CAS  Google Scholar 

  25. Z. X. Wu, H. B. Wu and W. Jin, ACS Sustain. Chem. Eng., 24, 9226 (2020).

    Article  CAS  Google Scholar 

  26. C. J. Liu, Z. C. Zhang and G. J. Guo, RSC Adv., 6, 106443 (2016).

    Article  CAS  Google Scholar 

  27. K. N. Chee, W. T. Ren and J. Wu, Chem. Sci., 10, 1549 (2019).

    Article  Google Scholar 

  28. Y. F. Bing, Y. Zeng and W. T. Zheng, Nanoscale, 7, 3276 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. A. Nazir, A. Y. Hussein and V Francis, Chem. Soc. Rev., 44, 9 (2015).

    Article  Google Scholar 

  30. R. Martin, G. N. Martin and B. Nico, Chem. Soc. Rev., 45, 6213 (2016).

    Article  Google Scholar 

  31. B. Marco, P. S. Raul and H. Maciej, Mol. Syst. Des. Eng., 4, 912 (2019).

    Article  Google Scholar 

  32. H. G. Wang, D P. Liu and Q. Duan, Mater. Lett., 172, 64 (2016).

    Article  CAS  Google Scholar 

  33. K. Xie, X. T. Qin and Y. N. Wang, Adv. Mater., 24, 347 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. A. Kargar, S. Yavuz and T. K. Kim, ACS Appl. Mater. Interfaces, 32, 17851 (2015).

    Article  CAS  Google Scholar 

  35. Q. M. He, K. Rui and C. H. Chen, ACS Appl. Mater. Interfaces, 42, 36927 (2017).

    Article  CAS  Google Scholar 

  36. K. Praveena and M. Bououdina, J. Electron. Mater., 49, 6187 (2020).

    Article  CAS  Google Scholar 

  37. L. J. Abbott and C. M. Colina, J. Chem. Eng. Data, 10, 3177 (2014).

    Article  CAS  Google Scholar 

  38. S. Safran, F. Bulut and A. R. A. Nefrow, J. Mater. Sci: Mater. El., 31, 20578 (2020).

    Google Scholar 

  39. B. Verma and C. Balomajumder, Korean J. Chem. Eng., 37, 1157 (2020).

    Article  CAS  Google Scholar 

  40. Y. Georgioua, I. T. Papadas and G. S. Armatas, Environ. Sci.: Nano, 6, 1156 (2019).

    Google Scholar 

  41. Y. Ding, J. Zhao and F. C. Yang, ACS Appl. Energy Mater., 2, 1026 (2019).

    Article  CAS  Google Scholar 

  42. X. Wang, L. Z. Zhuang and P. Yuan, Chem. Res. Chinese U., 36, 479 (2020).

    Article  CAS  Google Scholar 

  43. M. Saha, S. Ghosh, S. Paul, B. Dalal and S. K. De, ChemistrySelect, 3, 6654 (2018).

    Article  CAS  Google Scholar 

  44. T. Chen, J. Meng, Q. Lin, X. Wei, J. Li and Z. Zhang, J. Alloys Compd., 780, 498 (2019).

    Article  CAS  Google Scholar 

  45. S. Li, M. Wang, C. Li, J. Liu, M. Xu, J. Liu and J. Zhang, Sci. China Mater., 61, 1085 (2018).

    Article  CAS  Google Scholar 

  46. G. Lavorato, E. Lima and E. Winkler, J. Phys. Chem. C, 5, 3047 (2018).

    Article  CAS  Google Scholar 

  47. D. Guo, J. Wang, L. Zhang, X. Chen, Z. Wan and B. Xi, Small, 2002432 (2020).

  48. S. L. Zhang, B. Y. Guan, X. F. Lu, S. Xi, Y. Du and X. W. Lou, Adv. Mater., 32, 2002235 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program-Development of technology on materials and components) (20010106, Adhesives with low water permeability and low outgassing) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan-Long Jin or Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YC., Jin, FL. & Park, SJ. Oxygen-vacancy-rich spinel CoFe2O4 nanocrystals anchored on cage-like carbon for high-performance oxygen electrocatalysis. Korean J. Chem. Eng. 38, 2134–2140 (2021). https://doi.org/10.1007/s11814-021-0849-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0849-6

Keywords

Navigation