Skip to main content
Log in

Fabrication of magnetic cobalt ferrite nanocomposites: an advanced method of removal of toxic dichromate ions from electroplating wastewater

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Magnetic cobalt ferrites (CoFe2O4) were synthesized by sol-gel method. These nanoparticles were ultra-sonicated with surface modified multi-walled carbon nanotubes (SM-MWCNTs) to form CoFe2O4/SM-MWCNTs nanocomposites. The as-prepared materials were used as an adsorbent for the removal of hexavalent chromium (Cr(VI)) arising from the presence of dichromate ions (Cr2O2−7 ) in the electroplating effluent. The synthesized nanocomposites were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transmission infrared spectroscopy (FT-IR), raman spectroscopy, thermo-gravimetric analysis (TGA), and zeta analyzer. The effect of the environmental chemistry of the solution on the adsorption has been discussed. The adsorption isotherm of Cr(VI) adsorption onto the as-synthesized CoFe2O4/SM-MWCNTs best fitted the Langmuir Adsorption Isotherm model. The high adsorption capacity of 100mg/g was achieved at 40°C under optimized conditions. Besides, the magnetic properties of synthesized CoFe2O4/SM-MWCNTs nanocomposites allow them to separate from the aqueous solution by magnetization easily. Even after seven consecutive adsorption-desorption cycles, the CoFe2O4/SM-MWCNTs nanocomposites presented an efficiency loss of less than 20% for the removal of Cr(VI) ions. This study clearly shows that cobalt nanocomposites are promising candidates in environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu and X. Wang, Chemosphere, 195, 351 (2018).

    Article  CAS  Google Scholar 

  2. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  3. H. Chang and H. Wu, Energy Environ. Sci., 6(12), 3483 (2013).

    Article  CAS  Google Scholar 

  4. R. Sepahvand and R. Mohamadzade, J. Sci. Islam. Repub. Iran, 22(2), 177 (2011).

    CAS  Google Scholar 

  5. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, M. Guldi and M. Prato, J. Mater. Chem., 17, 2679 (2007).

    Article  CAS  Google Scholar 

  6. H. Zheng, J. Kreisel, Y. Chu, R. Ramesh and L. Salamanca-riba, Appl. Phys. Lett., 90, 113113 (2007).

    Article  Google Scholar 

  7. T. N. Diva, K. Zare, F. Taleshi and M. Yousefi, J. Nanostructure Chem., 7, 273 (2017).

    Article  CAS  Google Scholar 

  8. M. Hadi, M. Mohammad, A. Kumar and B. Heibati, Chem. Eng. J., 279, 344 (2015).

    Article  Google Scholar 

  9. M. S. Gaikwad and C. Balomajumder, J. Environ. Chem. Eng., 5(1), 45 (2017).

    Article  CAS  Google Scholar 

  10. J. O. M. Neto, C. R. Bellato and D. C. Silva, Chemosphere, 218, 391 (2019).

    Article  Google Scholar 

  11. W. Chen, Z. Lu, B. Xiao, P. Gu, W. Yao, J. Xing, A. M. Asiri, K. A. Alamry, X. Wang and S. Wang, J. Clean. Prod., 211, 1250 (2019).

    Article  CAS  Google Scholar 

  12. P. A. M. Mourão, P. J. M. Carrott and M. M. L. Ribeiro Carrott, Carbon, 44(12), 2422 (2006).

    Article  Google Scholar 

  13. N. Li, M. Zheng, X. Chang, G. Ji, H. Lu, L. Xue, L. Pan and J. Cao, J. Solid State Chem., 184, 953 (2011).

    Article  CAS  Google Scholar 

  14. T. Zhao, X. Ji, X. Guo, W. Jin, A. Dang, H. Li and T. Li, Chem. Phys. Lett., 653, 202 (2016).

    Article  CAS  Google Scholar 

  15. C. Luo, Z. Tian, B. Yang, L. Zhang and S. Yan, Chem. Eng. J., 234, 266 (2013).

    Article  Google Scholar 

  16. J. Hu, C. Chen, X. Zhu and X. Wang, J. Hazard. Mater., 162(2), 1542 (2009).

    CAS  PubMed  Google Scholar 

  17. L. Tang, G. D. Yang, G. M. Zeng, Y. Cai, S. S. Li, Y Y. Zhou, Y. Pang, Y. Y. Liu, Y. Zhang and B. Luna, Chem. Eng. J., 239, 114 (2014).

    Article  CAS  Google Scholar 

  18. J. Hu, G. Chen and I. M. C. Lo, Water Res., 39(18), 4528 (2005).

    Article  CAS  Google Scholar 

  19. M. H. Dehghani, M. M. Taher, A. K. Bajpai, B. Heibati, I. Tyagi, M. Asif, S. Agarwal and V. K. Gupta, Chem. Eng. J., 279, 344 (2015).

    Article  CAS  Google Scholar 

  20. T. Wajima, Y. Umeta, S. Narita and K. Sugawara, DES, 249(1), 323 (2009).

    Article  CAS  Google Scholar 

  21. M. E. Argun, S. Dursun, C. Ozdemir and M. Karatas, J. Hazard. Mater., 141, 77 (2007).

    Article  CAS  Google Scholar 

  22. Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu and B. Wei, Chem. Phys. Lett., 357, 263 (2002).

    Article  CAS  Google Scholar 

  23. A. Bhatnagar, E. Kumar and M. Sillanpää, Chem. Eng. J., 163(3), 317 (2010).

    Article  CAS  Google Scholar 

  24. M. L. Paul, J. Samuel, S. B. Das, S. Swaroop, N. Chandrasekaran and A. Mukherjee, Ind. Eng. Chem. Res., 51, 46 (2012).

    Google Scholar 

  25. R. Milena, H. Buchtov and P. Jano, Water Res., 37, 4938 (2003).

    Article  Google Scholar 

  26. X. Yang, Y. Wan, Y. Zheng, F. He, Z. Yu, J. Huang, H. Wang, Y. S. Ok, Y. Jiang and B. Gao, Chem. Eng. J., 366, 608 (2019).

    Article  CAS  Google Scholar 

  27. S. Chen, Q. Yue, B. Gao and X. Xu, J. Colloid Interface Sci., 349(1), 256 (2010).

    Article  CAS  Google Scholar 

  28. C. Cabrera, C. Gabaldón and P. Marzal, J. Chem. Technol. Biotechnol., 80(4), 477 (2005).

    Article  CAS  Google Scholar 

  29. P. Wang, M. Du, H. Zhu, S. Bao, T. Yang and M. Zou, J. Hazard. Mater., 286, 533 (2015).

    Article  CAS  Google Scholar 

  30. J. Huang, Y. Cao, Q. Shao, X. Peng and Z. Guo, Ind. Eng. Chem. Res., 56(38), 10689 (2017).

    Article  CAS  Google Scholar 

  31. I. Enniya, L. Rghioui and A. Jourani, Sustain. Chem. Pharm., 7, 9 (2018).

    Article  Google Scholar 

  32. S. Rajput, C. U. Pittman and D. Mohan, J. Colloid Interface Sci., 468, 334 (2016).

    Article  CAS  Google Scholar 

  33. C. G. Lee, S. Lee, J. A. Park, C. Park, S. J. Lee, S. B. Kim, B. An, S. T. Yun, S. H. Lee and J. W. Choi, Chemosphere, 166, 203 (2017).

    Article  CAS  Google Scholar 

  34. P. B. Vilela, A. Dalalibera, E. C. Duminelli, V. A. Becegato and A. T. Paulino, Environ. Sci. Pollut. Res., 26(28), 28481 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Verma.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_516_MOESM1_ESM.pdf

Fabrication of magnetic cobalt ferrite nanocomposites: an advanced method of removal of toxic dichromate ions from electroplating wastewater

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, B., Balomajumder, C. Fabrication of magnetic cobalt ferrite nanocomposites: an advanced method of removal of toxic dichromate ions from electroplating wastewater. Korean J. Chem. Eng. 37, 1157–1165 (2020). https://doi.org/10.1007/s11814-020-0516-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0516-3

Keywords

Navigation